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Abstract. We prove criteria for relative compactness in the space of set-valued mea-
sures whose values are compact convex sets in a Banach space, and we generalize to
set-valued measures the famous theorem of Dieudonné on convergence of real non-negative
regular measures.

Introduction. We expand and complete the two results presented in
[9, Theorem 9] and [10, Theorem 4]. Let T be an abstract set, let B be a
σ-field of subsets of T , and let K be a family of subsets of T closed under
finite unions and finite intersections. Let M̃+(T,K, ck(E)) be the set of all
positive K-inner regular set-valued measures defined on B with values in
ck(E) where ck(E) is the set of all compact convex non-empty subsets of
a Banach space E. We consider on ck(E) the Hausdorff distance and on
M̃+(T,K, ck(E)) the s-topology, that is, the weakest topology for which all
mappings M 7→ M(A), A ∈ B, are continuous. We prove criteria of com-
pactness of subsets of M̃+(T,K, ck(E)) (Theorems 1–3) and we generalize
to set-valued measures (Theorem 4) the famous theorem of Dieudonné [4,
Proposition 8] on convergence of real non-negative regular measures. Theo-
rems 2 and 3 are known for real non-negative measures (see e.g. [12]). This
paper is a continuation of [11].

1. Notations and preliminaries. Throughout this paper, T denotes
an abstract set, and G and K denote families of subsets of T . We let B denote
the smallest σ-field containing every set A ⊆ T for which K ∩A ∈ K for all
K ∈ K. The family K is said to be semicompact if every countable family of
sets in K with the finite intersection property has a non-empty intersection.
We shall say that G separates the sets in K if for any pair K,K ′ of disjoint
sets in K we can find a pair G,G′ of disjoint sets in G such that K ⊂ G and
K ′ ⊂ G′.
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A set F of subsets of T is filtering to the left if for all F ∈ F and F ′ ∈ F
there exists F1 ∈ F such that F1 ⊆ F ∩F ′. We write F ↓ F0 if F is filtering
to the left and F0 =

⋂
{F ; F ∈ F}.

1.1. Nets on T. Let X be a non-empty subset of T and (xi)i∈I be a net
on T . We say that xi ∈ X eventually if there exists i ∈ I such that xj ∈ X
for every j ∈ I with j ≥ i. A net (xi)i∈I on T is universal if, for every subset
X ⊂ T , either xi ∈ X eventually or xi ∈ T \X eventually.

Note that a net corresponding to an ultrafilter is universal. Conversely,
the filter corresponding to a universal net is an ultrafilter. Every net has a
universal subnet. For a more detailed account of nets we refer to [7]. Let
T ′ be a Hausdorff topological space. A subset X of T ′ is called net-compact
if every net on X has a convergent subnet, i.e. if every universal net on
X converges. In case T ′ is a regular topological space, a subset X of T ′ is
net-compact if and only if X is relatively compact.

1.2. Set-valued measures. Let E be a Banach space and E′ its dual
space. We denote by | · | the norm on E and E′. The closed unit ball of E′,
denoted by B′(0, 1), is {y; y ∈ E′, |y| ≤ 1}. If F and G are two subsets of E,
we shall denote by F +G the family of all elements of the form x+ y with
x ∈ F and y ∈ G, and by F +̄G the closure of F +G. The closed convex hull
of F is denoted by coF . The support function of F is the function δ∗(·|F )
from E′ to [−∞,+∞] defined by

δ∗(y|F ) = sup{y(x); x ∈ F}.

We denote by cf(E) the set of all closed convex non-empty subsets of E,
and by ck(E) the set of all compact convex non-empty subsets of E. We
endow ck(E) with the Hausdorff distance, denoted by δ. Recall that for C
and C ′ in ck(E), δ(C,C ′) = sup{|δ∗(y|C)−δ∗(y|C ′)|; y ∈ B′(0, 1)} and that
(ck(E), δ) is a complete metric space [2].

Definition 1. Let A be a set of subsets of T . Assume that ∅ ∈ A and
that A is closed under finite unions and finite intersections. Let M be a map
from A to cf(E). Then M is

(a) additive if for any disjoint sets A,B in A we have M(A ∪B) =
M(A) +̄ M(B); that is, M(A) = closure{a + b; a ∈ M(A),
b ∈M(B)};

(b) monotone if A ⊆ B implies M(A) ⊆M(B), and M(∅) = {0};
(c) subadditive if M(A ∪B) ⊆M(A) +̄M(B) for all A,B in A;
(d) positive if M(∅) = {0} and if {0} ⊆M(A) for all A ∈ A;
(e) σ-smooth with respect to K if M is monotone and for all countable

subsets K∗ of K the conditions K∗ ↓ A0 and A0 ∈ A imply M(A0) =⋂
{M(A); ∃K ∈ K∗, A ⊇ K}.
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If we only require the last relation to hold when A0 = ∅, then we
shall say that M is σ-smooth at ∅ with respect to K. In the case of a
real non-negative measure µ the previous equality is replaced by µ(A0) =
inf{µ(A); ∃K ∈ K∗, A ⊇ K}.

Definition 2. LetM be a map from B to cf(E). We say thatM is a weak
set-valued measure if for every y ∈ E′ the map δ∗(y|M(·)) : B → ]−∞,+∞]
is a σ-additive measure.

Note that if M maps into ck(E) this condition is equivalent to the
following: for any sequence (An) of pairwise disjoint sets in B of union
A the series

∑
nM(An) is convergent and M(A) =

∑
nM(An); that is,

M(A) = limn→∞
∑n

k=0M(Ak) where the limit is taken with respect to the
Hausdorff topology [3]. A weak set-valued measure from B to ck(E) will be
called a set-valued measure.

Definition 3. A positive weak set-valued measure M : B → cf(E) is
said to be inner regular with respect to K or K-inner regular if M(A) =
co
⋃
{M(K); K ⊆ A, K ∈ K} for any A ∈ B.

In the case of a real non-negative measure µ defined on B this equality
is replaced by µ(A) = sup{µ(K); K ⊆ A, K ∈ K}.

Note that a positive additive map M : B → cf(E) is monotone. Indeed,
let A and B be elements of B such that A ⊂ B. Then M(B) = M(A) +̄
M(B \ A) and for all x ∈ M(A), x = x + 0 ∈ M(B) where 0 ∈ M(B \ A).
Hence M(A) ⊂M(B).

1.3. Topologies on M̃+(T, ck(E)). We denote by M̃+(T, ck(E)) [resp.
M̃+(T,K, ck(E))] the set of all positive [resp. positive K-inner regular] set-
valued measures defined on B. In the case of real non-negative measures we
shall use the notations M+(T ), M+(T,K) respectively.

Definition 4. The narrow topology on M̃+(T, ck(E)) is the weakest
topology on M̃+(T, ck(E)) for which the map M 7→M(T ) is continuous and
the maps M 7→ δ∗(y|M(G)) are lower semicontinuous for all G ∈ G and
y ∈ E′.

Let (Mi)i∈I be a net on M̃+(T, ck(E)) and M ∈ M̃+(T, ck(E)). Then
(Mi) converges narrowly to M , i.e. converges in the narrow topology, if and
only if (Mi(T )) converges to M(T ) in ck(E) and lim infi δ

∗(y|Mi(G)) ≥
δ∗(y|M(G)) for all y ∈ E′ and G ∈ G.

The narrow topology on M+(T ) is the weakest topology on M+(T ) for
which the map µ 7→ µ(T ) is continuous and the maps µ 7→ µ(G) are lower
semicontinuous for all G ∈ G.



180 K. K. SIGGINI

Definition 5. The s-topology on M̃+(T, ck(E)) is the weakest topology
on M̃+(T, ck(E)) for which all maps M 7→M(A), A ∈ B, are continuous.

M̃+(T, ck(E)) endowed with this topology is a Hausdorff space. The s-
topology is a uniform topology. The uniformity is generated by the family
of pseudo-metrics (hA)A∈B where hA(M,M ′) = δ(M(A),M ′(A)) for all M
and M ′ in M̃+(T, ck(E)).

The s-topology on M+(T ) is defined analogously. M̃+(T,K, ck(E)) [resp.
M+(T,K)] will be endowed with the relative topology generated by the
topology considered on M̃+(T, ck(E)) [resp. M+(T )].

Let K0 ∈ ck(E) with 0 ∈ K0, and let µ ∈ M+(T,K). Denote by µ⊗K0

the set-valued measure defined by µ ⊗ K0(A) = µ(A)K0 for all A ∈ B.
Consider M+(T,K) [resp. M̃+(T,K, ck(E))] with the s-topology. By iden-
tifying M+(T,K) with the closed subspace {µ ⊗ K0; µ ∈ M+(T,K)} of
M̃+(T,K, ck(E)), the results of Topsøe ([12, Lemma 4, p. 208; Theorem 8,
p. 209; Corollary 3, p. 211]) may be regarded as particular cases of our
Theorems 2–4.

2. Preliminary results. Consider now the following axioms on G andK.
These are the same as those of Topsøe [12].

(I) K is closed under finite unions and countable intersections and
∅ ∈ K.

(II) G is closed under finite unions and finite intersections and ∅ ∈ G.
(III) K \G ∈ K for all K ∈ K and G ∈ G.
(IV) G separates the sets in K.
(V) K is semicompact.

Note that axioms (I) and (IV) imply that “G dominates K”: for every
K ∈ K there exists G ∈ G such that G ⊃ K. In the following, sets denoted
by the letters K, G, A are elements of K, G and B, respectively.

Lemma 1. Let T be an abstract set , and let G and K be sets of subsets
of T . Assume that axioms (I)–(IV) are satisfied , and consider a finite non-
negative K-inner regular measure µ defined on B. Then

µ(K) = inf{µ(G); G ⊇ K, G ∈ G} for all K ∈ K.

Proof. Let K ∈ K. We have µ(K) = µ(T ) − µ(T \ K) = µ(T ) −
sup{µ(K ′); K ′ ⊆ T \K, K ′ ∈ K}. For a given ε > 0 choose K ′ε such
that −µ(T \ K) ≥ −µ(K ′ε)− ε. Since G separates the sets in K we may
find a pair G,G′ of disjoint sets in G such that G ⊃ K and G′ ⊃ K ′ε. We
have µ(T ) ≥ µ(G ∪G′) = µ(G) + µ(G′). On the other hand, −µ(T \K) ≥
−µ(G′)− ε. Hence µ(K) = µ(T ) − µ(T \ K) ≥ µ(G)− ε. It follows that
µ(K) ≥ inf{µ(G); G ⊇ K, G ∈ G}. The converse inequality is obvious.
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Lemma 2. Let T be an abstract set , and let G and K be sets of subsets
of T . Assume that axioms (I)–(IV) are satisfied , and consider a positive
K-inner regular set-valued measure M defined on B. Then

M(K) =
⋂
{M(G); G ∈ G, G ⊇ K} for all K ∈ K.

Proof. Let y ∈ E′. By applying Lemma 1 to the measure δ∗(y|M(·))
we have δ∗(y|M(K)) = inf{δ∗(y|M(G)); G ∈ G, G ⊇ K} for all K ∈ K.
By [11, Lemmas 2–3], δ∗(y|M(K)) = δ∗(y|

⋂
G⊇K M(G)). Hence M(K) =⋂

{M(G); G ⊇ K, G ∈ G} ([11, Lemmas, 1–2]).

Lemma 3. Let µ ∈ M+(T,K) let (µi)i∈I be a net on M+(T,K), and let
(Gk)k∈N be a sequence of pairwise disjoint sets in G such that limi µi(Gk) =
µ(Gk) for every k and limi µi(

⋃
j Gj) = µ(

⋃
j Gj). Then

lim
i

∞∑
k=0

|µi(Gk)− µ(Gk)| = 0.

Proof. Fix ε > 0. Choose p ∈ N such that
∑

k≥p µ(Gk) < ε/3. Since
limi µi(Gk) = µ(Gk) for each k ∈ N and limi µi(

⋃
iGk) = µ(

⋃
k Gk) there is

i0 such that for all i ∈ I and i ≥ i0,
p∑

k=0

|µi(Gk)− µ(Gk)| ≤ ε/3 and
∣∣∣ ∞∑

k=0

(µi(Gk)− µ(Gk))
∣∣∣ ≤ ε/3.

Then∑
k≥p

µi(Gk) =
∞∑

k=0

[µi(Gk)− µ(Gk)]−
p−1∑
k=0

[µi(Gk)− µ(Gk)] +
∑
k≥p

µ(Gk)

≤
∣∣∣ ∞∑

k=0

[µi(Gk)− µ(Gk)]
∣∣∣+

p∑
k=0

|µi(Gk)− µ(Gk)|+
∑
k≥p

µ(Gk)

≤ ε/3 + ε/3 + ε/3 = ε.

Therefore
∞∑

k=0

|µi(Gk)− µ(Gk)| =
p∑

k=0

|µi(Gk)− µ(Gk)|+
∑

k≥p+1

|µi(Gk)− µ(Gk)|

≤
p∑

k=0

|µi(Gk)− µ(Gk)|+
∑

k≥p+1

µi(Gk) +
∑

k≥p+1

µ(Gk)

≤ ε/3 + ε+ ε/3 < 2ε.

Lemma 4. Consider on M̃+(T,K, ck(E)) the narrow topology. Let H
be a subset of M̃+(T,K, ck(E)) such that {M(G); M ∈ H} is relatively
compact in ck(E) for every G ∈ G. If H is net-compact , then so is δ(H) =
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{δ∗(y|M(·));M ∈ H, y ∈ E′, |y| ≤ 1} in the space M+(T,K) endowed with
the narrow topology.

Proof. Let (δ∗(yi|Mi(·)))i∈I be a net on δ(H). By assumption the net
(Mi) has a subnet which converges to M ∈ M̃+(T,K, ck(E)). The closed
unit ball B′(0, 1) is a compact subset of E′ endowed with the weak topology
σ(E′, E). Hence the net (yi) has a subnet which converges to y ∈ B′(0, 1). We
may assume that these subnets have the same indices. Assume for simplicity
that the nets (Mi) and (yi) converge to M and y respectively. Consider now a
universal subnet (Mik) of (Mi). We will prove that (δ∗(yik |Mik(·))) converges
narrowly to δ∗(y|M(·)). We have

|δ∗(yik |Mik(T ))− δ∗(y|M(T ))| ≤ sup
|y|≤1

(|δ∗(y|Mik(T ))− δ∗(y|M(T ))|)

+ |δ∗(yik |M(T ))− δ∗(y|M(T ))|.

Since (Mik) converges narrowly to M , the subnet (Mik(T )) converges to
M(T ) in ck(E). On the other hand, (δ∗(yik |M(T )) ) converges to δ∗(y|M(T ))
because the map δ∗(·|M(T )) : B′(0, 1)→ R is continuous for the restriction
of σ(E′, E) to B′(0, 1). Hence it follows from the previous inequality that
(δ∗(yik |Mik(T ))) converges to δ∗(y|M(T )). LetG ∈ G; since {M(G); M ∈H}
is relatively compact, the universal subnet (Mik(G)) converges to an ele-
ment C of ck(E). Using once again the previous arguments we infer that
(δ∗(yik |Mik(G))) converges to δ∗(y|C). Since (Mik) converges narrowly to
M and (Mik(G)) converges to C we then have lim infk δ

∗(y|Mik(G)) ≥
δ∗(y|M(G)) and limk δ

∗(yik |Mik(G)) = δ∗(y|C). Hence lim infk δ
∗(yik |Mik(G))

≥ δ∗(y|M(G)). This ends the proof.

Lemma 5. Let E be a Banach space, let T be an abstract set , and let G
and K be sets of subsets of T . Assume that G and K satisfy axioms (I)–(V).
Let H be a subset of M̃+(T,K, ck(E)) such that for any sequence (Gn)n≥1

of pairwise disjoint sets in G we have limn→∞M(Gn) = {0} uniformly with
respect to M ∈ H. Then

∀K ∈ K inf
G⊇K

sup{δ∗(y|M(G \K)); M ∈ H, y ∈ E′, |y| ≤ 1} = 0.

Proof. Assume that there exist K0 ∈ K and ε > 0 such that for every
G ∈ G with G ⊃ K0 we may find MG ∈ H and yG ∈ B′(0, 1) which
satisfy δ∗(yG|MG(G \K0)) > ε. We will construct by induction a decreasing
sequence (Gn), a sequence (G′n) of pairwise disjoint sets, a sequence (Mn) in
H, and a sequence (yn) in B′(0, 1) such that for all n ≥ 1 we have K0 ⊂ Gn,
G′n ⊂ Gn \Gn+1, δ

∗(yn|Mn(Gn \K0)) > ε and δ∗(yn|Mn(G′n)) > ε. This last
inequality contradicts the condition limn→∞M(G′n) = {0} uniformly with
respect to M ∈ H.
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Assume that the construction is made up to rank n. Choose Gn+1 ⊃
K0 (Gn+1 exists since G dominates K), Mn+1 ∈ H, and yn+1 ∈ B′(0, 1)
such that δ∗(yn+1|Mn+1(Gn+1 \ K0)) > ε. Since Mn+1 is K-inner regu-
lar, so is δ∗(yn+1|Mn+1(·)). Hence there exists Kn+1 ⊂ Gn+1 \ K0 with
δ∗(yn+1|Mn+1(Kn+1)) > ε. By axiom (IV) there exist Gn+2 and G′n+1

such that K0 ⊂ Gn+2, Kn+1 ⊂ G′n+1 and Gn+2 ∩ G′n+1 = ∅. Clearly
we may assume that Gn+2 ⊂ Gn+1 and G′n+1 ⊂ Gn+1 \Gn+2. We have
δ∗(yn+1|Mn+1(G′n+1)) > ε.

Proposition 1. Let T be an abstract set , and let K and G be sets of
subsets of T . Assume that axioms (I)–(V) hold , and consider the space
M+(T,K) with the s-topology. Let H be a subset of M+(T,K) such that
sup{m(T ); m ∈ H}<∞. Then the following four conditions are equivalent :

(1) H is relatively compact.
(2) (i) ∀K ∈ K infG⊇K supm∈H m(G \K) = 0,

(ii) ∀A ∈ B infK⊆A supm∈H m(A \K) = 0.

(3) (i) ∀K ∈ K infG⊇K supm∈H m(G \K) = 0,

(ii) infK∈K supm∈H m(T \K) = 0.

(4) (i) ∀K ∈ K infG⊇K supm∈H m(G \K) = 0,

(ii) H is net-compact in the narrow topology.

Proof. The proposition results from [12, Theorem 7, p. 207]. Indeed, we
consider the net on M+(T,K) defined by the identity map id : H → H
where the domain of id is given the “diffuse” ordering: m ≤ m′ for any pair
of measures in H. (It is the reasoning that is used in [12] for the proof of
Corollary 2, pp. 203–204.)

3. Main results

Theorem 1 ([9]). Let E be a Banach space, let T be an abstract set , and
let G and K be sets of subsets of T . Assume that axioms (I)–(V) hold. Con-
sider the space M̃+(T,K, ck(E)) of positive K-inner regular set-valued mea-
sures defined on B with the s-topology. Then a subset H ⊂ M̃+(T,K, ck(E))
is relatively compact if and only if the following conditions are satisfied.

(i) δ(H) = {δ∗(y|M(·)); M ∈ H, y ∈ E′, |y| ≤ 1} is relatively compact in
the space M+(T,K) endowed with the s-topology.

(ii) {M(T ); M ∈ H} and {M(G); M ∈ H} for any G ∈ G are relatively
compact in the space ck(E).

Proof. Assume that H is relatively compact. Since the maps M 7→
M(A), A ∈ B, are continuous on M̃+(T,K, ck(E)), (ii) is satisfied. Con-
sider the closed unit ball B′(0, 1) = {y; y ∈ E′, |y| ≤ 1} of the dual space



184 K. K. SIGGINI

E′ of E with the relative topology defined by the weak topology σ(E′, E)
of E′, and consider B′(0, 1) × M̃+(T,K, ck(E)) with its product topology.
For any K ∈ ck(E) the map δ∗(·|K) : B′(0, 1)→ R is continuous. For all
A ∈ B, M,M ′ ∈ M̃+(T,K, ck(E)) and y, y′ ∈ E′ we have

|δ∗(y|M(A))− δ∗(y′|M ′(A))| ≤ sup
|y|≤1
|δ∗(y|M(A))− δ∗(y|M ′(A))|

+ |δ∗(y|M ′(A))− δ∗(y′|M ′(A))|.

It follows that the map θ : B′(0, 1)× M̃+(T,K, ck(E))→M+(T,K), (y,M)
7→ θ(y,M) = δ∗(y|M(·)), is continuous. Denote by H the closure of H.
Then B′(0, 1) × H is a compact subset of the product space B′(0, 1) ×
M̃+(T,K, ck(E)). We have δ(H) ⊂ θ(B′(0, 1)×H), hence δ(H) is a rela-
tively compact subset of M+(T,K).

Let us now prove the sufficiency. Assume that (i) and (ii) hold. To show
that H is a relatively compact subset of M̃+(T,K, ck(E)) it suffices to prove
that every universal net on H is convergent. Let (Mi)i∈I be a universal
net on H. According to (ii) the universal nets (Mi(T )) and (Mi(G)) are
convergent in ck(E). Put N(G) = limiMi(G) for all G ∈ G, and M̃(A) =
co
⋃

K⊆A

⋂
G⊇K N(G) for all A ∈ B. It is clear that N(G) ⊆ limiMi(T ) for

all G ∈ G, and M̃(A) ∈ ck(E).
By [11, Theorem 2], the map M̃ : B → ck(E) is in M̃+(T,K, ck(E)). For

all y ∈ E′ we have

δ∗(y|M̃(A)) = sup
K⊆A

inf
G⊇K

δ∗(y|N(G))

([11, Lemma 1–3]) and δ∗(y|N(G)) = limi δ
∗(y|Mi(G)). By (i) the universal

net (δ∗(y|Mi(·)))i∈I on δ(H) is convergent in the space M+(T,K). Denote
by my its limit. For all A ∈ B, limi δ

∗(y|Mi(A)) = my(A), and for all K ∈ K,

δ∗(y|M̃(K)) = inf
G⊇K

lim
i
δ∗(y|Mi(G))

= inf
G⊇K
{lim

i
δ∗(y|Mi(K)) + lim

i
δ∗(y|Mi(G \K))}

= lim
i
δ∗(y|Mi(K)) (Prop. 1(2)(i)).

For any A ∈ B we have

δ∗(y|M̃(A)) = sup
K⊆A

δ∗(y|M̃(K)) = sup
K⊆A

lim
i
δ∗(y|Mi(K)) = sup

K⊆A
my(K)

= my(A) = lim
i
δ∗(y|Mi(A)).

We have just proved that limi δ
∗(y|Mi(A)) = δ∗(y|M̃(A)) for all A ∈ B

and y ∈ B′(0, 1). To finish the proof it suffices to show that for every
A ∈ B, (Mi(A)) is convergent in ck(E). Since ck(E) is a complete met-
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ric space it suffices to prove that (Mi(A)) is a Cauchy net. If this were
not so, there would exist B0 ∈ B and ε0 > 0 such that for every i ∈ I
we would be able to find ki, ji ∈ I with ki, ji ≥ i and yi ∈ B′(0, 1)
such that |δ∗(yi|Mki

(B0)) − δ∗(yi|Mji(B0))| > ε0. Consider now the nets
(δ∗(yi|Mki

(·))i∈I and (δ∗(yi|Mji(·))i∈I . According to (i) each of them admits
a convergent subnet. We may choose the subnets with the same indices. As-
sume for simplicity that the nets (δ∗(yi|Mki

(·))) and (δ∗(yi|Mji(·))) converge
to µ and µ′ respectively. Since for every G ∈ G the universal net (Mi(G)) is
convergent in ck(E), one has

lim
i

sup
|y|≤1
|δ∗(y|Mki

(G))− δ∗(y|Mji(G))| = 0.

On the other hand,

|δ∗(yi|Mki
(G))− δ∗(yi|Mji(G))| ≤ sup

|y|≤1
|δ∗(y|Mki

(G))− δ∗(y|Mji(G))|.

Then

µ(G) = lim
i
δ∗(yi|Mki

(G)) = lim
i
δ∗(yi|Mji(G)) = µ′(G) for all G ∈ G.

Hence µ(K) = µ′(K) for all K ∈ K (Lemma 1). Since µ and µ′ are K-inner
regular we conclude that µ = µ′ and that there exists i0 ∈ I such that
|δ∗(yi|Mki

(B0))− δ∗(yi|Mji(B0))| ≤ ε0/2 for all i ∈ I with i ≥ i0. That is a
contradiction.

Theorem 2 ([10]). Let E be a Banach space, let T be an abstract set ,
and let G and K be sets of subsets of T . Assume that G and K satisfy axioms
(I)–(V) and consider the space M̃+(T,K, ck(E)) with the s-topology. Then a
subset H of M̃+(T,K, ck(E)) is relatively compact if and only if the following
three conditions hold :

(i) H is net-compact in the narrow topology ,
(ii) {M(G); M ∈ H} for all G ∈ G and {M(T ); M ∈ H} are relatively

compact in ck(E).
(iii) For any sequence (Gn)n≥1 of pairwise disjoint sets in G we have

limn→∞M(Gn) = {0} uniformly with respect to M in H.

Proof. Assume that H is relatively compact. Then (i) is obvious. Since
for each A ∈ B the map M 7→ M(A) from M̃+(T,K, ck(E)) to ck(E) is
continuous, (ii) holds. If (iii) did not hold we would be able to find a sequence
(Gn)n≥1 of pairwise disjoint sets, an ε > 0, a sequence (Mn) of set-valued
measures in H, and a sequence (yn) in B′(0, 1) such that δ∗(yn|Mn(Gn)) ≥ ε
for all n ≥ 1. Put µn = δ∗(yn|Mn(·)) for all n ≥ 1. By Theorem 1, δ(H) =
{δ∗(y|M(·)); M ∈ H, y ∈ E′, |y| ≤ 1} is a relatively compact subset of
M+(T,K) in the s-topology. Then the sequence (µn) has a cluster point µ.
Hence there exists a subnet (µni) of (µn) which converges to µ. In particular,



186 K. K. SIGGINI

(µni(Gk)) converges to µ(Gk) for all k ≥ 1, and (µni(
⋃

j Gj)) converges
to µ(

⋃
j Gj). By Lemma 3,

∑∞
k=1 |µni(Gk) − µ(Gk)| → 0. Choose k0 such

that µ(Gk) < ε/2 for all k ≥ k0 and choose i such that ni ≥ k0 and∑∞
k=1 |µni(Gk)− µ(Gk)| < ε/2. We have

µni(Gni)≤|µni(Gni)−µ(Gni)|+µ(Gni)≤
∞∑

k=1

|µni(Gk)−µ(Gk)|+µ(Gni)<ε.

That is a contradiction.
Let us now prove that H is relatively compact if (i)–(iii) hold. Accord-

ing to Theorem 1 it suffices to prove that δ(H) = {δ∗(y|M(·)); M ∈ H,
y ∈ E′, |y| ≤ 1} is relatively compact in M+(T,K) endowed with the s-
topology. Since {M(T ); M ∈ H} is relatively compact,

⋃
{M(T ); M ∈ H}

is a bounded subset in E. Hence sup{δ∗(y|M(T )); M ∈ H, y ∈ E′, |y| ≤ 1}
<∞. By Proposition 1 and Lemmas 4–5, δ(H) is relatively compact.

This proof is an adaptation of that of Topsøe ([12, Lemma 4, pp. 208–
209]).

Theorem 3. Let E be a Banach space, let T be an abstract set , and
let G and K be sets of subsets of T . Assume that G and K satisfy axioms
(I)–(V) and the condition

(C) for all K ∈ K and G ∈ G,

K ⊆ G ⇒ ∃G′, G′′ such that K ⊆ G′ ⊆ T \G′′ ⊆ G.

Consider the space M̃+(T,K, ck(E)) with the s-topology. Then a subset H
of M̃+(T,K, ck(E)) is relatively compact if and only if the following two
conditions are satisfied :

(i) For all G ∈ G, {M(G); M ∈ H} is relatively compact in ck(E).
(ii) For any sequence (Gn)n≥1 of pairwise disjoint sets in G we have

limn→∞M(Gn) = {0} uniformly with respect to M in H.

Proof. Condition (C) implies that T ∈ G. We only have to prove that H
is net-compact in the narrow topology, i.e. every universal net (Mi)i∈I on H
converges narrowly in M̃+(T,K, ck(E)) if (i) and (ii) hold. Assume that (i)
and (ii) hold. Then for each G ∈ G the universal net (Mi(G)) converges in
ck(E). Consider the map N from G to ck(E) defined by N(G) = limiMi(G),
and the map M̃ : B → ck(E) defined by

M̃(A) = co
⋃

K⊆A

⋂
G⊇K

N(G), A ∈ B.

The map M̃ is an element of M̃+(T,K, ck(E)) ([11, Theorem 2]). Let us prove
that (Mi) converges narrowly to M̃ . It is obvious that lim infi δ

∗(y|Mi(G)) ≥
δ∗(y|M̃(G)) for all y ∈ E′ and all G ∈ G. To finish the proof we have to
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show that limiMi(T ) = M̃(T ). Since (Mi(T )) is convergent in ck(E) we
need only prove that limi δ

∗(y|Mi(T )) = δ∗(y|M̃(T )) for all y ∈ B′(0, 1), i.e.

∀y ∈ B′(0, 1) inf
K∈K

sup
G⊇K

lim
i
δ∗(y|Mi(T \G)) = 0

([11, Lemmas 1–3]). If this were not so, we would be able to find ε > 0 and
y ∈ B′(0, 1) such that for every K ∈ K there exist GK ∈ G with GK ⊇ K
and MK ∈ H such that δ∗(y|MK(T \ GK)) > ε. We can then construct
by induction a sequence (Kn)n≥0 of sets in K, two sequences (G′n)n≥1 and
(G′′n)n≥1 of sets in G, and a sequence (Mn)n≥1 of elements in H such that
the following conditions hold:

(a) The sets Kn are parwise disjoint.
(b) δ∗(y|Mn(Kn)) ≥ ε for all n ≥ 1.
(c) G′n ⊇ Kn for all n ≥ 1.
(d) G′′n ⊇

⋃n−1
i=0 Ki for all n ≥ 1.

(e) G′n ∩G′′n = ∅ for all n ≥ 1.
(f) supM∈H δ∗(y|M(T \ (G′′n ∪Kn)) ≤ ε/2n+1 for all n ≥ 1.

The construction is identical with that of Topsøe ([12, Theorem 8, p. 209]).
Lemma 4 in [12] should be replaced by our Lemma 5. Let (On) be the
sequence defined by O1 = G′1 and On = G′n∩

⋂n−1
i=1 G

′′
i for n≥2. Then On ∈ G

for all n and On ∩ Om = ∅ for n < m, because On ∩ Om ⊂ G′n ∩G′′n = ∅.
Put µn = δ∗(y|Mn(·)). For all n ≥ 1, we have

µn(On) = µn(G′n)− µn

(
G′n \

n−1⋂
i=1

G′′i

)
≥ µn(Kn)− µn

( n−1⋃
i=1

((T \G′′i ) ∩G′n)
)

≥ ε− µn

( n−1⋃
i=1

T \ (G′′i ∪Ki)
)
≥ ε−

∞∑
i=1

µn(T \ (G′′i ∪Ki))

≥ ε−
∞∑
i=1

ε/2i+1 = ε/2.

This contradicts condition (ii) of the theorem.
Note that if T is a normal space (resp. locally compact space), if G is

the family of all open subsets of T , and if K is the family of all closed
(resp. compact) subsets of T then axioms (I)–(V) and condition (C) are
simultaneously satisfied.

The following result is proved for real non-negative measures by Grothen-
dieck ([6, p. 150]), Dieudonné ([4, Proposition 8]), Topsøe ([12, Corollary 3])
and by Brooks for vector measures ([1]). The result of Topsøe generalizes
those of [6] and [4]. The following result is a generalization of that of Topsøe
to set-valued measures.
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Theorem 4. Let E be a separable Banach space, let T be an abstract
set , and let G and K be sets of subsets of T . Assume that axioms (I)–(V)
and condition (C) from Theorem 3 are satisfied , and that G is closed under
countable unions. Consider M̃+(T,K, ck(E)) with the s-topology. Then a
sequence (Mn) in M̃+(T,K, ck(E)) is convergent if and only if for every
G ∈ G the sequence (Mn(G)) is convergent.

Proof. Assume that (Mn(G)) is convergent for all G ∈ G. Put H =
{Mn; n ∈ N}. Let us prove that H is relatively compact in M̃+(T,K, ck(E)),
i.e. H satisfies conditions (i) and (ii) of Theorem 3. It is clear that (i) holds. If
(ii) failed we would be able to find an ε > 0, a sequence (Mi)i≥1 of set-valued
measures in H, a sequence (Gi)i≥1 of pairwise disjoint sets, and a sequence
(yi)i≥1 in B′(0, 1) such that δ∗(yi|Mi(Gi)) > ε for all i ≥ 1. The closed unit
ball B′(0, 1) of E′ is a metrizable compact subset of E′ in the weak topology
σ(E′, E) ([5, 4.2 and 5.1]). Hence the sequence (yi) admits a convergent sub-
sequence (yik). Put y = limk→∞ yik and N(G) = limk→∞Mik(G). We have
limk→∞ δ

∗(yik |Mik(G)) = δ∗(y|N(G)) for all G ∈ G. Put µk = δ∗(yik |Mik(·))
for k ∈ N. Let l1 be the Banach space of summable scalar sequences un-
der its natural norm. For all µ ∈ M+(T,K) let µ̃ be the element of l1

defined by µ̃(j) = µ(Gj). For all subsets I of N, limk→∞
∑

p∈I µ̃k(p) =
limk→∞ µk(

⋃
p∈I Gp) exists because G is closed under countable unions. We

deduce from this that the sequence (µ̃k)k≥1 is convergent in the weak topol-
ogy σ(l1, l∞). Hence the subset {µ̃k; k ≥ 1} is weakly relatively compact.
By [8, pp. 281–282],

lim
p→∞

sup
k∈N

µ̃k(p) = lim
p→∞

sup
k∈N

δ∗(yik |Mik(Gp)) = 0.

This contradicts the condition δ∗(yi|Mi(Gi)) ≥ ε for all i ≥ 1. Hence H
is relatively compact in the s-topology. Now let M and M ′ be two cluster
points of the sequence (Mn)n∈N. We have M(G) = M ′(G) for all G ∈ G.
By Lemma 2 we have M(K) = M ′(K) for all K ∈ K. Since M and M ′

are K-inner regular we conclude that M(A) = M ′(A) for all A ∈ B. The
sequence (Mn)n∈N has only one cluster point. Since H is relatively compact,
the sequence (Mn) is convergent.
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