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LYAPUNOV FUNCTIONS AND Lp-ESTIMATES FOR A CLASS OF
REACTION-DIFFUSION SYSTEMS

BY

DIRK HORSTMANN (Köln)

Abstract. We give a sufficient condition for the existence of a Lyapunov function for
the system

at = ∇(k(a, c)∇a− h(a, c)∇c), x ∈ Ω, t > 0,

εct = kc∆c− f(c)c+ g(a, c), x ∈ Ω, t > 0,

for Ω ⊂ R
N , completed with either a = c = 0, or

∂a

∂n
=
∂c

∂n
= 0, or k(a, c)

∂a

∂n
= h(a, c)

∂c

∂n
, c = 0 on ∂Ω × {t > 0}.

Furthermore we study the asymptotic behaviour of the solution and give some uniform
Lp-estimates.

1. Introduction. In this paper we study the following system of two
nonlinear parabolic partial differential equations:

(1)

{
at = ∇(k(a, c)∇a− h(a, c)∇c), x ∈ Ω, t > 0,
εct = kc∆c− f(c)c+ g(a, c), x ∈ Ω, t > 0,

for Ω ⊂ R
N , completed with either

(2)
∂a

∂n
=
∂c

∂n
= 0 on ∂Ω × {t > 0},

or

(3) a = 0, c = 0 on ∂Ω × {t > 0},
or

(4) k(a, c)
∂a

∂n
= h(a, c)

∂c

∂n
, c = 0 on ∂Ω × {t > 0}

as boundary conditions, and with initial data

(5) a(x, 0) = a0(x) and c(x, 0) = c0(x), x ∈ Ω.
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Here kc is a positive constant and ε ∈ {0, 1}. For the functions appearing in
the model the following conditions have been considered to be reasonable:

• k(a, c) > 0 for all (a, c) ∈ R× R,

• f(c) ≥ const for all c ∈ R,

• ∂∂ag(a, c) 6= 0 for all (a, c) ∈ R× R.

Problems of this kind are known in many mathematical fields. They can
be written in the form

(6)
∂u

∂t
−∇ · (k(u)∇u) = f(u,∇u)

with u = (a, c). They appear in population dynamics, phase transition mod-
els, flows in porous media, models of gravitational interaction of particles
and other fields (see [3] for further examples).

To give some explicit examples where systems like (1) appear, we mention
the following:

1. If h(a, c) = aφ(c) with φ(c) > 0 for all c ∈ R+ and g(a, c) > 0 for
all (a, c) ∈ R+ × R+, then the equations (1) are known as the so-called
Keller–Segel model, which describes the aggregation of the cellular slime
mold Dictyostelium discoideum (see for instance [9, 12–15, 19]).

2. These equations also appear in describing animal coat pattern mech-
anisms (see for example [16]). In [16] system (1) appears with

k(a, c) = const1 > 0, h(a, c) = aφ(c) = a · const2 > 0,

f(c) = const3 > 0, g(a, c) =
const4 a

const5+a

together with boundary data (2).

3. If h(a, c) = aφ(c) with φ(c) < 0 for all c ∈ R+ and ε = 0, then the
equations (1) have some similarities with the Debye system (see for instance
[5], [6]).

In this paper we give a sufficient condition for the existence of a Lyapunov
function for system (1) in Section 3. Our assumptions are more general
than those made in [10, 18, 20, 22]. The results given are also true for
the systems studied there. But the conditions assumed here allow a larger
variety of nonlinearities than in those papers. This is especially true for the
Keller–Segel case (see [20, p. 3]).

In Section 4 we will study the asymptotic behaviour of the solution of
those systems which have a Lyapunov function.

In Section 5 we give some Lp-estimates for the solution of system (1). The
results stated there are also true for systems which do not have a Lyapunov
function.
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2. Local existence. In this section we assume that ε = 1. For ε = 0
the existence of a solution can be shown by other methods.

Before we introduce our new results, we will refer to the existence results
of A. Yagi [23] for the local (in time) existence of a positive solution of
problem (1) in the chemotaxis case with homogeneous Neumann boundary
data. In [23], Ω ⊂ R

2 is a C2-smooth domain. For the local existence of a
solution with other boundary data and in higher dimensions we use a result
of H. Amann [2].

Let Ω ⊂ R
N , p ∈ (N,∞), δi ∈ C(∂Ω, {0, 1}) for 1 ≤ i ≤ N , δ =

diag[δi]1≤i≤N and

H1,pB ≡ {w ∈ H1,p(Ω,R2) | (I − δ)w|∂Ω = 0}.
Now we set

V ≡ {v ∈ H1,pB | v(Ω) ⊂ G},
where G is an open subset of R

2. Furthermore we will assume that k(a, c),
h(a, c), g(a, c) ∈ C∞(G,R) and f(c) ∈ C∞(R,R).
Now we can state the following existence theorem:

Theorem 1. Let Ω ⊂ R
N be a smooth domain with boundary ∂Ω. Fur-

thermore let w0 ∈ V . Then there exists a unique maximal solution
w(·, w0) ∈ C([0, t+(w0)), V ) ∩ C2,1(Ω × (0, t+(w0)),R2)

of (1) with boundary condition (2), (3) or (4), where 0 < t+(w0) ≤ ∞.
Proof. We set w ≡ (a, c) ∈ R

2. Now we can write (1) together with one
of the boundary conditions as

wt +A(w)w = F(w) in Ω × (0, T ),
B(w)w = 0, on ∂Ω × (0, T ),
w(·, 0) = (a0, c0) in Ω.

The operators A(η) and B(η) are defined by
A(η)w ≡ −∂j(ajk(η)∂kw)

with

a11(η)(w1, w2) ≡ (k(η1, η2)w1 − h(η1, η2)w2, kcw2)T ,
a22(η)(w1, w2) ≡ (k(η1, η2)w1 − h(η1, η2)w2, kcw2)T ,
a12(η)(w1, w2) ≡ (0, 0),
a21(η)(w1, w2) ≡ (0, 0),

and

B(η)w ≡ δ(ajk(·, η)nj∂kw) + (I − δ)w = 0 on ∂Ω, t ≥ 0,
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where n = (n1, . . . , nN ) is the outer unit normal vector field on ∂Ω. The
function F(η) is given by

F(η) ≡ (0, g(η1, η2)− f(η2)η2).
If we now apply the existence result of H. Amann [2, p. 17] resp. [3,

Theorem 14.6, p. 93], we get the assertion of the theorem.

3. A Lyapunov function. Again we set ε = 1, but the results can also
be applied to the case ε = 0. For the rest of the paper we use the following
notations:

F (c) ≡
c\
0

f(s)s ds,(7)

G(a, c) ≡ −
c\
0

g(a, s) ds.(8)

Occasionally we assume that

(9)
\
Ω

F (c) dx ≥ k1
\
Ω

c2 dx,

where k1 is a nonnegative constant (if we have homogeneous Neumann
boundary data we assume k1 > 0!).

Theorem 2. If there exists a function R(a) such that

(10)
h(a, c)

k(a, c)
(Gaa(a, c) +R

′′(a)) +Gac(a, c) = 0,

then there exists a Lyapunov function for system (1), provided

(11) Gaa(a, c) +R
′′(a) ≥ 0

holds for the solution of (1). In the case of boundary condition (3) we have to
assume additionally that Ga(a, c) = 0 = R

′(a) on ∂Ω×{t > 0}. A Lyapunov
function for system (1) is then given by

H(a(t), c(t)) ≡ kc
2

\
Ω

|∇c(t)|2 dx+
\
Ω

F (c(t)) dx(12)

+
\
Ω

R(a(t)) dx+
\
Ω

G(a(t), c(t)) dx.

Proof. We have

d

dt
H(a, c) = −

\
Ω

c2t dx+
\
Ω

atR
′(a) dx+

\
Ω

atGa(a, c) dx

= −
\
Ω

(R′′(a) +Gaa(a, c))∇a(k(a, c)∇a− h(a, c)∇c)dx



REACTION-DIFFUSION SYSTEMS 117

−
\
Ω

Gac(a, c)∇c(k(a, c)∇a− h(a, c)∇c)dx−
\
Ω

c2t dx

= −
\
Ω

(R′′(a) +Gaa(a, c))

k(a, c)
|k(a, c)∇a− h(a, c)∇c|2 dx

−
\
Ω

c2t dx ≤ 0.

We will explain the differences between our results and those of [10, 18,
20] at the end of the paper.

Example 1. Let us give some examples of functions appearing in system
(1), for which our theory holds true and a Lyapunov function H(a, c) exists.
1. h(a, c) = a, g(a, c) = a2 exp(−c)/2, k(a, c) = 1, f(c) arbitrary and

R(a) = a2/2.
2. h(a, c) = a/(2c+2), g(a, c) = a3(c+1)−2/3, k(a, c) = 1, f(c) arbitrary,

R(a) = a3/3.
3. In the case of a model of gravitational interaction of particles (see [7,

8] or [4]) we have ε = 0, h(a, c) = −a, g(a, c) = −a, k(a, c) = 1, f(c) = 0,
R(a) = a log(a) together with boundary condition (4).
4. h(a, c) = k2, g(a, c) = k3a, k(a, c) = k4, f(c) arbitrary, and R(a) =

k3k4a
2/(2k2).
5. h(a, c) = a(c+ 2)−2, g(a, c) = a(c+ 2)−2,

k(a, c) = k(a) = (a+ 1)2 + 1,

R(a) =
1

6
a3 + a2 + 2a log(a)− 9

2
a

and f(c) arbitrary.
6. h(a, c) = aφ1(c), k(a, c) = k5 + k6c, g(a, c) = aφ

′
2(c) with

φ2(c) =

c\
0

φ1(s)

k5 + k6s
ds,

f(c) arbitrary, R(a) = a log(a).
7. One can also find a whole class of other examples where a Lyapunov

function exists. Suppose that we study system (1) together with (2). Let
h(a, c) = h2(a)φ(c) and g(a, c) = φ(c)

Ta
0
h1(s) ds,

k(a, c) = k̃(a) +
h2(a)h

′
1(a)

h1(a)

c\
0

φ(s) ds

and let f(c) be arbitrary. We see that there is a function R(a) such that

R′′(a) =
k(a, c)h1(a)

h2(a)
+ h′1(a)

c\
0

φ(s) ds.
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Thus there exists a Lyapunov function H(a, c) of the type given above,
which is possibly unbounded from below. This example includes the systems
studied in [10] and [20]. In [20] we have h(a, c) = aφ(c) (with φ(c) > 0),
g(a, c) = aφ(c), k(a, c) = 1 and f(c) = const > 0. Finally in this case we
get R(a) = a log(a). For further results concerning some special cases of this
type of systems see [20].

For the rest of the paper we make the following assumption.

Main assumption.

(13)
\
Ω

G(a, c) +R(a) ≥ k7
\
Ω

|∇c|2 dx+ const with kc
2
+ k7 > 0.

In fact our observations allow us to work with a larger class of nonlinear-
ities in g(a, c) than those studied before for system (1) (as far as the author
knows). We formulate the following three propositions.

Proposition 1. Suppose that (9) and our main assumption (13) hold.
Then

H(a0, c0) ≥ H(a(t), c(t)) ≥ k8 for all t ≥ 0.

Proposition 2. Suppose that (9) and (13) hold. Then\
Ω

|∇c(t)|2 dx ≤ k9 for all t ≥ 0.

The proofs of Propositions 1 and 2 are trivial.

Proposition 3. Suppose that (9) and (13) hold. Then

T\
0

\
Ω

c2t dx ≤ H(a0, c0) + k10.

Proof. We have \
Ω

c2t dx+
d

dt
H(a, c) ≤ 0.

Thus
T\
0

\
Ω

c2t dx ≤ H(a0, c0)−H(a(T ), c(T )) ≤ H(a0, c0) + k10.

4. The asymptotic behaviour of the solution of system (1). In
some special cases of (1) (for example for some special forms of the Keller–
Segel model) one can show that the solution of (1) converges to a possibly
nontrivial steady state as t→∞ (see [10, 14, 20]). The results of R. Schaaf
[21] and K. Post [20] concerning the Keller–Segel model in chemotaxis give
hope that one can expect such a behaviour also in a more general setting.
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We summarize our results concerning this aspect in the following theo-
rem.

Theorem 3. Suppose that (a(t), c(t)) is a weak solution of (1) and that
(9) and (13) hold. Furthermore let the solution (a(t), c(t)) of (1) satisfy either

(i) (Gaa(a, c) +R
′′(a))/k(a, c) ≤ k11 and Ga(a, c) +R′(a) > k12 or

(ii) 0 < (Gaa(a, c) +R
′′(a)) exp(Ga(a, c) +R

′(a)) ≤ k13k(a, c) and
√

k(a(t), c(t))

Gaa(a, c) +R′′(a(t))
∈ L2(Ω) for all t ≥ 0.

Let additionally f be Hölder continuous with exponent β ≤ 1 such that
0 < β ≤ 1 if N ≤ 3 or β < 2/N if N > 3.

Finally assume that |f(c)| ≤ Kf for all c ∈ R. Then there exist a sequence

(tk)k∈N and two functions c
∗ and g∗ such that

c(tk)⇀ c
∗ in H1(Ω) (resp. in H10 (Ω)),

f(c(tk))c(tk)→ f(c∗)c∗ in L2(Ω)

and

g(a(tk), c(tk))⇀ g
∗ in L2(Ω).

Furthermore \
Ω

(kc∇c∗∇ϕ+ f(c∗)c∗ϕ) dx =
\
Ω

g∗ϕdx

for all ϕ ∈ H1(Ω) (resp. ϕ ∈ H10 (Ω)). Finally ,

exp

(−(Ga(a(tk), c(tk)) +R′(a(tk)))
2

)
→ const

in L2(Ω) if (i) holds, and

exp

(
Ga(a(tk), c(tk)) +R

′(a(tk))

2

)
→ const

in L2(Ω) if (ii) holds.

Remark 1. Assumption (i) of Theorem 3 is satisfied by Example 1.1,
while the systems studied in [10] and [20] satisfy (ii).

Proof. We first assume that (i) is true. We set

W ≡ exp(−(Ga(a, c) +R′(a))).
We note that assuming Ga(a, c) +R

′(a) > k12 implies that

‖
√
W (t)‖L2(Ω) ≤ const

for all t ≥ 0. Now there exists a constant k14/k11 such that



120 D. HORSTMANN

k14
k11
|∇
√
W |2

=
k14
4k11
e−(Ga(a,c)+R

′(a))|(Gaa(a, c) +R′′(a))∇a+Gac(a, c)∇c|2

≤ k14
4k11
· (Gaa(a, c) +R

′′(a))2e−(Ga(a,c)+R
′(a))

k2(a, c)
|k(a, c)∇a− h(a, c)∇c|2

≤ Gaa(a, c) +R
′′(a)

k(a, c)
|k(a, c)∇a− h(a, c)∇c|2.

As in [20] we set

I(t) ≡ t
(
‖ct(t)‖2L2(Ω) +

k14
k11
‖∇
√
W (t)‖2L2(Ω)

)
.

From the estimate above and the fact that

t\
0

(
‖cs(s)‖2L2(Ω) +

k14
k11
‖∇
√
W (s)‖2L2(Ω)

)
ds

≤ −
t\
0

d

ds
H(a(s), c(s)) ds = H(a0, c0)−H(a(t), c(t)) ≤ const

for all t ≥ 0, we see that
t\
0

I(s) ds ≤ k15 · t.

Therefore there exists a sequence tk →∞ such that I(tk) ≤ 2k16 for all tk.
So we get

‖ct(tk)‖2L2(Ω) + ‖∇
√
W (tk)‖2L2(Ω) → 0 as k →∞.

From our main assumption and assumption (9) we see that

‖∇c(tk)‖2L2(Ω) + ‖c(tk)‖2L2(Ω) ≤ k17.

Thus there exists a function c∗ with c(tk) ⇀ c
∗ in H1(Ω) (resp. in H10 (Ω)

depending on the boundary data!).

In view of the compact imbedding of H1(Ω) (resp. H10 (Ω)) into the
appropriate Lp-space we get

‖f(c(tk))c(tk)− f(c∗)c∗‖L2(Ω)
≤ ‖f(c(tk))c(tk)− f(c(tk))c∗‖L2(Ω) + ‖f(c(tk))c∗ − f(c∗)c∗‖L2(Ω).
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Case 1: N ≤ 3 and 0 < β ≤ 2/3. Then

‖f(c(tk))c(tk)− f(c∗)c∗‖L2(Ω)
≤ ‖f(c(tk))c(tk)− f(c(tk))c∗‖L2(Ω)
+ kHölder‖c∗‖L2/(1−β)(Ω)‖c(tk)− c∗‖βL2(Ω)

≤ Kf‖c(tk)− c∗‖L2(Ω) + kHölder‖c∗‖L2/(1−β)(Ω)‖c(tk)− c∗‖βL2(Ω)
→ 0 as k →∞.

Case 2: N ≤ 3 and 2/3 < β ≤ 1. Then

‖f(c(tk))c(tk)− f(c∗)c∗‖L2(Ω)
≤ ‖f(c(tk))c(tk)− f(c(tk))c∗‖L2(Ω)
+ kHölder‖c∗‖L4/(2−β)(Ω)‖c(tk)− c∗‖βL4(Ω)

≤ Kf‖c(tk)− c∗‖L2(Ω) + kHölder‖c∗‖L4/(2−β)(Ω)‖c(tk)− c∗‖βL4(Ω)
→ 0 as k →∞.

Case 3: N > 3 arbitrary and β < 2/N . Then

‖f(c(tk))c(tk)− f(c∗)c∗‖L2(Ω)
≤ ‖f(c(tk))c(tk)− f(c(tk))c∗‖L2(Ω)
+ kHölder‖c∗‖L2/(1−β)(Ω)‖c(tk)− c∗‖βL2(Ω)

≤ Kf‖c(tk)− c∗‖L2(Ω) + kHölder‖c∗‖L2/(1−β)(Ω)‖c(tk)− c∗‖βL2(Ω)
→ 0 as k →∞.

Thus

(14) f(c(tk))c(tk)→ f(c∗)c∗ in L2(Ω) as k →∞.
Since W (tk) is uniformly bounded in H

1(Ω) and ‖∇
√
W (tk)‖L2(Ω) → 0

we see that √
W (tk)→ const in L2(Ω) as k →∞.

To prove the statement of the theorem if (ii) holds, we set

V ≡ exp(Ga(a, c) +R′(a)).
Now we see that

1

k13
|∇
√
V |2 = 1

4k13
eGa(a,c)+R

′(a)|(Gaa(a, c) +R′′(a))∇a+Gac(a, c)∇c|2
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≤ (Gaa(a, c) +R
′′(a))2eGa(a,c)+R

′(a)

4k13k2(a, c)
|k(a, c)∇a− h(a, c)∇c|2

≤ Gaa(a, c) +R
′′(a)

k(a, c)
|k(a, c)∇a− h(a, c)∇c|2.

We now define

J (t) ≡ t
(
‖ct(t)‖2L2(Ω) +

1

k13
‖∇
√
V (t)‖2L2(Ω)

)

and use the same argument as in the first case.

Remark 2. If

(15) V (t) = a(t) exp(−Ψ(c(t)))
and 0 ≤ Ψ(s) ≤ const for all s ∈ R+, then the mass conservation for the
function a(t) in the case of boundary condition (2) or (4) (the first equation
of (1)) implies that

V (tk)→
T
Ω
a0(x) dxT

Ω
exp(Ψ(c∗(x))) dx

in L2(Ω) (see [20]).

Since no further results concerning the asymptotic behaviour of the so-
lution are available in the general setting studied in the present paper, we
turn to some Lp-estimates for the solution.

5. Uniform Lp-bounds of the solution for 1 ≤ p ≤ ∞. If we look
at (1) with either (2) or (4) as boundary conditions we see that\

Ω

at dx = 0 for all t > 0,

as mentioned in Remark 2.

Lemma 1. Let (a(t), c(t)) be the solution of (1) with boundary conditions
(2) or (4). Then

(16) ‖a(t)‖L1(Ω) = ‖a0‖L1(Ω) for all t > 0.

For the rest of this section we assume that

h(a, c) = aφ(c) with |φ(c)| ≤ k18 for all c ∈ R.

Even if we do not prove the positivity of a(t, x) in this case, we will
always assume it. This property can be derived for classical solutions from
the maximum principle for parabolic equations, provided the initial data is
strictly positive. Under weaker assumptions on the solution, one can use the
results of A. Yagi [23] to prove the nonnegativity of a(t, x) in the maximal
existence interval under reasonable assumptions on the initial data.
Independently of the choice of the boundary conditions for (1) we have

the following Lp-estimate for the function a(t).
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Theorem 4. Let (a, c) be the solution of (1) with boundary conditions
(2) or (4). Furthermore let k(a, c) ≥ k19 > 0 for all (a, c) ∈ R+ × R and

|φ(c)| ≤ k18 for all c ∈ R+. If c(t) ∈ W 1,∞(Ω) (resp. c(t) ∈ W 1,∞0 (Ω)) for
all t ∈ [0,∞) and if there exists a constant k∇c such that

|∇c(t, x)| ≤ k∇c for all t ∈ [0,∞) and all x ∈ Ω,
then

‖a(t, x)‖L∞(Ω) ≤ k20 for all t ∈ [0,∞).
For solutions of (1) with boundary conditions (3), the above holds true if we
additionally assume that

sup
t≥0
‖a(t)‖L1(Ω) ≤ const .

Proof. The assertion can be proved in the same way as in [17] for a
special case of (1) with homogeneous Neumann boundary data.
Let 1 ≤ p < ∞. We multiply the first equation of (1) with ap and

integrate over Ω to derive

1

p+ 1

d

dt

\
Ω

ap+1 dx = − 4p

(p+ 1)2

\
Ω

k(a, c)|∇a(p+1)/2|2 dx+ p
\
Ω

apφ(c)∇a∇c dx

≤ − 4pk19
(p+ 1)2

\
Ω

|∇a(p+1)/2|2 dx+ pk18k∇c
\
Ω

ap|∇a| dx

≤ − 2pk19
(p+ 1)2

\
Ω

|∇a(p+1)/2|2 dx+ pk̃18k∇c
2

\
Ω

ap+1 dx.

If we now use Moser’s technique from [1] we get the assertion.

By (9) we have the uniform boundedness of the L2-norm of c(t) for all
t > 0 if system (1) has a Lyapunov function.

Lemma 2. Let (a(t), c(t)) be the solution of (1). Furthermore suppose
that Ω ⊂ R

2 and that there is a Lyapunov function for system (1), and (9)
as well as our main assumption hold. Then

(17) ‖c(t)‖Lp(Ω) ≤ k(p) (1 ≤ p <∞) for all t > 0.

Proof. By the assumption (9), the boundedness of the Lyapunov function
H(a, c) from below yields a uniform bound of the H1-norm of c(t) for all
t > 0. Applying the Sobolev embedding theorem we derive uniform Lp-
bounds for all t ≥ 0.
Theorem 5. Let (a, c) be the solution of (1), and assume that g(a, c)>0

for all (a, c) ∈ R+ × R, ε = 1 and |f(c)| ≤ Kf <∞ in (1). If

sup
t≥0

\
Ω

|c(t)| dx = k21 <∞
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and

(18)
\
Ω

(g(a, c)cp − f(c)cp+1) dx ≤ k22
\
Ω

cp+1 dx for all 1 ≤ p <∞,

then

‖c(t, x)‖L∞(Ω) ≤ k23 for all t ∈ [0,∞).
Since our assumption on g(a, c) implies that c(t, x) ≥ 0 in Ω for all

t ∈ [0, Tmax) provided c0(x) ≥ 0 in Ω, we see that the statement of the
theorem can be shown in the same way as Theorem 4. Therefore we leave
the proof to the reader.

Example 2. We give some examples of functions appearing in system
(1) for which Theorems 4 and 5 hold true.

1. Let Ω ⊂ R
2 be smooth. Consider the problem

at = ∇(∇a− χa∇c), x ∈ Ω, t > 0,
ct = kc∆c− γc+

ac

a+ δ
(γ + λ1 > 1), x ∈ Ω, t > 0,

∂a/∂n = χa∂c/∂n, c = 0, x ∈ ∂Ω, t > 0,
a(0, x) = a0(x) > 0, x ∈ Ω,
c(0, x) = c0(x) > 0, x ∈ Ω.

First of all let us mention that this system does not have a Lyapunov func-
tion of the form presented in the previous sections. Secondly we see from
Theorem 5 that

sup
t≥0
‖c(t)‖L∞(Ω) <∞.

Furthermore we see that g(a(t), c(t)) ∈ L∞(Ω) for all t ≥ 0 and
sup
t≥0
‖g(a(t), c(t))‖L∞(Ω) ≤ sup

t≥0
‖c(t)‖L∞(Ω) < k24.

We now follow an idea from [18]. If we consider the second equation of our
system as an abstract evolution equation, we see that

c(t) = Tp(t)c0 +

t\
0

Tp(t− s)
a(s)c(s)

a(s) + δ
ds,

where {Tp(t)} is the analytic semigroup of the sectorial (in Lp(Ω)) operator
Ap ≡ −∆ + γ with domain D ≡ {u ∈ W 2,p(Ω) | u = 0 on ∂Ω}. We know
from [11] that we can define fractional powers Aµp for µ ≥ 0 of Ap with
domain Xµp = D(Aµp ). We also know that Xµp is a Banach space with

‖u‖Xµp = ‖Aµpu‖Lp(Ω).
The imbedding Xµp ⊂ Cν(Ω) is continuous for 0 ≤ µ ≤ 1 and 0 ≤ ν <
2µ−N/p (N = 2 in our case!) (see [11, Theorem 1.6.1, p. 39]).
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If we now choose 3/4 < µ < 1 and consider

Aµ4 c(t) = A
µ
4T4(t)c0 +

t\
0

Aµ4T4(t− s)
a(s)c(s)

a(s) + δ
ds,

we see that there exist constants k21 > 0 and θ such that

‖Aµ4 c(t)‖L4(Ω) ≤ k21
{
e−θt

tµ
‖c0‖L4(Ω) + k25

t\
0

e−θt

tµ
ds

}
.

Thus we can derive a uniform bound of ‖Aµ4 c(t)‖L4(Ω) for all t ≥ 0 and—in
view of the continuous imbedding—a uniform bound of the C1-norm of c(t)
for all t ≥ 0.
Applying now Theorem 4 we also get a uniform bound of the L∞-norm

of a(t) for all t ≥ 0.
2. As a second example we consider a parabolic-elliptic problem. Let us

assume that there is a positive solution of the following problem:

at = ∇(∇a− χa∇c), x ∈ Ω ⊂ R
2, t > 0,

0 = kc∆c− γc+
a

a+ δ
, x ∈ Ω, t > 0,

∂a/∂n = ∂c/∂n = 0, x ∈ ∂Ω, t > 0,
a(0, x) = a0(x) > 0, x ∈ Ω,

where kc, χ, γ and δ are positive constants. Again there is no Lyapunov
function for this problem, but we see that

a(t)

a(t) + δ
∈ Lp(Ω)

for 1 ≤ p ≤ ∞ with a uniform bound for all t > 0. Using elliptic regularity
theory we get c(t) ∈ H2,p(Ω) with a uniform bound for all t > 0. For p large
enough the Sobolev imbedding theorems imply c(t) ∈ C1(Ω) provided ∂Ω
is smooth enough, where we have a uniform C1-bound for all t > 0. Thus
Theorem 4 implies that

sup
t≥0
‖a(t)‖L∞(Ω) <∞.

Remark 3. Example 2.1 shows that, if the second equation can be writ-
ten as an abstract evolution equation with a sectorial (in Lp(Ω), for Ω ⊂ R

2)
operator and a right-hand side which is uniformly bounded in L4(Ω) for all
t ≥ 0, then one can derive uniform L∞-bounds for a(t) and c(t) for all t ≥ 0.

6. Final remarks. We now indicate the differences between our results
and those in [10, 18, 20, 22].
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Those papers consider the so-called Keller–Segel model

at = ∇(∇a− χa∇c), x ∈ Ω ⊂ R
2, t > 0,

εct = kc∆c− γc+ αa, x ∈ Ω, t > 0,
a(0, x) = a0(x) > 0, x ∈ Ω,
c(0, x) = c0(x) > 0, x ∈ Ω,

with either boundary condition (2) (see [10, 18, 20]) or (4) (see [22]).

Our results include the results in [10, 18, 20, 22] but they are also true
for higher space dimensions, other boundary conditions and further nonlin-
earities in the system (1). As far as I know, K. Post of [20] was the only one
to study the case of higher space dimensions. She considered the system

at = ∇(∇a− χa∇Φ(c)), x ∈ Ω ⊂ R
N , t > 0,

εct = kc∆c− γc+ αaΦ′(c), x ∈ Ω, t > 0,
∂a/∂n = ∂c/∂n = 0, x ∈ ∂Ω, t > 0,
a(0, x) = a0(x) > 0, x ∈ Ω,
c(0, x) = c0(x) > 0, x ∈ Ω,

with Φ(s) ∈ {Φ ∈ C1(R,R) | 0 ≤ Φ(s), 0 ≤ Φ′(s) ≤ const for all s ≥ 0}.
Our results also cover this system, but again one can allow further non-

linearities and still have the existence of a Lyapunov function.

To end the paper let us mention that our results have been strongly
inspired by those of K. Post [20] and by the question of whether one can
show the existence of a Lyapunov function for a larger class of systems than
those studied in [20], and if the asymptotic behaviour of the solution of such
a system is similar.
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