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RINGS WHOSE MODULES ARE FINITELY GENERATED
OVER THEIR ENDOMORPHISM RINGS

BY

NGUYEN VIET DUNG (Zanesville, OH) and JOSÉ LUIS GARCÍA (Murcia)

Abstract. A module M is called finendo (cofinendo) if M is finitely generated (re-
spectively, finitely cogenerated) over its endomorphism ring. It is proved that if R is any
hereditary ring, then the following conditions are equivalent: (a) Every right R-module
is finendo; (b) Every left R-module is cofinendo; (c) R is left pure semisimple and every
finitely generated indecomposable left R-module is cofinendo; (d) R is left pure semisimple
and every finitely generated indecomposable left R-module is finendo; (e) R is of finite
representation type. Moreover, if R is an arbitrary ring, then (a)⇒(b)⇔(c), and any ring R
satisfying (c) has a right Morita duality.

1. Introduction. Modules which are finitely generated over their endo-
morphism rings, also called finendo modules, were introduced by Faith [16],
who used them to characterize several classes of rings (e.g. right self-injective
rings, right pseudo-Frobenius rings, prime right Goldie rings). The finendo
condition occurs naturally in several contexts, in general module theory and
representation theory. Special classes of finendo modules, studied recently
in the literature, include endofinite modules [11], product-complete modules
[27], endocoherent modules [2], and tilting modules [3, 4].

One of the main questions we will consider in this paper is to charac-
terize rings R with the property that all right R-modules are finendo. More
specifically, we will try to answer the question raised in [13] whether such a
ring R has finite representation type, i.e. R is an artinian ring with finitely
many isomorphism classes of finitely generated indecomposable left and right
modules. Our study of this question is related to and motivated by works
of several authors that investigate the relationship between representation-
theoretic properties of rings and endoproperties of their modules.

A right R-module M is called endofinite if M has finite length as a left
module over its endomorphism ring. An important starting point, obtained
independently by Crawley-Boevey [10], Huisgen-Zimmermann and Zimmer-
mann [26] and Prest [29], is that every right R-module is endofinite if and
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only if R is of finite representation type. In view of this result, it is natu-
ral to ask if finite representation type of a ring R can be characterized by
more restricted endo-chain conditions on right (or left) R-modules. In this
direction, it has been proved recently that a ring R has finite representa-
tion type if and only if every pure-projective right R-module is endoartinian
[14, Proposition 4.10], if and only if every pure-injective right R-module is
endonoetherian [15, Theorem 5.8]. On the other hand, the ascending (de-
scending) chain condition on finite matrix subgroups of all right R-modules
is equivalent to R having left (respectively, right) pure global dimension
zero, i.e. R is a left (respectively, right) pure semisimple ring (see [26, 29]).

As a dual notion to finendo modules, a left (or right) R-module M is said
to be cofinendo if M is finitely cogenerated as a module over its endomor-
phism ring. Thus the finendo and cofinendo conditions are generalizations of
the endonoetherian and endoartinian conditions, respectively. It was shown
in [13, Theorem 3.10] that a ring R has finite representation type if and only
if every right R-module is both finendo and cofinendo. However, it was left
open whether the finendo condition or cofinendo condition alone would be
sufficient for the result to hold (see [13, Questions 1 and 2, pp. 122–123]).

We will see in this paper that, for any ring R, if all right R-modules
are finendo, then all left R-modules are cofinendo, and the latter condition
holds precisely when R is left pure semisimple and every finitely generated
indecomposable left R-module is cofinendo (Theorem 2.11, Corollary 2.12).

Recall that a ring R is left pure semisimple if every left R-module is a
direct sum of finitely generated modules (see, e.g., [18, 33, 34]). Left and
right pure semisimple rings are precisely the rings of finite representation
type (see [6, 19, 31]). However, it has been a long-standing open problem,
known as the pure semisimplicity conjecture, whether left pure semisimple
rings are also right pure semisimple (see [24, 38] for historical surveys on
the conjecture). Therefore, the question of characterizing rings R with all
right R-modules finendo can be regarded as a restricted form of the pure
semisimplicity conjecture.

A central part of this paper is devoted to the study of left pure semisimple
rings R such that every finitely generated indecomposable left R-module is
cofinendo or finendo, respectively. We show that if R is a left pure semisimple
hereditary ring, then either the cofinendo or finendo condition on all finitely
generated indecomposable left R-modules implies finite representation type.
As a consequence, we obtain positive answers to [13, Questions 1 and 2,
pp. 122–123] in the hereditary case (Theorem 3.5). For general rings R,
the situation seems more complicated, and we are able to show that if R
is left pure semisimple with all finitely generated indecomposable left R-
modules cofinendo, then R has a right Morita duality, and the quotient ring
R/(J(R))2 is of finite representation type (Corollaries 4.2 and 4.3).
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Our method of dealing with hereditary rings will be based on ideas de-
veloped by Simson in [35, 37, 40] that allow one to reduce the question to
certain triangular matrix rings of the form

(
F 0
B G

)
induced by division rings

F and G and a bimodule GBF , and the use of reflection functors (see, e.g.,
[30, 35, 37]) will be essential. We will also apply Auslander’s theory of Grass-
mannians [5] and Herzog’s ideas [21], to reduce our study of an arbitrary
ring to the case of a hereditary (triangular matrix) ring.

The paper is organized as follows. In Section 2, we discuss general prop-
erties of finendo and cofinendo modules, and characterize rings with all left
modules cofinendo. In Section 3, we prove our main result on hereditary
rings. Finally, Section 4 is devoted to the same questions for general rings.

2. Finendo and cofinendo modules. Throughout this paper, R is an
associative ring with identity. We denote by R-mod the category of finitely
presented left R-modules, and by R-Mod the category of all left R-modules.
The corresponding categories of right R-modules are denoted by mod-R
and Mod-R. Homomorphisms between R-modules are assumed to operate
on the side opposite to the scalars. A right R-module MR can be regarded in
a natural way as a left End(MR)-module, and similarly a left R-module RN
is a right End(RN)-module. We refer the reader to [1, 8, 28, 36, 42, 43] for
general properties of rings, modules, and categories, and for all undefined
notions used in the text.

Recall that a right (or left) R-module M is finendo if M is finitely gener-
ated as a module over its endomorphism ring (see [16, 17]). Dually, M is said
to be cofinendo if it is finitely cogenerated over End(MR). (Note that the
term “cofinendo module” was also used in [3], but with a meaning different
from ours.) A module M is endofinite (endoartinian, endonoetherian) if M
is of finite length (artinian, noetherian, respectively) as a module over its
endomorphism ring. For a right R-module M , a subgroup L of the Abelian
group M is called a matrix subgroup of M if it is of the form

L = HomR(Y,M)(x) = {f(x) | f ∈ HomR(Y,M)}

where Y is a right R-module and x ∈ Y . If the module Y is finitely presented,
then L is called a finite matrix subgroup of M .

Following [27], a module M is product-complete provided every product
of copies of M is a direct summand of a direct sum of copies of M . It is well-
known that every product-complete module is finendo (see [27, Proposition
4.2]). The following characterization reflects a similar behavior of finendo
modules with regard to direct products.

Proposition 2.1. Let R be any ring and M a right R-module. Then M
is finendo if and only if M generates any product of copies of M .
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Proof. Suppose first that M is finendo with endomorphism ring S, and
let I be any index set. There is a finite generating set {u1, . . . , un} of the
left S-module M . To show that M generates M I , it suffices to see that
the trace of Mn on M I is M I . If we take any element x = (xi)i∈I of the
direct product M I , then for each i ∈ I we have xi = f1iu1 + · · ·+ fniun for
some endomorphisms f1i, . . . , fni of M . Then we define the homomorphism
g : Mn →M I as follows: g = (gi)i∈I , where gi is a homomorphism from Mn

to the ith component M of M I such that if y = (y1, . . . , yn) ∈ Mn, then
gi(y) = f1iy1 + · · · + fniyn. It is clear that gi(u1, . . . , un) = xi, and hence
g(u1, . . . , un) = x, proving our claim.

Conversely, suppose that M generates any product of copies of M . Con-
sider the module MM and the element of this product whose x-component
is x. By hypothesis, there exists some homomorphism g : Mn → MM and
an element (u1, . . . , un) of Mn whose image under g is the given element
(xx)x ∈ MM . This clearly shows that elements u1, . . . , un generate M as a
module over its endomorphism ring.

We deduce the following immediate consequence.
Corollary 2.2. Let R be any ring. The property of being finendo as a

right R-module is preserved under taking finite direct sums, and arbitrary
direct products of copies of a single module. Moreover , if M is a generator
in Mod-R, then M is finendo.

We now turn to the question of when a direct sum of cofinendo modules
is again cofinendo. The next result shows that this holds for finite direct
sums of indecomposable modules of finite length. For any R-module M with
endomorphism ring S, the S-socle of M will be referred to as the endosocle
of M , and denoted as Esoc(M).

Lemma 2.3. Let R be any ring and M =
⊕n

k=1Mk be a finite direct
sum of left R-modules with local endomorphism rings. If each Mk has a
finitely generated endosocle, then M has a finitely generated endosocle. In
particular , if each Mk is cofinendo indecomposable of finite length, then
M =

⊕n
k=1Mk is cofinendo.

Proof. Let B be the endosocle of M =
⊕n

k=1Mk. Because each Mk

has a local endomorphism ring, it follows from [25, Lemma B] that there
is a decomposition B =

⊕n
k=1Bk where Bk = B ∩ Mk, and each Bk is

the intersection of all kernels of non-isomorphisms from Mk to Mj with
j = 1, . . . , n. In particular, Bk is an endosubmodule of Mk. Note that clearly
each Bk is contained in the endosocle of Mk which is finitely generated by
hypothesis. Thus, Bk is finitely generated over End(Mk). But each element
of End(Mk) can also be viewed as an element of S = End(M). It follows
that each Bk has a finite generating set as a left S-module. Therefore the
endosocle B of M has a finite generating set as left S-module, as required.
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For the second part of the lemma, assume that each Mk is cofinendo
indecomposable of finite length. The left R-module M =

⊕n
k=1Mk is of

finite length, hence it has a semiprimary endomorphism ring. Thus M has
an essential endosocle. By the above, we see that M has a finitely generated
endosocle. Therefore M is finitely cogenerated over its endomorphism ring.

Following Auslander [7], for a left R-module N with S = End(RN), the
local dual of N is defined as the right R-module D(N) = HomS(NS , CS),
where CS is a minimal injective cogenerator of Mod-S. The following results
give useful connections between the finendo and cofinendo conditions for
certain left and right R-modules through the local duality.

Proposition 2.4. Let R be a ring , and N =
⊕

i∈I Ni be a direct sum
of finitely presented left R-modules. Let Mi = D(Ni) be the local dual of Ni

and M =
⊕

i∈IMi. Then M is cofinendo if and only if N is finendo and
N/Rad(NS) is a semisimple right S-module, where S is the endomorphism
ring of N .

Proof. See [15, Proposition 4.8].

Proposition 2.5. Let R be a ring , and N =
⊕

i∈I Ni be a direct sum of
finitely presented left R-modules each with a local endomorphism ring. Let
Mi = D(Ni) be the local dual of Ni and M =

⊕
i∈IMi. If M is finendo,

then N is cofinendo.

Proof. See [15, Proposition 4.9].

The second part of the result below was proved in [15, Proposition 4.10]
under the additional hypothesis that the left functor ring A of R is right
semiartinian. We now give an alternative proof for arbitrary rings. Note that
when RN = R, the result says that if the ring R has a finitely generated
essential right socle, then the minimal injective cogenerator E of Mod-R is
finendo, a fact that also follows from Beachy [9].

Proposition 2.6. Let R be any ring , N a left R-module, M a right
R-module and suppose that the lattice of endosubmodules of N is anti-
isomorphic to the lattice of matrix subgroups of M . If N is cofinendo, then M
is finendo. In particular , if N =

⊕
i∈I Ni is a direct sum of finitely presented

left R-modules, set Mi = D(Ni), the local dual of Ni, and M =
⊕

i∈IMi. If
N is cofinendo, then M is finendo.

Proof. Since N is cofinendo, any family of endosubmodules of N which
has zero intersection contains a finite subfamily having zero intersection
(see, e.g., [43, 14.7]). It follows that the lattice of matrix subgroups of M is
compact, i.e. whenever M is the join of a family of matrix subgroups, it is
the join of a finite subfamily.
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Let M =
∑

j∈J Xj be a sum of finitely generated endosubmodules of M .
Since finitely generated endosubmodules are matrix subgroups, the join in
the lattice of matrix subgroups of the Xj is again M , and thus M is the
join of a finite subfamily {Xj | j ∈ F}. But the usual sum of finitely many
finitely generated endosubmodules of M is a finitely generated endosub-
module, hence a matrix subgroup of M , so the join of the finite subfamily
{Xj | j ∈ F} is

∑
j∈F Xj . Therefore M =

∑
j∈F Xj is finitely generated as

a module over its endomorphism ring.
Now, if N =

⊕
i∈I Ni is a direct sum of finitely presented left R-modules,

and M =
⊕

i∈I D(Ni), then [15, Theorem 4.1] implies that the lattice of
endosubmodules of N is anti-isomorphic to the lattice of matrix subgroups
of M , and thus the second assertion of the proposition follows.

Remark 2.7. We note that the finendo and cofinendo properties are not
preserved under direct summands, in general. Indeed, if M is any left module
over an arbitrary ring R and M is not finendo, then the left R-module R⊕M
is a generator in R-Mod, hence it is finendo by Corollary 2.2. This shows
that direct summands of finendo modules need not be finendo, in general.
As for the cofinendo property, let R be a left artinian hereditary ring that
is not right artinian (for example, R =

(
F F
0 K

)
, where K is a subfield of

a field F , and F is infinite-dimensional over K). Then there is a finitely
generated projective left R-module M that is not finendo (see Lemma 3.3),
and the left R-module L = R⊕M is finendo, as above. By Proposition 2.4,
the local dual D(M) of M is not cofinendo. On the other hand, it follows
from [32, Theorem 1.6] that D(L) = D(R ⊕M) ∼= D(M) ⊕D(R), because
the endomorphism ring of R ⊕ M is semiprimary. Note that, since L is
finitely generated over its semiprimary endomorphism ring, L is semisimple
modulo its endoradical (see, e.g., [43, 42.3]). Applying again Proposition 2.4,
we find that D(R ⊕M) is cofinendo. Hence the cofinendo right R-module
D(M)⊕D(R) contains a direct summand D(M) that is not cofinendo.

In this paper, we are interested in characterizing rings over which all
or certain classes of right (or left) modules are finendo or cofinendo. The
following results will be used.

Lemma 2.8. Let R be a ring. Then R is right artinian if and only if
every quotient ring R/I for a two-sided ideal I of R has a finitely generated
essential right socle.

Proof. See Beachy [9].

Corollary 2.9. Let R be a left artinian ring such that every finitely
generated indecomposable left R-module is cofinendo. Then R is right ar-
tinian.
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Proof. By Lemma 2.3, every finitely generated leftR-module is cofinendo.
In particular, for every two-sided ideal I of R, the ring R/I is finitely co-
generated as a right module over itself. Hence Lemma 2.8 shows that R is
right artinian.

Lemma 2.10. Let R be a right artinian ring. Then R is left pure semisim-
ple if and only if every pure-projective right R-module is finendo.

Proof. See [13, Lemma 3.8].

We now give a characterization of rings over which every left module is
cofinendo.

Theorem 2.11. The following conditions are equivalent for a ring R:

(a) Every left R-module is cofinendo.
(b) R is left pure semisimple, and every finitely generated indecompos-

able left R-module is cofinendo.
(c) R is left pure semisimple, and every indecomposable pure-injective

right R-module is finendo.
(d) R is left pure semisimple, and every pure-injective right R-module

is finendo.
(e) R is left artinian, and every direct sum of a family of indecomposable

pure-injective right R-modules is finendo.

Proof. (a)⇒(b). Suppose that (a) holds. Then, in particular, the quo-
tient ring R/I has a finitely generated essential right socle for every two-
sided ideal I of R. Hence R is right artinian by Lemma 2.8. Let N =

⊕
i∈I Ni

be any direct sum of finitely presented right R-modules Ni. Consider the
direct sum M =

⊕
i∈IMi, where Mi = D(Ni) is the local dual of Ni. Then

by Proposition 2.4, the fact that the left R-module M is cofinendo implies
that N is finendo. Therefore, R is right artinian and every pure-projective
right R-module is finendo (keep in mind that over the right artinian ring
R, pure-projective right R-modules are precisely the direct sums of finitely
presented right R-modules). Applying Lemma 2.10, we conclude that R is
left pure semisimple.

(b)⇒(a). Assume that R is left pure semisimple and every finitely gen-
erated indecomposable left R-module is cofinendo. Let M be any left R-
module; we need to show that M is finitely cogenerated over its endomor-
phism ring. By [25, Lemma A], because M is Σ-pure-injective, M is semi-
artinian as a module over its endomorphism ring. In particular, M has an
essential endosocle. Therefore it is sufficient to show that the endosocle B
of M is finitely generated. Let M =

⊕
i∈IMi be an indecomposable decom-

position of M , each Mi having a local endomorphism ring. By [25, Lemma
B(2)], there is a direct sum decomposition B =

⊕
i∈I Bi, where Bi = B∩Mi,
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and Bi is the End(Mi)-submodule of Mi consisting of all elements of Mi an-
nihilated by all non-isomorphisms in

⋃
j∈I HomR(Mi,Mj). We will first show

that there are only finitely many non-isomorphic modules Mi such that Bi
is non-zero.

Since R is left pure semisimple, by [23, Theorem A] (cf. [12, Corol-
lary 3.7]), the family {Mi | i ∈ I} has a finite cogenerating set A =
{Mi1 , . . . ,Min}, i.e. each Mi can be embedded into a finite direct sum of
modules in A. Suppose that some Mi is not isomorphic to any of the mod-
ules in A. Then the reject of the family A in Mi is zero, i.e. the intersection
of all kernels of homomorphisms from Mi to the modules in A is zero. Note
that homomorphisms from Mi to the modules in A are non-isomorphisms.
It follows from the description of Bi above that Bi is zero, proving the claim.

By grouping the isomorphic indecomposable modules Mi together, we
obtain a disjoint partition I =

⋃
α∈Ω Iα such that if i, j ∈ Iα then Mi

∼= Mj ,
and if i ∈ Iα, j ∈ Iβ with α 6= β, then Mi 6≈ Mj . Set Nα =

⊕
i∈IαMi.

Then M =
⊕

α∈ΩNα. Moreover, as observed above, B ∩ Nα 6= 0 for only
finitely many distinct α ∈ Ω. Note that, by hypothesis, each Mi has a finitely
generated endosocle, and [25, Lemma B(1)] implies that for any index set K,
Esoc(M (K)

i ) = (Esoc(Mi))(K) is also finitely generated. Thus each Nα has
a finitely generated endosocle. For each i ∈ I, because the endosocle of Mi

is the intersection of all kernels of non-isomorphisms from Mi to Mi, it is
clear that Bi is contained in the endosocle of Mi. Hence

B ∩Nα =
⊕
i∈Iα

(B ∩Mi) ⊆
⊕
i∈Iα

Esoc(Mi) = Esoc
(⊕
i∈Iα

Mi

)
= Esoc(Nα)

and so B ∩ Nα is a finitely generated endosubmodule of the endosocle of
Nα. Keeping in mind that each endomorphism of Nα can also be identified
in a natural way with an endomorphism of M , it follows easily that B =⊕

α∈Ω(B ∩ Nα), with only finitely many non-zero terms, is indeed finitely
generated over the endomorphism ring S of M .

(b)⇒(c). Suppose that (b) holds. Since R is left pure semisimple, we
know that every indecomposable pure-injective right R-module is the local
dual of a finitely presented indecomposable left R-module (see [15, Propo-
sition 5.6]). Thus it follows from Proposition 2.6 that every indecomposable
pure-injective right R-module is finendo.

(c)⇒(d). Assume that (c) holds. If N is any finitely generated inde-
composable left R-module, then its local dual D(N) is an indecomposable
pure-injective right R-module. Since D(N) is finendo by hypothesis, Propo-
sition 2.5 implies that N is cofinendo. This shows that (b) holds.

Now let M be any pure-injective right R-module. By [15, Proposition
5.6] M is the pure-injective envelope of a direct sum

⊕
i∈I D(Ni), each Ni

being a finitely presented indecomposable left R-module. By the implication
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(b)⇒(a) proved above, the left R-module
⊕

i∈I Ni is cofinendo. Let A be
the left functor ring of R, and T : Mod(R)→ Mod(A) be the canonical em-
bedding functor (see, e.g., [15, p. 375] for definitions and basic properties).
Note that T (M) is the injective hull of T (

⊕
i∈I D(Ni)) ∼=

⊕
i∈I T (D(Ni)).

By [15, Lemma 2.1], the torsion theory of Mod(A) cogenerated by T (M)
is the same as the torsion theory cogenerated by

⊕
i∈I T (D(Ni)). By ap-

plying [15, Proposition 3.2] to M and
⊕

i∈I D(Ni), we see that the lattice
of matrix subgroups of M is isomorphic to the lattice of matrix subgroups
of
⊕

i∈I D(Ni), which in turn is anti-isomorphic to the lattice of endosub-
modules of N =

⊕
i∈I Ni (see [15, Theorem 4.1]). Since N is cofinendo, we

conclude that M is finitely generated as a module over its endomorphism
ring, by Proposition 2.6.

(d)⇒(e). Suppose that (d) holds. Clearly (d)⇒(c), and we have already
established (c)⇒(b) in the proof of (c)⇒(d) above. Hence (b) holds. Then
we know by the implication (b)⇒(a) that every left R-module is cofinendo.
On the other hand, because R is left pure semisimple, we know by [15,
Proposition 5.6] that every direct sum of indecomposable pure-injective right
R-modules is a direct sum of local duals of finitely presented indecompos-
able left R-modules. Therefore it follows from Proposition 2.6 that every
direct sum of indecomposable pure-injective right R-modules is finendo,
proving (e).

(e)⇒(a). Suppose that (e) holds. Let N be any pure-projective left R-
module. Because R is left artinian, there is a direct sum decomposition
N =

⊕
i∈I Ni with each Ni finitely presented with local endomorphism

ring. Take the local dual Mi = D(Ni) of each Ni, and set M =
⊕

i∈IMi.
It is well-known that each Mi is an indecomposable pure-injective right
R-module. Hence M is finendo by (e), and Proposition 2.5 implies that N
is cofinendo. Thus R is a left artinian ring with the property that each
pure-projective left R-module is cofinendo. It follows from [13, Lemma 3.9]
that R is left pure semisimple. Thus every left R-module is pure-projective
and (a) follows.

We deduce the following consequence that gives a relationship between
the two open questions mentioned in the introduction.

Corollary 2.12. Let R be a ring , and consider the following two con-
ditions.

(a) Every right R-module is finendo.
(b) Every left R-module is cofinendo.

Then we have the implication (a)⇒(b).

Proof. Suppose that (a) holds. In particular, every quasi-injective right
R-module is finendo, hence we know by Faith [16, Theorem 17A] that R is
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right artinian. Because every pure-projective right R-module is finendo, by
Lemma 2.10 it follows that R is left pure semisimple. Now Theorem 2.11
above shows that every left R-module is cofinendo.

3. The case of hereditary rings. In this section, we study left pure
semisimple hereditary rings R with the property that every finitely gener-
ated indecomposable left R-module is cofinendo, or the property that every
finitely generated indecomposable left R-module is finendo. A related ver-
sion of these properties was also studied by Simson [35, Corollary 3.2]. We
show that any left pure semisimple hereditary ring satisfying either of the
above properties is of finite representation type, and we give positive answers
to [13, Questions 1 and 2, pp. 122–123] in the hereditary case.

The proof of our result is based on some lemmas. The first lemma below
is valid without the hereditary hypothesis.

Lemma 3.1. Let A and B be Morita equivalent rings. Then every finitely
generated left A-module is finendo (cofinendo) if and only if every finitely
generated left B-module is finendo (respectively , cofinendo).

Proof. Let G : B-Mod → A-Mod be a category equivalence, let M be
any finitely generated left B-module, and set N = G(M). If AP is any
finitely generated projective left A-module, then HomA(P,N) is a direct
summand of a finite direct sum of copies of HomA(A,N) ∼= N , as a right
End(N)-module. Since G(B) is finitely generated projective, it follows that
if N is finendo (respectively, cofinendo), then HomA(G(B), N) is finitely
generated (respectively, finitely cogenerated) as a right End(N)-module.

Since G is full and faithful, HomA(G(B), N) ∼= HomB(B,M), and this
is a semilinear isomorphism relative to the ring isomorphism End(M) ∼=
End(N). It is clear that a semilinear isomorphism preserves the lattices
of submodules, and thus if N is finendo (respectively, cofinendo), then
HomB(B,M) ∼= M is finitely generated (respectively, finitely cogenerated)
as a right End(M)-module.

The following characterization of hereditary rings of finite representation
type, due to Simson [35, 40], will give an important induction step in our
study of left pure semisimple hereditary rings.

Lemma 3.2. Let R be a basic indecomposable left pure semisimple hered-
itary ring. Then the following conditions are equivalent :

(a) R is of finite representation type.
(b) For any pair of indecomposable projective direct summands Pi 6∼= Pj

of RR, there is a ring isomorphism

RB =

(
F 0
B G

)
∼= End(Pi ⊕ Pj)
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where F = EndRPi and G = EndRPj are division rings, B =
HomR(Pi, Pj), and RB is a ring of finite representation type.

Proof. See [40, Theorem 3.4].

We also need the following simple but useful fact.

Lemma 3.3. Let R be a left artinian hereditary ring. Suppose that every
finitely generated indecomposable projective left R-module is finendo. Then
R is right artinian.

Proof. Let P be any finitely generated indecomposable projective left
R-module, and let f : P → P be any non-zero homomorphism. Since R is
left hereditary, Im(f) is a projective left R-module, hence f splits, implying
that Ker(f) is a direct summand of P . Since P is indecomposable and f
is non-zero, we see that Ker(f) = 0, so f is a monomorphism. As P is of
finite length, f must be an isomorphism. This shows that the endomorphism
ring S of P is a division ring, and because P is finendo by hypothesis, it
follows that P is endofinite. Since endofinite modules are preserved under
taking finite direct sums [11, Proposition 4.3], the ring R is endofinite as a
left module over itself, i.e. R is right artinian.

The next proposition, which might be of independent interest, is a key
step in the proof of our main result.

Proposition 3.4. Let F,G be division rings, and let GBF be a non-zero
bimodule. Suppose that the ring RB =

(
F 0
B G

)
is left and right artinian. Set

FMG = HomF (B,F ) and consider the triangular matrix ring RM =
(
G 0
M F

)
.

(a) If every finitely generated indecomposable left RB-module is cofin-
endo, then every finitely generated indecomposable left RM -module
is cofinendo.

(b) If every finitely generated indecomposable left RB-module is finendo,
then every finitely generated indecomposable left RM -module is fin-
endo.

Proof. (a) We assume that RB is left and right artinian, and every
finitely generated indecomposable left RB-module is cofinendo.

First note that if A is any ring and L is any left A-module, then L is cofin-
endo if and only if for any finitely generated left A-module X, HomA(X,L)
is finitely cogenerated over End(L). Indeed, L being cofinendo means that
HomA(A,L) is finitely cogenerated over End(L), hence HomA(Am, L) is
finitely cogenerated over End(L) for any positive integer m. There is an ex-
act sequence An → X → 0 in A-Mod which induces the exact sequence 0→
HomA(X,L) → HomA(An, L) in Mod-End(L), implying that HomA(X,L)
is finitely cogenerated over End(L). The “if” part of the claim is trivial.
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We recall (see, e.g., [21, p. 174]) that there is an equivalence between the
category RB-Mod of left RB-modules and the category whose objects are
the triples (X,Y, λ), where X,Y are left F - or G-modules, respectively, and
λ : B⊗F X → Y is a G-homomorphism (equivalently, we could take instead
the F -homomorphism λ : X → HomG(B, Y )). The equivalence associates
to such an object (X,Y, λ) the left RB-module whose elements are column
vectors

( x
y

)
with x ∈ X, y ∈ Y with the usual matrix operations and using λ

to define the product B×X → Y . Moreover, the morphisms in that category
between two objects (X,Y, λ) and (X ′, Y ′, µ) are given by the pairs (f, g) of
linear maps f : FX → FX

′ and g : GY → GY
′ such that g ◦ λ = µ ◦ (1⊗ f).

From now on, we identify each left RB-module with the corresponding triple.
The construction of the Bernstein–Gelfand–Ponomarev reflection func-

tors S+ : RB-mod → RM -mod and S− : RM -mod → RB-mod is given,
for example, in Ringel [30], Simson [35, 37], or Herzog [21]. These func-
tors can be defined as follows. Given a finitely generated left RB-module
(X,Y, λ), we use the canonical isomorphism B ⊗F X ∼= HomF (M,X) to
write λ̃ : HomF (M,X) → Y , and take its kernel K = Ker(λ̃), giving the
left RM -module S+(X,Y, λ) = (K,X, u), with u corresponding to the in-
clusion µ : K → HomF (M,X). Similarly, given a finitely generated left

RM -module (U, V, µ) with U
µ→ HomF (M,V ), where U and V are finite-

dimensional G- (respectively, F -) vector spaces, we use the same isomor-
phism above to obtain µ̃ : U → B⊗F V . Then we take its cokernel C, giving
S−(U, V, µ) = (V,C, p), where p : B ⊗F V → C is the projection. In view
of the equivalence of categories shown in [21, Proposition 6.8] (see also [37,
Lemma 3.1]), we have the following properties:

(i) If X is an indecomposable module in RM -mod, then S−(X) = 0 if
and only if X is isomorphic to (G, 0, 0), a simple injective left RM -
module which we shall denote as Q. Moreover, if S−(X) is non-zero,
then S+S−(X) is isomorphic to X.

(ii) If X and Y are indecomposable modules in RM -mod such that
S−(X) and S−(Y ) are non-zero, then there is an isomorphism of
abelian groups

HomRM (X,Y ) ∼= HomRB (S−(X), S−(Y )).

In particular, if X ∼= Y 6∼= Q, then (ii) implies that X and S−(X)
have isomorphic endomorphism rings. Moreover, HomRM (X,Y ) is a right
End(Y )-module, HomRB (S−(X), S−(Y )) is a right End(S−(Y ))-module,
and the above abelian group isomorphism is also a semilinear isomorphism
relative to this ring isomorphism.

Now, let C be any finitely generated indecomposable left RM -module,
and we want to show that C is cofinendo. If C is isomorphic to the simple
left RM -module Q above, then C is the module of column vectors

( x
0

)
with
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x ∈ G, with the usual matrix multiplication; and End(C) is canonically
isomorphic to End(GG) ∼= G, so that C is isomorphic to GG as a module
over its endomorphism ring. It follows that C is endofinite.

Thus, we will assume below that C is not isomorphic to Q. It is enough
to show that for any finitely generated indecomposable left RM -module X,
HomRM (X,C) is finitely cogenerated over End(C) (because if L is any
finitely generated left RM -module, then HomRM (L,C) is a finite direct sum
of modules of the form HomRM (X,C) with X indecomposable, and the
property of being finitely cogenerated as End(C)-modules is preserved un-
der taking finite direct sums). If X is not isomorphic to Q, then in view
of (ii) above, HomRM (X,C) is isomorphic to HomRB (S−(X), S−(C)), and
because HomRB (S−(X), S−(C)) is finitely cogenerated over End(S−(C))
by hypothesis, we conclude that HomRM (X,C) is finitely cogenerated over
End(C). Finally, if X is isomorphic to Q, then because Q is simple injective
and C is indecomposable non-injective, it is clear that HomRM (Q,C) = 0
in this case, completing our proof.

(b) We now assume that RB is left and right artinian and that all finitely
generated indecomposable left RB-modules are finendo. We will show that
every finitely generated indecomposable left RM -module is finendo.

Thus let GU and FV be finite-dimensional left vector spaces such that

U
µ→ HomF (M,V )

corresponds to a finitely generated indecomposable left RM -module X =
(U, V, µ), and assume that the homomorphism µ is injective. If we view X
as a left RM -module, the elements of X are column vectors

( u
v

)
with u ∈ U ,

v ∈ V , and each endomorphism of X takes that element to
(
u′

v′

)
for some

u′ ∈ U and v′ ∈ V . Therefore X is, as a right module over its endomorphism
ring, isomorphic to a direct sum U ⊕ V . To show that X is finendo, it is
enough to prove that each of the endosubmodules U, V is finitely generated
over End(X).

By the construction of the functor S−, we have the exact sequence

U
µ→ HomF (M,V ) ∼= B ⊗F V

p→ C → 0

and S−(X) = (V,C, p), being a finitely generated indecomposable left RB-
module, is finendo. By the same argument used in the preceding paragraph
for the endosubmodules U, V of X, both V and C are finitely generated
over the endomorphism ring of S−(X), which is canonically isomorphic to
End(X). It is not hard to see that this entails that V is finitely generated
over the endomorphism ring of X, and that also B⊗F V is finitely generated
over End(S−(X)) ∼= End(X). But U , being a direct summand of B ⊗F V ,
is then finitely generated over the endomorphism ring End(X), and we are
done.
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We now turn to the case when the homomorphism µ : U → Hom(M,V )
is not injective. But, since the module X is indecomposable, we have V = 0
and U ∼= G, and the module is then isomorphic to (G, 0, 0). And we have
already seen in part (a) that this is a finendo module. Hence we have shown
that every finitely generated indecomposable left RM -module is finendo.

We are now in a position to prove the main result of this section, giving
positive answers to Questions 1 and 2 in [13, pp. 122–123] for hereditary
rings. The implications (c)⇒(e) and (d)⇒(e) also sharpen [14, Theorem
4.1] in the hereditary case, where finitely generated indecomposable left
R-modules were assumed to be endofinite (see also [35, Corollary 3.2]).

Theorem 3.5. Let R be any hereditary ring. Then the following condi-
tions are equivalent.

(a) Every right R-module is finendo.
(b) Every left R-module is cofinendo.
(c) R is left pure semisimple, and every finitely generated indecompos-

able left R-module is cofinendo.
(d) R is left pure semisimple, and every finitely generated indecompos-

able left R-module is finendo.
(e) R is of finite representation type.

Proof. (a)⇒(b) and (b)⇔(c) follow from Corollary 2.12 and Theorem
2.11, respectively (even without the hereditary hypothesis on the ring R).

(c)⇒(e). Suppose that (c) holds, i.e. R is left pure semisimple and ev-
ery finitely generated indecomposable left R-module is cofinendo. Then, by
Lemma 2.3, every finitely generated left R-module is cofinendo.

Now assume on the contrary that R is not of finite representation type.
In view of Lemma 3.1, we can take R to be a basic and indecomposable ring.
Moreover, we know by Lemma 3.2 that there exist a pair of indecomposable
projective direct summands Pi 6≈ Pj of RR and a ring isomorphism

RB =

(
F 0
B G

)
∼= End(Pi ⊕ Pj)

where B = HomR(Pi, Pj), F = End(RPi) and G = End(RPj) are division
rings, such that the ring RB is not of finite representation type. Note that,
by Simson [36, Theorem 17.46], there is a fully faithful embedding functor T :
RB-mod → R-mod. It follows easily that RB is a left pure semisimple ring.
Note also that every finitely generated indecomposable left RB-module can
be seen as a finitely generated left R-module having the same endomorphism
ring. Consequently, every finitely generated indecomposable left RB-module
is cofinendo. By Corollary 2.9 we see that RB is right artinian.
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Let M = HomF (B,F ). Then M is a F -G-bimodule, and we can consider
the triangular matrix ring

RM =

(
G 0
M F

)
.

Then RM is a left pure semisimple ring of infinite representation type (see
[21, 37]), and by Proposition 3.4(a) every finitely generated indecomposable
left RM -module is cofinendo. Applying Corollary 2.9, we find that RM is
right artinian, and hence the vector space MG is finite-dimensional. We
can take M1 = HomG(M,G) which is a G-F -bimodule, and consider the
triangular matrix ring

RM1 =

(
F 0
M1 G

)
.

Again, using arguments similar to the above, we deduce that RM1 is left
pure semisimple representation-infinite, and every finitely generated inde-
composable left RM1-module is cofinendo, so RM1 is right artinian, again by
Corollary 2.9.

We may extend this process so that the iterated dual bimodules are
always finite-dimensional on both sides. Then, by applying [35, Theorem
3.1] or [37, Theorem 3.4], we conclude that the matrix ring RB must be of
finite representation type, which is a contradiction.

(d)⇒(e). Suppose that (d) holds. Then Corollary 2.2 implies that every
finitely generated left R-module is finendo. As in the proof of (c)⇒(e), we
can use Lemma 3.1 to assume that R is basic and indecomposable, and then
Lemma 3.2 allows us to start with a left pure semisimple representation-
infinite ring of the form RB =

(
F 0
B G

)
that satisfies (d). Note that, by Lemma

3.3, it follows that any hereditary ring satisfying (d) must be right artinian.
Now using Proposition 3.4(b) repeatedly, as in the proof of (c)⇒(e), we will
get a contradiction by applying again [35, Theorem 3.1] or [37, Theorem 3.4].

(e)⇒(a). If R is of finite representation type, then every right R-module
is endofinite (see [10, 26, 29]), hence (a) follows.

Remark 3.6. As pointed out to us by Professor Daniel Simson, the
implications (c)⇒(e) and (d)⇒(e) of Theorem 3.5 can also be proved using
[40, Corollary 2.11] (cf. [35, 37]), from which it follows that a left pure
semisimple ring of the form RB =

(
F 0
B G

)
is of finite representation type if

every indecomposable preprojective left R-module is endofinite.

4. The case of non-hereditary rings. Given an arbitrary ring R,
we have seen in Section 2 that if all right R-modules are finendo, then R
is left pure semisimple and all finitely generated indecomposable left R-
modules are cofinendo (Theorem 2.11 and Corollary 2.12). So, the questions
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mentioned in the introduction can be reduced to the problem whether a
left pure semisimple ring R with all finitely generated indecomposable left
R-modules cofinendo has to be of finite representation type. We know that
the answer is positive when R is hereditary (Theorem 3.5). In the general
case, we can prove that R is right Morita, i.e. R is right artinian and every
indecomposable injective right R-module is finitely generated. This is the
goal of this section, where we follow the steps in [21, Section 6], and, in
order to do this, we first state and prove some results about triangular
matrix rings.

Let R be a semiprimary ring with Jacobson radical J = J(R). Suppose
that I is a two-sided ideal of R such that JI = IJ = 0. Then we may
construct the triangular matrix ring

TI(R) =

(
R/J 0
I R/J

)
.

As in the preceding section, we shall use the identification of the left
TI(R)-modules with the triples (X,Y, λ), where X,Y are left R/J-modules
and λ : I⊗R/JX → Y is an R/J-homomorphism. Following [5, Section 2] or
[21, p. 175], we shall say that a left TI(R)-module (X,Y, λ) is Grassmannian
when there are no non-zero elements x ∈ X with λ(a⊗ x) = 0 for all a ∈ I.
Note that, as observed in [21, p. 175], any left TI(R)-module is a direct sum
of a Grassmannian module and a module of the form (X, 0, 0). For any left
R-module X, let soc(X) denote the socle of X, and annX(I) the annihilator
{x ∈ X | Ix = 0}.

We now define the following functor, which is closely related to the func-
tors F or J appearing in [5, Section 3] (see also [20, p. 99] and [41]); in the
form below, the definition was given in [21]):

Gr : R-Mod→ TI(R)-Mod, Gr(X) = (X/annX(I), soc(X), f),

where the mapping f : I ⊗R/J (X/annX(I))→ soc(X) is canonical.

Lemma 4.1. Let R be a left artinian ring with Jacobson radical J =
J(R), and let I be a two-sided ideal of R such that I ⊆ J and JI = IJ = 0.
Let TI(R) be the triangular matrix ring constructed above.

(a) Each finitely generated indecomposable left TI(R)-module is isomor-
phic either to (X, 0, 0) for some simple left R/J-module X or to
Gr(X) for some finitely generated indecomposable left R-module X.

(b) If every finitely generated indecomposable left R-module is cofinendo,
then every finitely generated indecomposable left TI(R)-module is
cofinendo.

Proof. (a) It follows from the observation above on Grassmannian TI(R)-
modules that a finitely generated indecomposable left TI(R)-module is either
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Grassmannian or isomorphic to (X, 0, 0). In this second case, it is obvious
that X has to be a simple left R/J-module.

Suppose next that the finitely generated indecomposable left TI(R)-
module M is Grassmannian. By the density of the functor J in [5, The-
orem 3.1, b)], there exists a left R-module X with injective hull Q so
that M is isomorphic to (X/annX(I), soc(Q), f), where the mapping f :
I ⊗R/J (X/annX(I)) → soc(Q) is canonical. Since soc(Q) = soc(X), we
infer that M is isomorphic to Gr(X).

Now, suppose that X is not indecomposable. Then X = X1⊕X2 implies
that soc(X) = soc(X1)⊕ soc(X2), hence the given TI(R)-module would be
a non-trivial direct sum, since R is left artinian. This proves (a).

(b) We start by noting that every indecomposable left TI(R)-module of
the form (X, 0, 0) is isomorphic to X as a module over its endomorphism
ring. Since X is an R/J-module and R/J is semisimple, we deduce that it
is endofinite, and, in particular, cofinendo.

By (a), it remains to see that any indecomposable Grassmannian left
TI(R)-module M is cofinendo. In view of [5, Theorem 3.1], the restriction of
the functor Gr to those left R-modules X such that annX(I) is injective as
a left R/I-module is a full functor. Since it is also dense, we can choose an
indecomposable finitely generated left R-module X such that Gr(X) ∼= M
and there is a surjective ring homomorphism

φ : E = End(RX)→ H = End(TI(R)Gr(X)).

Let K = Ker(φ). Both E and H are local rings. If UE is the injective
hull of the unique simple right E-module, then it is not hard to see that
annU (K)H is the injective hull of the unique simple right H-module. There-
fore D(X) = HomE(X,U) and D(Gr(X)) = HomH(Gr(X), annU (K)).

Our plan for the proof is the following. Since RX is cofinendo, it follows
from Proposition 2.6 that D(X) = HomE(X,U) is finendo. We will use this
to show that D(Gr(X)) is a finendo right TI(R)-module, and by Proposition
2.5 we will conclude that Gr(X) is cofinendo.

We know from [23, Remark 2, p. 312] that the endomorphism ring of
D(X) is isomorphic to End(UE) in the natural way, and, similarly, the
endomorphism ring of D(Gr(X)) is isomorphic to End(annU (K)H). Now,
Gr(X) is, as a right H-module, isomorphic to the direct sum of the mod-
ules X = X/annX(I) and soc(X) = IX. Specifically, the structure of
D(Gr(X)) as a right TI(R)-module is easily seen to be given by the triple
(HomH(IX, annU (K)),HomH(X, annU (K)), µ), where µ is the surjective
canonical map

µ : HomH(IX, annU (K))⊗R/J I → HomH(X, annU (K)).

Thus, to see that D(Gr(X)) is finendo, it will suffice to show that each of the
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modules HomH(IX, annU (K)) and HomH(X, annU (K)) is finitely generated
over the endomorphism ring of annU (K).

By hypothesis, HomE(X,U) is finitely generated over End(UE). Thus
there exist elements f1, . . . , fs ∈ HomE(X,U) so that each f : XE → UE
has the form f =

∑s
i=1 αi ◦ fi for certain αi ∈ End(UE). By noting that

K = HomR(X, annX(I)), it follows easily that any f : XE → UE restricts
to a homomorphism f̂ : (IX)E → (annU (K))E . On the other hand, every
homomorphism g : (IX)E → (annU (K))E can be extended to XE → UE ,
because UE is injective. It follows immediately that f̂1, . . . , f̂s is a system
of generators of HomE(IX, annU (K)) = HomH(IX, annU (K)) as a module
over End(annU (K)H).

Finally, we consider HomH(X, annU (K)). Take a set a1, . . . , ar of gener-
ators of I as a left R/J-module. Then each f̂i ⊗ aj gives µ(f̂i ⊗ aj) = φij ∈
HomH(X, annU (K)). Each element g ∈ HomH(X, annU (K)) can be written
as g =

∑r
j=1 µ(hj⊗aj). In turn, hj =

∑s
i=1 αij f̂i, for certain endomorphisms

αij of annU (K), in view of the preceding paragraph. Therefore

g =
∑
i,j

αijµ(f̂i ⊗ aj) =
∑
i,j

αijφij ,

which shows that the module HomH(X, annU (K)) is finitely generated over
End(annU (K)), as was to be shown.

We are now ready to deduce the central result of this section.

Theorem 4.2. If R is a left pure semisimple ring such that every finitely
generated indecomposable left R-module is cofinendo, then R is right Morita.

Proof. Suppose, to the contrary, that there is some left pure semisimple
ring A which is not right Morita and such that every finitely generated
indecomposable left A-module is cofinendo.

Note that every quotient ring Q of A has the same property, i.e., ev-
ery finitely generated indecomposable left Q-module is cofinendo. This is
because the restriction of the scalars functor Q-Mod → A-Mod views each
left Q-module as a left A-module, with the same endomorphisms. As in [21,
Section 5], we may use the fact that A is left artinian to obtain a quotient
R of A which is left pure semisimple and not right Morita, and such that
all the proper quotients of R are right Morita. Then every finitely generated
indecomposable left R-module is cofinendo.

We now follow the proof of [21, Proposition 5.8] to show that this ring
R has a unique minimal two-sided ideal I. Indeed, if there are non-zero
two-sided ideals I1, I2 of R with I1 ∩ I2 = 0, and E is the injective hull of a
simple right R-module, then the natural monomorphism of right R-modules
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R→ R/I1 ⊕R/I2 induces an epimorphism

p : HomR(R/I1, E)⊕HomR(R/I2, E)→ E.

But Ej = Im(p |R/Ij ) is a submodule of E which is indecomposable injective
as a right R/Ij-module. Since R/Ij is right Morita, Ej is finitely generated
also as a right R-module. Hence E is finitely generated, and R is right
Morita, which is a contradiction.

We next claim that if R any left pure semisimple ring such that every
finitely generated indecomposable left R-module is cofinendo, and I ⊆ J is a
two-sided ideal of R such that IJ = JI = 0 and R/I is right Morita, then R
is also right Morita. The application of this claim to the left pure semisimple
and non-right Morita ring R above will yield the desired contradiction and
complete our proof.

The proof of the claim could also be obtained by adapting the proofs
of [21, Proposition 6.2, Theorem 6.3], but we give a direct proof for the
convenience of the reader. First we note that, under the assumptions
in the claim, TI(R) is left pure semisimple. By [22, Corollary 2], it is enough
to show that each left TI(R)-module is a direct sum of indecomposable
modules. In turn, it will suffice to show the property for Grassman-
nian modules, according to Lemma 4.1. But this follows easily from the
facts that the functor Gr preserves indecomposable modules [5] and
direct sums, and every left R-module is a direct sum of indecomposable
modules.

By Lemma 4.1, every finitely generated indecomposable left TI(R)-
module is cofinendo. As TI(R) is a hereditary ring, we infer by Theorem 3.5
that TI(R) is of finite representation type. Note that R is right artinian, by
Corollary 2.9. Now let M be any indecomposable injective right R-module.
Since annM (I) is an injective indecomposable right R/I-module [16, Propo-
sition 8], it is finitely generated, as R/I is right Morita. Moreover, Gr(M)
is indecomposable by [21, Theorem 6.1]. Therefore Gr(M) is finitely gen-
erated, because TI(R) is of finite representation type, hence M/annM (I) is
finitely generated as a right R-module, and hence so is M . This shows that
R is right Morita.

Proposition 4.3. Let R be a left pure semisimple ring such that every
finitely generated indecomposable left R-module is cofinendo. Then the quo-
tient ring R/(J(R))2 is of finite representation type.

Proof. Set R′ = R/(J(R))2. Thus R′ is a left pure semisimple ring such
that every finitely generated indecomposable left R′-module is cofinendo.
If J is the Jacobson radical of R′, then J2 = 0, and we may consider the
matrix ring MJ(R′) =

(R′/J 0
J R′/J

)
.
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By Lemma 4.1, every finitely generated indecomposable left MJ(R′)-
module is cofinendo. Moreover, MJ(R′) is left pure semisimple, and it is
of infinite representation type if R′ is of infinite representation type, by
[5, Corollary 4.3]. But it is hereditary, and this contradicts Theorem 3.5.
Therefore R′ is of finite representation type.

We summarize our findings for the class of rings of our main interest, in
the general case.

Corollary 4.4. Let R be a ring such that every right R-module is
finendo. Then R is a left pure semisimple ring with a right Morita duality ,
and the quotient ring R/(J(R))2 is of finite representation type.

Proof. The result follows by combining Corollary 2.12, Theorem 2.11,
Theorem 4.2, and Proposition 4.3.

We conclude the paper with the following remark (observed indepen-
dently by Professor Daniel Simson, who suggested including it here).

Remark 4.5. Following Simson [39], a right artinian ring R is said to
have an infinite right Morita sequence if there is an infinite sequence of right
artinian rings {Rn}∞n=0 such that R0 = R, and there is a Morita duality Dn :
mod-Rn→Rn+1-mod for each n ≥ 0. Such a sequence, if it exists, is uniquely
determined by the ring R. Examples of artinian rings having an infinite right
Morita sequence include artinian rings with self-duality, artinian PI-rings,
and rings of finite representation type. Simson [39, Theorem 2.5] has shown
that left pure semisimple rings R having an infinite right Morita sequence
are of finite representation type. Now, suppose that R is a ring with all
right R-modules finendo. By Corollary 4.4, R is right Morita, hence there is
a ring R1 and a Morita duality D : mod-R→ R1-mod, and clearly R1 is left
pure semisimple. If the finendo property of all right R-modules is transferred
through the Morita duality to the right R1-modules, that would show the
existence of an infinite right Morita sequence for such a ring R. This in turn
would imply that rings R with all right R-modules finendo must have finite
representation type, in view of Simson’s result above. However, we do not
know if the finendo property of all right R-modules is preserved through the
Morita duality in this situation.
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