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Abstract. We observe that the classical theorem of Hardy on Fourier transform
pairs can be reformulated in terms of the heat kernel associated with the Laplacian on
the Euclidean space. This leads to an interesting version of Hardy’s theorem for the
sublaplacian on the Heisenberg group. We also consider certain Rockland operators on
the Heisenberg group and Schrödinger operators on R

n related to them.

1. Introduction and the main results. A classical theorem of Hardy
[9] on Fourier transform pairs says that a function f on the real line and

its Fourier transform f̂ cannot both be very rapidly decreasing. To be more
precise, let

f̂(y) = (2π)−1/2
∞\
−∞

f(x)e−ixy dx

be the Fourier transform of a function f defined on the real line R. Hardy’s
theorem says that if |f(x)| ≤ Ce−a|x|

2

and |f̂(y)| ≤ Ce−b|y|
2

with ab >
1/4 then f = 0. There are infinitely many linearly independent functions
satisfying the above estimates when ab < 1/4 and when ab = 1/4 there is

essentially one function, viz. f(x) = Ce−ax
2

.
Recently, considerable attention has been paid to discover analogues of

Hardy’s theorem in the context of Lie groups. Generalisations of this re-
sult have been established for semisimple Lie groups [3], [14], [15], for the
n-dimensional motion group [18], for the Heisenberg group [16], for general
nilpotent Lie groups [12], for solvable extensions of H-type groups [1], and
also for some eigenfunction expansions [13]. In all these generalisations, the
formulations of the results involve various group Fourier transforms. How-
ever, a close examination of the proofs reveal that, in almost all the cases,
the results follow, after some initial reduction, from the classical Hardy’s
theorem. The aim of this article is to show that in almost all the known
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cases, Hardy’s theorem can be stated in terms of the heat kernels of the
Laplacians on the groups concerned. This substantiates a remark made by
V. S. Varadarajan some years ago on the connection between Hardy’s the-
orem and heat kernels.
Consider the heat equation ∂tu(x, t) = ∆u(x, t) associated with the stan-

dard Laplacian on R
n. The solution with the initial condition u(x, 0) = f(x)

is given by u(x, t) = f ∗ pt(x) where pt(x) is the heat kernel

pt(x) = (4πt)
−n/2e−|x|

2/(4t).

Taking the Fourier transform of ut(x) = u(x, t) in the x variable and noting

that p̂t(ξ) = e
−t|ξ|2 we have the estimate

|ût(ξ)| ≤ Ce
−t|ξ|2

whenever f̂ is bounded. Suppose now we also have the estimate

|ut(x)| ≤ Cte
−a|x|2 .

If f is non-trivial, then by Hardy’s theorem the above estimate is possible
only when 4at ≤ 1. In other words, u(x, t) cannot have more decay than the
heat kernel pt(x) unless f = 0.
Our aim in this paper is to show that a similar result is true for solu-

tions of the heat equation associated with the sublaplacian L on the Heisen-
berg group. More generally, we consider certain Rockland operators on the
Heisenberg group. Before stating the main theorem, let us recall some rele-
vant definitions. We refer to the monographs [6] and [21] for an introduction
to the representation theory of the Heisenberg group. The Heisenberg group
Hn is simply C

n × R with group law given by

(z, s)(w, τ) =
(
z + w, s+ τ + 12 Im(zw)

)

which makes Hn into a step-two nilpotent Lie group.
On Hn we have certain left invariant vector fields Xj , Yj , j = 1, . . . , n,

which together with T = ∂/∂s form a basis for the Heisenberg Lie algebra.
The sublaplacian, denoted by L, is the second order differential operator
defined by

L = −
n∑

j=1

(X2j + Y
2
j ).

This operator, which plays the role of the Laplacian on Hn, is hypoelliptic,
self-adjoint and non-negative. It generates a diffusion semigroup with kernel
pt(z, s). The kernel is explicitly known and satisfies the estimate

|pt(z, s)| ≤ Ct
−n−1e−A|(z,s)|

2/t

where |(z, s)| is the norm defined by |(z, s)|4 = |z|4 + s2, which is homo-
geneous of degree one with respect to the non-isotropic dilations δr(z, s) =
(rz, r2s).
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The solution of the heat equation ∂tu(z, s; t) = −Lu(z, s; t) with the
initial condition u(z, s; 0) = f(z, s) is given by u(z, s; t) = f ∗ pt(z, s) where
the convolution is on the groupHn. Concerning the solutions of this equation
we have the following

Theorem 1.1. Suppose f ∈ L2(Hn) satisfies the estimate |f ∗pt(z, s)| ≤
Ctpt′(z, s). Then f = 0 whenever 0 < t′ < t/2.

Thus we see that the solution u(z, s; t) of the heat equation cannot de-
cay faster than the heat kernel pt/2(z, s). An examination of the proof of the
above theorem given in the next section shows that we have the following
version of Hardy’s theorem for the group Fourier transform on the Heisen-
berg group. First we recall some definitions. The group Fourier transform
on Hn is defined using the infinite-dimensional irreducible unitary repre-
sentations πλ which are parametrised by non-zero reals and realised on the
same Hilbert space, namely L2(Rn). Given a function f ∈ L1(Hn) the group
Fourier transform is defined to be the operator valued function

f̂(λ) = πλ(f) =
\
Hn

f(z, s)πλ(z, s) dz ds.

In the proof of the above theorem, as well as in the formulation of the follow-
ing result, the operator H(λ) = −∆+ λ2|x|2 which is the rescaled Hermite
operator plays an important role. By ebH(λ) we mean the unbounded opera-
tor defined on finite linear combinations of the Hermite functions which are
dense in L2(Rn). See [21] for more about this operator.

Theorem 1.2. Suppose f is a measurable function on the Heisenberg
group which satisfies the estimate |f(z, s)| ≤ Ce−a(|z|

2+|s|) for some a > 0.

Further assume that for some b > 0 the operator f̂(λ)ebH(λ) is Hilbert–
Schmidt for every λ 6= 0. Then f = 0 whenever ab > 1/2.

There is an analogue of Hardy’s theorem for the Fourier transform on
Hn proved in [16]. If f satisfies the estimate |f(z, s)| ≤ g(z)e−as

2

with

g ∈ L2(Cn) and if the Fourier transform of f satisfies ‖f̂(λ)‖HS ≤ Ce−bλ
2

then f = 0 whenever ab > 1/4. As we have observed elsewhere, this is really
a theorem for the central variable. Note that neither of these conditions are
assumed in our version of the Hardy theorem.
As we have mentioned earlier there is an analogue of Theorem 1.1 for

certain Rockland operators. A left invariant differential operator L on Hn

is said to be a Rockland operator if it is homogeneous with respect to the
non-isotropic dilations and π(L) is injective on the space of C∞ vectors for
every non-trivial irreducible, unitary representation π of Hn. Under these
conditions it is known that L is hypoelliptic. If we further assume that L
is non-negative and homogeneous of degree 2 then it generates a diffusion
semigroup and the kernel qt(z, s) satisfies an estimate similar to the one
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satisfied by the kernel pt associated with the sublaplacian (see [5]). For a
class of such operators we can establish the following result.

Theorem 1.3. Let L be a non-negative Rockland operator which is ho-
mogeneous of degree two. Assume that L commutes with the sublaplacian L
and there is a positive constant c such that πλ(L) ≥ cH(λ) for all non-
zero λ. Let f ∈ L2(Hn) be non-trivial and let qt(z, s) be the heat ker-
nel associated with L. Then there is a constant B such that the estimate
|f ∗ qt(z, s)| ≤ Ctqt′(z, s) is not possible for any t

′ < Bt.

It would be interesting to see if analogues of the above theorem can be
established for general second order elliptic operators on Euclidean spaces.
The Hardy theorem for Hermite expansions proved in [13] can be restated
in terms of the heat kernel for the Hermite operator. Similarly, the Hardy
theorem for the Weyl transform proved in [21] can be written in terms of the
heat kernel for the special Hermite operator. It is also possible to restate the
result of [1] in terms of the heat kernel for the Laplace–Beltrami operator
on the solvable group S = NA. For a class of elliptic operators on R

n we
have the following result.

Theorem 1.4. Let P = P (x,D) be a second order uniformly elliptic
differential operator on R

n which commutes with the Hermite operator and

satisfies P ≥ cH for some c > 0. Let Kt(x, y) be the heat kernel associated
with P. Let f ∈ L2(Rn) be non-trivial and let u(x, t) = e−tP f(x). Then
there is a constant B such that the estimate |u(x, t)| ≤ CKt′(x, 0) is not
possible for any t′ < B tanh(ct).

In Section 3 we will give some examples of operators for which the above
theorems are true. We prove our main results in the next section. Finally,
we remark that Hardy’s theorem can be viewed as an uncertainty principle
and there are several versions of this principle. We refer the reader to the
excellent survey [7].

2. Proofs of the main results. We first take up the proof of Theorem
1.1. The heat kernel pt(z, s) associated with the sublaplacian is a Schwartz
class function whose Fourier transform in the s variable is explicitly known.
In fact,

∞\
−∞

eisλpt(z, s) ds = cnλ
n(sinh(tλ))−ne−(1/4)(λ coth(tλ))|z|

2

.

This result has been proved in [8] and [10] by using Brownian motion on
the Heisenberg group. As the sublaplacian is homogeneous of degree two it
satisfies pt(z, s) = t

−n−1p1(t
−1/2z, t−1s). It is also known that (see e.g. [5])
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pt satisfies the estimate

pt(z, s) ≤ Ct
−n−1e−A(|z|

2+|s|)/t

for a constant A > 0. Note that, as opposed to the Euclidean case, the heat
kernel decays only like e−A|s| in the central variable. This is a reflection of
the fact that the natural dilation structure on Hn is non-isotropic and the
sublaplacian is homogeneous with respect to this dilation.
For a function g on Hn we let

gλ(z) =

∞\
−∞

g(z, s)eisλ ds.

If ut(z, s) = f ∗ pt(z, s) a simple calculation shows that u
λ
t (z) = f

λ ∗λ p
λ
t (z)

where the λ-twisted convolution of two functions ϕ and ψ on C
n is defined

by

ϕ ∗λ ψ(z) =
\

Cn

eiλ Im(zw)/2ϕ(z − w)ψ(w) dw.

The estimate on ut given in the hypothesis of Theorem 1.1 leads to the
estimate

|uλt (z)| ≤ Cp
0
t′(z) ≤ C

′e−|z|
2/(4t′).

We also have the estimate

|ut(z, s)| ≤ Ce
−A(|z|2+|s|)/t′

and therefore, the function uλt (z) extends to a holomorphic function of λ ∈ C

in a strip |Imλ| < A/t′. Given 0 < t′ < t/2 we can choose δ > 0 such that
t′ < t/(etδ + e−tδ). We will show that uλt (z) = 0 for 0 < λ < 2δ, which will
force ut(z, s) = 0 and hence f(z, s) = 0, thus proving the theorem.
In order to prove that uλt (z) = 0 for 0 < λ < 2δ we use the following

variant of a theorem proved in [21] (see Theorem 1.6.5). For λ > 0 set
πλ(z) = πλ(z, 0) where πλ(z, s) are the Schrödinger representations of H

n

and define

πλ(g) =
\

Cn

g(z)πλ(z) dz.

Note that πλ(f
λ) = f̂(λ) and when λ = 1, then πλ(g) is called the Weyl

transform of g. Hence we have the following version of Hardy’s theorem for
πλ(g).

Theorem 2.1. Let g be a measurable function on C
n which satisfies

the estimate |g(z)| ≤ Ce−aλ|z|
2

. Further assume that πλ(g)e
bH(λ) is Hilbert–

Schmidt for some b > 0. Then g = 0 whenever a tanh(bλ/2) > 1/4.

When λ = 1 this theorem was announced in [22] and a proof is given
in [21] (see Theorem 1.6.5). The proof in the general case is similar and we
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omit the details.
Once we have the above theorem we can easily complete the proof of

Theorem 1.1. A simple calculation shows that

πλ(u
λ
t ) = πλ(f

λ)πλ(p
λ
t ) = f̂(λ)e

−tH(λ),

which implies that πλ(u
λ
t )e
tH(λ) is Hilbert–Schmidt. Since we also have the

estimate
|uλt (z)| ≤ Ce

−λ|z|2/(4t′λ)

we conclude that uλt =0 whenever tanh(tλ/2)>t
′λ. But now for 0<λ<2δ,

0 < t′λ <
tλ

etδ + e−tδ
<
etλ/2 − e−tλ/2

etλ/2 + e−tλ/2
= tanh

(
tλ

2

)

so that the above condition is satisfied.
This completes the proof of Theorem 1.1, and Theorem 1.2 is proved

similarly. We now take up the proof of Theorem 1.3 which is very similar
to that of Theorem 1.1. As proved in [5] the heat kernel qt(z, s) associated
with the Rockland operator L satisfies the estimate

|qt(z, s)| ≤ Ct
−n−1e−A(|z|

2+|s|)/t

using which we show that uλt (z) extends to a holomorphic function of λ in
a strip. We will show that for every 0 < b < c the operator πλ(u

λ
t )e
btH(λ) is

Hilbert–Schmidt. Since |uλt (z)| ≤ Ce−A|z|
2/t′ we can conclude that uλt = 0

whenever λt′ < 4A tanh(btλ/2). If t′ < 2Act then for some b < c we also
have t′ < 2Abt and choosing δ small so that

t′

4A
<

bt

ebtδ + e−btδ

we can assure that the above condition is satisfied for all 0 < λ < 2δ. Thus
with B = 2Ac we obtain Theorem 1.3.
It remains to be shown that πλ(u

λ
t )e
tbH(λ) is Hilbert–Schmidt. As f̂(λ)

is a bounded operator it is enough to show that e−tπλ(L)etbH(λ) is Hilbert–
Schmidt. We can estimate the Hilbert–Schmidt norm of this using the Her-
mite basis. Let Φα be the normalised Hermite functions on R

n. For λ > 0
define Φλα(x) = λn/4Φα(λ

1/2x). Then Φλα is an eigenfunction of H(λ) with
eigenvalue (2|α|+n)λ and they form an orthonormal basis for L2(Rn). Since
L commutes with L so does πλ(L) with H(λ) because H(λ) = πλ(L). As
πλ(L) ≥ cH(λ) we have

(e−t(πλ(L)−cH(λ))ϕ,ϕ) ≤ (ϕ,ϕ)

for every ϕ ∈ L2(Rn). Applying this to e−ctH(λ)/2ϕ and noting that πλ(L)
commutes with H(λ) we get the inequality ‖e−tπλ(L)ϕ‖2 ≤ ‖e

−ctH(λ)ϕ‖2.
Taking ϕ = ebtH(λ)Φλα we obtain

‖e−tπλ(L)ebtH(λ)Φλα‖2 ≤ e
−(c−b)t(2|α|+n)λ.
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This estimate proves that e−tπλ(L)ebtH(λ) is Hilbert–Schmidt whenever
b < c.
This completes the proof of Theorem 1.3. Finally, in order to prove The-

orem 1.4 we need the following Hardy’s theorem for Hermite expansions (see
[13] for a proof).

Theorem 2.2. Let f be a measurable function on R
n which satisfies the

estimate |f(x)| ≤ Ce−a|x|
2

. Further assume that |(f, Φα)| ≤ Ce−b(2|α|+n)

for every multi-index α. Then f = 0 whenever a tanh(b) > 1/2.

Coming to the proof of Theorem 1.4 we note that the kernel Kt(x, y) of
the semigroup e−tP satisfies the estimate

|Kt(x, y)| ≤ Ct
−n/2e−A|x−y|

2/t

for some constant A > 0. This has been proved in [4] as P (x,D) is as-
sumed to be uniformly elliptic. Thus the solution ut(x) = u(x, t) satisfies

the estimate |ut(x)| ≤ Ce−A|x|
2/t′ . In order to estimate (ut, Φα) we note

that
|(ut, Φα)| = |(f, e

−tPΦα)| ≤ ‖f‖2‖e
−tPΦα‖2.

Since P commutes with H and P ≥ cH we conclude that ‖e−tPΦα‖2 ≤
e−ct(2|α|+n). Consequently, |(ut, Φα)| ≤ Ce

−ct(2|α|+n) and therefore by The-
orem 2.2 we infer that ut = 0 whenever t

′ < 2A tanh(ct). This completes
the proof of Theorem 1.4.

3. Some examples. In this section we give some examples of differ-
ential operators for which Theorems 1.3 and 1.4 are applicable. Consider
the Folland–Stein operators Lγ = L + iγT . If γ is admissible, that is, if
|γ| 6= 2k + n for k = 0, 1, . . . , then Lγ is a Rockland operator which is
homogeneous of degree two. If |γ| < n then πλ(Lγ) ≥ cH(λ) holds with
c = 1− |γ|/n. Consequently, Theorem 1.3 is true for these operators.
We can obtain other examples by considering K-invariant operators

where K is a compact subgroup of the unitary group U(n). Recall that
the U(n)-invariant (also called radial) integrable functions on Hn form a
commutative Banach algebra under convolution. There are other subgroups
K of U(n) for which the K-invariant functions in L1(Hn) form a commuta-
tive subalgebra. The action of K on Hn is defined by σ(z, s) = (σ.z, s) for
σ ∈ K. For such K the pair (Hn,K) is called a Gelfand pair , and harmonic
analysis of K-invariant functions is relatively simpler and can be studied
using the so-called K-spherical functions (see [2]). The most well known ex-
amples of Gelfand pairs are (Hn, U(n)) and (Hn, T (n)) where T (n) is the
subgroup of U(n) consisting only of diagonal matrices.
The operator L is U(n)-invariant and hence commutes with any K-

invariant differential operator. Let L be a K-invariant Rockland operator
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which is homogeneous of degree two. If the operator L also satisfies the
condition πλ(L) ≥ cH(λ) then we have an analogue of Theorem 1.3. For
example, when K = T (n), any T (n)-invariant operator which is homoge-
neous of degree two will be of the form p(L1, . . . ,Ln, T ) where p is a first
degree polynomial and Lj = −(X

2
j +Y

2
j ) are the partial sublaplacians. The

operator L =
∑n
j=1 cjLj will satisfy the conditions of Theorem 1.3 with c

being the minimum of cj , j = 1, . . . , n.
It would be interesting to see if the second condition, namely that πλ(L)

≥ cH(λ), automatically holds for Rockland operators of homogeneity two.
This is the case in the Euclidean setup: a homogeneous, constant coeffi-
cient differential operator is hypoelliptic if and only if it is elliptic and
consequently if it is of degree two then the symbol satisfies the estimate
|p(iξ)| ≥ c|ξ|2. We do not know if something similar holds for Rockland
operators.
By transferring Rockland operators on Hn by a unitary representation

π we can obtain operators on R
n. To be precise, let us rename the vector

fields Yj by calling them Xj+n so that Xj , j = 1, . . . , 2n, together with
T generate the Heisenberg Lie algebra. If L =

∑
i,j ai,jXiXj is a Rockland

operator on Hn then π1(L), where π1(z, s) is the Schrödinger representation
with parameter λ = 1, is an operator of the form

P (x,D) =
∑

i,j

bij
∂2

∂xi∂xj
+
∑

j

cj(x)
∂

∂xj
+ a(x)

where cj and a are polynomials.
If pt(z, s) and Kt(ξ, η) are the heat kernels of L and π1(L) then they are

related by

Kt(ξ, η) =
\
R

\
Rn

pt(x+ i(η − ξ), s)e
ise(i/2)x(ξ+η) dx ds.

From this we see that whenever pt has an exponential decay so does Kt.
If L commutes with L then π1(L) commutes with H. If we further assume
that π1(L) ≥ cH then Theorem 1.4 holds for π1(L). It would be interesting
to see for what other operators we have an analogue of Theorem 1.4.

Added in proof (September 2000). Recently the author has proved that Theorem 1.1
is valid for 0 < t′ < t and Theorem 1.2 for all ab > 1/4.
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