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ASSOCIATED PRIMES AND PRIMAL DECOMPOSITION OF
MODULES OVER COMMUTATIVE RINGS

BY

AHMAD KHOJALI and REZA NAGHIPOUR (Tabriz)

Abstract. Let R be a commutative ring and let M be an R-module. The aim of
this paper is to establish an efficient decomposition of a proper submodule N of M as
an intersection of primal submodules. We prove the existence of a canonical primal de-
composition, N =

T
p N(p), where the intersection is taken over the isolated components

N(p) of N that are primal submodules having distinct and incomparable adjoint prime
ideals p. Using this decomposition, we prove that for p ∈ Supp(M/N), the submodule N
is an intersection of p-primal submodules if and only if the elements of R \ p are prime
to N . Also, it is shown that M is an arithmetical R-module if and only if every primal
submodule of M is irreducible. Finally, we determine conditions for the canonical primal
decomposition to be irredundant or residually maximal, and for the unique decomposition
of N as an irredundant intersection of isolated components.

1. Introduction. Throughout this paper, all rings considered will be
commutative and will have non-zero identity elements and all modules will
be unitary. Such a ring will be denoted by R, and the terminology is, in
general, the same as that in [1] and [6]. Associated primes and primary
decompositions are the most basic notions in the study of modules over
commutative Noetherian rings. However, for modules over non-Noetherian
rings the classical associated primes and primary decompositions are also
interesting (see [7] and [8]). Let M be an R-module and N a proper submod-
ule of M . In [13] (resp. [16]) Krull (resp. Noether) has introduced the most
useful concept of associated primes (resp. primary decomposition) of N .

A prime ideal p of R is said to be a Krull associated prime of the
submodule N if for every element x ∈ p, there exists m ∈ M such that
x ∈ N :R m ⊆ p. A prime ideal p of R is called a weakly (resp. Zariski–
Samuel) associated prime to N if there exists an element m ∈M such that
p is minimal over the annihilator N :R m (resp. p = Rad(N :R m)). We will
denote the set of Krull (resp. weakly) associated primes to N by AssRM/N
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(resp. Assf M/N). Many of the basic properties of these primes are found
in [1], [10], [12], [9], [15] and have led to some interesting results.

Let M be an R-module. Recall that a submodule N of M is said to be
decomposable if N is a finite intersection of primary submodules of M , and
M is said to be Laskerian if each proper submodule of M is decomposable.
We say that M is uniserial if the submodules of M are linearly ordered with
respect to inclusion. Finally, M is said to be an arithmetical module if Mm

is a uniserial Rm-module for all maximal ideals m of R.
The purpose of the present paper is to establish an efficient decomposi-

tion of a proper submodule N of M as an intersection of primal submodules.
We prove the existence of a canonical primal decomposition, N =

⋂
pN(p),

where the intersection is taken over the isolated components N(p) of N
that are primal submodules having distinct and incomparable adjoint prime
ideals p. (Recall that a submodule N of M is said to be primal if the set
of all zero-divisors of the factor module M/N is an ideal of R.) Using the
above canonical primal decomposition, we prove that for p ∈ Supp(M/N),
the submodule N is an intersection of p-primal submodules if and only if the
elements of R\p are prime to N . Also, it is shown that M is an arithmetical
R-module if and only if every primal submodule of M is irreducible.

Let p be a prime ideal of R. For a submodule N of M , we use N(p) to
denote the submodule

⋃
s∈R\p(N :M s) of M . For any ideal a of R, the

radical of a, denoted by Rad(a), is defined to be the set {x ∈ R : xn ∈ a for
some n ∈ N}. Finally, for any R-module L, the set of all zero-divisors of L
is denoted by ZR(L).

In the second section, we prove some basic results about primal submod-
ules. Among other things, we prove the following theorem:

Theorem 1.1. Let M be an R-module. Then the following conditions
are equivalent :

(i) M is an arithmetical module.
(ii) Every primal submodule of M is irreducible.
(iii) For each maximal ideal m of R and each finitely generated submodule

N of M with Nm 6= 0, the submodule mN(m) is irreducible.

This result of 1.1 is proved as Theorem 2.7. Let M be an R-module
and N a proper submodule of M . An intersection N =

⋂
i∈I Ni is said

to be residually maximal at Ni if replacing Ni by a residue Ni :M x that
properly contains Ni leads to a submodule larger than N . If the intersection
is residually maximal at each Ni then the intersection is said to be residually
maximal. Set

ΩN = {p : p is a maximal member of AssRM/N}.
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As the main result of Section 3, we characterize the primal decomposition
property of a proper submodule of a non-zero module M over a commutative
ring R. More precisely, we prove:

Theorem 1.2. Let M be an R-module and N a proper submodule of M .
Let p be a prime ideal of R. Then N(p) is a p-primal submodule of M if and
only if p is a Krull associated prime to N . Consequently , N =

⋂
p∈ΩN

N(p)

is a primal decomposition of N .
Moreover , if p ∈ ΩN is a Zariski–Samuel associated prime to N , then

the above primal decomposition of N is residually maximal at N(p), and so
if each p ∈ ΩN is a Zariski–Samuel associated prime to N , then this primal
decomposition of N is residually maximal.

This result is given in Theorems 3.3 and 3.9. Finally, we determine condi-
tions for the canonical primal decomposition to be irredundant or residually
maximal, and for the unique decomposition of N as an irredundant inter-
section of isolated components of N .

The results of this paper are generalizations of the corresponding results
of [4], where the focus was on ideals of the given ring R, rather than on
R-modules.

2. Some basic results on primal submodules. In this section we
prove some basic results about primal submodules and we characterize the
arithmetical modules over a commutative ring in terms of primal submod-
ules. The main result of this section is Theorem 2.7, which is a generalization
of [4, Theorem 1.8]. We begin with:

Remark 2.1. Let M be an R-module and N a proper submodule of M .
For any prime ideal p of R, denote by N(p) the submodule

⋃
s∈R\p(N :M s),

the isolated p-component of N in the sense of Krull [14]. It is easy to check
that m ∈ N(p) if and only if N :R m * p, and (N :R m)(p) = N(p) :R m for
each m ∈M .

The important notion of primal ideals in a commutative ring (with
identity) was introduced by L. Fuchs in [3] and developed further in [4]
and [5]. They have proved useful in many situations in commutative alge-
bra. J. Dauns [2] extended this concept to modules over an arbitrary ring.

An element x ∈ R is called non-prime to N if N ( N :M x, i.e., there
exists an element m ∈ M \ N such that xm ∈ N . Evidently, the set of all
non-prime elements to N corresponds to the set of zero-divisors of the factor
R-module M/N ; which is a union of prime ideals.

Recall that a proper submodule N of an R-module M is said to be pri-
mal if ZR(M/N), the set of zero-divisors of the R-module M/N , is an ideal
of R. Then the ideal ZR(M/N) is a prime ideal, called the adjoint prime
of N . In this case we say that N is a p-primal submodule of M .
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The following lemma was proved by Fuchs [3] when R = M . It is easy
to carry it over to modules, so we omit the proof.

Lemma 2.2. Let M be an R-module. Then:

(i) Every irreducible submodule of M is primal.
(ii) Every submodule of M is an intersection of primal submodules.

The following two lemmas will be needed in the proof of the main result
of this section.

Lemma 2.3. Let M be an R-module and p ∈ SpecR. Let N be a p-primal
submodule of M .

(i) If q is a prime ideal containing p, then N(q) = N .
(ii) If q is a prime ideal not containing p, then N(q) ) N .
(iii) If N(q) is q-primal submodule for some q ∈ Supp(M/N), then q ⊆ p.

Proof. (i) Let m ∈ N(q). Then there exists s ∈ R \ q such that sm ∈ N .
Since N is p-primal it follows that m ∈ N , as required.

(ii) Let q be a prime ideal not containing p. Hence there exists c ∈ p \ q.
Then cm ∈ N for some m ∈M \N , and so m ∈ N(q) \N .

(iii) Let x ∈ q. By our assumption q =
⋃
m∈M\N(q)

(N(q) :R m). Then
there exists m ∈M \N(q) such that xm ∈ N(q). Hence there exists y ∈ R \ q
such that yxm ∈ N . Therefore it is enough to show that N :R ym ⊆ p.
Suppose the contrary and that ysm ∈ N for some s ∈ R\p. Then in view of
part (i) we have ym ∈ N , which implies that y ∈ q. This is a contradiction.

Remark 2.4. Although, by Lemma 2.3, primal submodules behave like
primary submodules, there are notable differences. For example, the inter-
section of two primal submodules with the same adjoint prime need not be
primal. As an example consider the polynomial ring R = k[x, y, z], where
x, y and z are indeterminates over a field k. Then the ideal (xy, z) is not
primal, but

(xy, z) = (x2, xy, z) ∩ (y2, xy, z),

and (x2, xy, z) and (y2, xy, z) are (x, y, z)-primal. Dauns [2] proved that a
reduced intersection N =

⋂n
i=1Ni of pi-primal submodules of an R-module

M is primal if and only if there exists a unique maximal member in the set
{p1, . . . , pn}. This maximal element is then the adjoint prime of N .

Definition 2.5 (see [11]). Let M be an R-module. We say that M is
an arithmetical module if Mm is a uniserial Rm-module for each maximal
ideal m of R, i.e., the submodules of Mm are linearly ordered with respect
to inclusion.
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It is easy to see that an R-module M is arithmetical if and only if for
each proper submodule N of M , Nm is an irreducible submodule of Mm for
every maximal ideal m of R.

Lemma 2.6. Let N be a finitely generated submodule of an R-module M
and let p ∈ SuppN . Then (pN)(p) is a p-primal submodule of M .

Proof. Obviously those elements of R that are non-prime to (pN)(p) are
in p. Now since Np 6= 0 by Nakayama’s lemma we have (pN)(p) ( N(p) ⊆
(pN)(p) :M p. Hence there exists y ∈ ((pN)(p) :M p)\ (pN)(p). It follows that
the elements of p are not prime to (pN)(p), and this completes the proof of
the lemma.

We are now ready to state and prove the main theorem of this section,
generalizing [4, Theorem 1.8] which concerned the case M = R.

Theorem 2.7. Let M be an R-module. Then the following conditions
are equivalent :

(i) M is an arithmetical module.
(ii) Every primal submodule of M is irreducible.

(iii) For each maximal ideal m of R and each finitely generated submodule
N of M with Nm 6= 0, the submodule mN(m) is irreducible.

Proof. (i)⇒(ii). Let N be a primal submodule of M . Then by Lem-
ma 2.3, N = N(p) for some prime ideal p. Since M is an arithmetical module,
Np and hence N are irreducible, and this proves (ii).

(ii)⇒(iii). Let N be a finitely generated submodule of M and let m
be a maximal ideal in SuppN . First we show that mN(m) = (mN)(m). To
this end, let n be an arbitrary maximal ideal of R such that n 6= m. Since
mN(m) ⊆ (mN)(m) it follows that

(N(m))n = (mN(m))n ⊆ ((mN)(m))n ⊆ (N(m))n.

Therefore
(mN(m))n = ((mN)(m))n,

and this implies the desired equality.
Now, by Lemma 2.6, (mN)(m) is primal, and so irreducible by hypothesis.
(iii)⇒(i). Let x, y ∈ M , and let m be a maximal ideal of R. Let N =

xR + yR. By assumption mN(m), and so mNm, is irreducible. Therefore,
as Nm/mNm is a finite-dimensional vector space over R/m, it follows that
Nm = (Rx)m + mNm or Nm = (Ry)m + mNm. Hence by Nakayama’s lemma
Nm = (Rx)m or Nm = (Ry)m. Consequently,

(Rx)m ⊆ (Ry)m or (Ry)m ⊆ (Rx)m.
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3. Associated primes and primal decomposition. In this section
we characterize the primal decomposition property of a proper submodule N
of a non-zero module M over a commutative ring R. The main results of
this section are Theorems 3.3 and 3.9. Recall that saying that (R,m) is a
quasilocal ring means that R is a commutative ring with unique maximal
ideal m.

Lemma 3.1. Let M be an R-module and N a proper submodule of M .
A prime ideal q is a Krull associated prime ideal of N if and only if q is a
union of weakly associated prime ideals of N .

Proof. Let p be a weakly associated prime to N . Then there exists m ∈
M \N such that p is a minimal prime ideal of (N :R m). Since

N(p) :R m = (N :R m)(p)
is a p-primary ideal of R, for every u ∈ p there exists a smallest integer
k ≥ 1 such that uksm ∈ N for some s ∈ R \ p. Now u ∈ N :R uk−1sm, and
the minimality of k shows that N :R uk−1sm ⊆ p. This means that every
weakly associated prime ideal of N is a Krull associated prime ideal of N .
Therefore if the prime ideal q is a union of weakly associated primes of N ,
then for every u ∈ q there exists a weakly associated prime ideal p of N such
that u ∈ p. This implies that x ∈ N :R m ⊆ q for some m ∈M \N . So q is
a Krull associated prime ideal of N . The converse is obvious.

The next result provides a slight generalization of [4, Theorems 3.4 and
3.5].

Theorem 3.2. Let M be an R-module, N a proper submodule of M ,
and p a prime ideal of R. Then N(p) is a p-primal submodule of M if and
only if p is a Krull associated prime to N . Consequently , N =

⋂
p∈ΩN

N(p),
which we call the canonical primal decomposition of N , is a decomposition
of N into primal submodules, where the isolated components N(p) are primal
submodules with distinct adjoint primes.

Proof. If N(p) is a p-primal submodule of M then it is easy to see that

p =
⋃

q∈Assf M/N(p)

q.

Now Lemma 3.1 implies that p is a Krull associated prime ideal of N(p).
Conversely, let p be a Krull associated prime of N(p). We have to show that
the elements of p are non-prime to N(p). Let x ∈ p. Then there exists y ∈
M \N(p) such that x ∈ N(p) :R y ⊆ p. This yields p =

⋃
y∈M\N(p)

(N(p) :R y).
Therefore N(p) is a p-primal submodule of M . This proves the first assertion.
Now, let m ∈

⋂
p∈ΩN

N(p). Then for all p ∈ ΩN there exists an element
sp ∈ R \ p such that sp ∈ N :R m. Therefore N :R m contains no minimal
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prime ideal, which implies that m ∈ N . The final assertion is obvious by
Lemma 3.1.

Now we are prepared to prove the first main theorem of this section,
which is an extension of [4, Proposition 3.7].

Theorem 3.3. Let M be an R-module, N a proper submodule of M ,
and p a prime ideal in Supp(M/N). Then N is an intersection of p-primal
submodules if and only if all the elements of R \ p are prime to N . In
particular , N(p) is an intersection of p-primal submodules.

Proof. Suppose that N =
⋂
Ni is an intersection of p-primal submod-

ules Ni. Then by Lemma 2.3, (Ni)(p) = Ni. Hence N (p) = N , and so the
elements of R \ p are prime to N . Conversely, suppose that the elements
of R \ p are prime to N . We may assume that (R, p) is a quasilocal ring.
Let m ∈ M \ N . Then the ideal N :R m is contained in p, and so m /∈
N + pm. Enlarge N + pm to a submodule, say N(m), which is maximal not
containing m. Obviously N(m) is a p-primal submodule of M and we have
N =

⋂
m/∈N N(m).

Lemma 3.4. Let M be an R-module and N a proper submodule of M .
Suppose that p ∈ ΩN satisfies one of the following conditions:

(i) p *
⋃

q∈ΩN\{p} q.

(ii) p is a Zariski–Samuel associated prime of N .

Then in the canonical primal decomposition of N (see Theorem 3.2), the
isolated p-component N(p) is relevant.

Proof. First let p *
⋃

q∈ΩN\{p} q. Then there exists x ∈ p such that
x 6∈

⋃
q∈ΩN\{p} q. Since N ( N :M x and N(q) :M x = N(q) for all q ∈

ΩN \ {p}, it follows that

N ( N :M x = (N :M x) ∩
⋂

q∈ΩN\{p}

N(q) ⊆
⋂

q∈ΩN , q6=p

N(q).

Therefore N(p) is relevant.
Now suppose that p is a Zariski–Samuel associated prime of N . Then

p = Rad(N :R m) for some m ∈ M \ N . Let q ∈ ΩN \ {p}. Maximality
of p in ΩN implies that m ∈ N(q) for all q ∈ ΩN \ {p}. Consequently,
m ∈

⋂
q∈ΩN , q6=pNq, which implies the relevance of N(p).

Corollary 3.5. Let M be an R-module and N a proper submodule
of M . Suppose that each p ∈ ΩN satisfies one of the following conditions:

(i) p *
⋃

q∈ΩN\{p} q.

(ii) p is a Zariski–Samuel associated prime of N .

Then the canonical primal decomposition of N is irredundant.
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Proposition 3.6. Let R be a ring such that every radical ideal a of R
has a minimal prime divisor p such that p/a is the radical of a finitely gen-
erated ideal in the quotient ring R/a. Let M be an R-module and let N be
a proper submodule of M . Then N =

⋂
p∈Z(N)N(p), where Z(N) denotes

the set of Zariski–Samuel associated primes of N . Furthermore, if R satis-
fies the ascending chain condition on prime ideals and Z∗(N) denotes the
maximal elements of Z(N), then N =

⋂
p∈Z∗(N)N(p), and this intersection

is irredundant.

Proof. First of all we have to show that Z(N) 6= ∅. Letm ∈M\N and set
a = Rad (N :R m). Our hypothesis yields the existence of a finitely generated
ideal c and a minimal prime divisor p of a such that p = Rad(a + c). Since
p = a(p) it follows that c ⊆ a(p). As c is finitely generated there exist n ∈ N
and y ∈ R \ p such that cn ⊆ N :R ym. Therefore

cn +N :R m ⊆ N :R ym ⊆ p.

Hence Rad(N :R ym) = p, and so Z(N) 6= ∅. It is easy to see that this
implies N =

⋂
p∈Z(N)N(p).

Now suppose that R satisfies the ascending chain condition on prime
ideals. Then for each p ∈ Z(N) there exists q ∈ Z∗(N) such that p ⊆ q.
This implies that N =

⋂
p∈Z∗(N)N(p). To prove that this intersection is

irredundant, let p ∈ Z∗(N). Then p = Rad(N :R m) for some m ∈ M \N .
Hence N :R m * q for all q ∈ Z∗(N) and so m ∈

⋂
q∈Z∗(N), q6=pN(q) \N(p),

as required.

Definition 3.7. Let M be an R-module and N a proper submodule
of M . An intersection N =

⋂
i∈I Ni is said to be residually maximal at Ni if

replacing Ni by a residue Ni :M x, x ∈ R, that properly contains Ni leads
to a submodule larger than N . If the intersection is residually maximal at
each Ni then the intersection is said to be residually maximal.

Proposition 3.8. Let M be an R-module and N a proper submodule
of M . If p ∈ ΩN is a Zariski–Samuel associated prime of N then the canon-
ical primal decomposition of N (see Theorem 3.2) is residually maximal
at N(p). Consequently if each p ∈ ΩN is a Zariski–Samuel associated prime
to N , then the canonical primal decomposition of N is residually maximal.

Proof. Suppose that N(p) can be replaced by N(p) :M x for some x ∈ R.
We have to show that N(p) = N(p) :M x. By hypothesis, p = Rad(N :R m)
for some m ∈ M . Then m ∈

⋂
p∈ΩN , q6=pN(q). Since N :R m is a p-primary

ideal of R and

N :R m = N(p) :R m = (N(p) :M x) :R m = (N(p) :R m) :R x = (N :R m) :R x,

it follows that x /∈ p. As N(p) is primal, we have N(p) :M x = N(p).
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By a primal isolated component of a submodule N we mean a primal
submodule B such that B = N(q) for some prime ideal q. If p is the ad-
joint prime of N(q) then necessarily p ⊆ q, which yields N(q) ⊆ N(p). Since
(N(q))(p) = N(q) and N ⊆ N(q), it follows that N(q) = N(p). This shows
that if B is a primal isolated component of N then B = N(p) for some
p ∈ AssRM/N .

We are now ready to state and prove the second main theorem of this
section, which is a generalization of [4, Theorem 4.6].

Theorem 3.9. Let M be an R-module and N a proper submodule of M .
For a prime ideal p ∈ ΩN , the following conditions are equivalent :

(i) p is a Zariski–Samuel associated prime ideal to N .
(ii) The isolated component N(p) must appear in every representation of

N as an intersection of primal isolated components.

Proof. The implication (i)⇒(ii) is proved in Lemma 3.4.
(ii)⇒(i). Let m ∈

⋂
q∈AssR M/N, q6=pN(q) \ N(p). Then, as m 6∈ N , it is

easy to see that N :R m ⊆ p, and if p′ is a minimal prime ideal of N :R m
such that p′ 6= p, then p′ ∈ AssRM/N , and so m ∈ N(p′). Hence there exists
s ∈ R \ p′ such that s ∈ N :R m, which is a contradiction. Therefore p is the
unique minimal prime ideal of N :R m. Hence p = Rad(N :R m), and so p
is a Zariski–Samuel associated prime to N .

Corollary 3.10. Let M be an R-module and N a proper submodule
of M . Then the following statements are equivalent :

(i) ΩN ⊆ C for each C ⊆ AssRM/N with N =
⋂

p∈C N(p).
(ii) Each p ∈ ΩN is a Zariski–Samuel associated prime to N .

In particular , if each p ∈ ΩN is a Zariski–Samuel associated prime to N ,
then the canonical primal decomposition of N is irredundant.

Proof. (i)⇒(ii). By Theorem 3.2, we have N =
⋂

p∈ΩN
N(p) and N(p) is

p-primal. Now the result follows easily from Proposition 3.6.
(ii)⇒(i). Suppose N =

⋂
p∈C N(p) for some C ⊆ ΩN . By Proposition 3.6

for each p ∈ ΩN there exists q ∈ ΩN such that N(p) = N(q). But p and q

belong to AssRM/N . Consequently, N(p) is p-primal and N(q) is q-primal.
Therefore q = p and so ΩN ⊆ C.

The following theorem extends the main result of [4, Theorem 5.1].

Theorem 3.11. Let M be an R-module and N a proper submodule of M .
Let C be a collection of prime ideals of R such that N =

⋂
p∈C N(p) is an

irredundant intersection of irreducible isolated components of N . Then this
intersection is residually maximal and is the unique irredundant decomposi-
tion of N into irreducible isolated components of N .
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Proof. Let q be the adjoint prime of N(p). Without loss of generality we
may assume that q = p, and therefore C ⊆ AssRM/N . Now suppose that
for some p ∈ C there exists x ∈ R such that

N = (N(p) :M x) ∩
⋂
{N(q) : q ∈ C, q 6= p}.

Since N(p) is irreducible, it follows that N(p) = N(p) :M x, and so the rep-
resentation is residually maximal. It only remains to show that it is unique
among irredundant intersections of irreducible isolated components of N . To
do this, suppose that C′ = {qi}i∈I ⊆ AssRM/N is such that N =

⋂
i∈I N(qi)

is also an irredundant intersection of irreducible components Bi = N(qi) of
N with adjoint primes qi. It is enough to show that for each i′ ∈ I, there
exists pi′ such that pi′ ⊆ qi. Fix j ∈ I, and define Cj =

⋂
i 6=j Bi. Since N(p)

is irreducible and for each p ∈ C, we have

N(p) = (Bj)(p) ∩ (Cj)(p),

it follows that N(p) = (Bj)(p) or N(p) = (Cj)(p). As the decomposition N =⋂
i∈I Bi is irredundant, it follows that N(p) = (Bj)(p) and so (Bj)(p) is

p-primal. As Bj is qj-primal, we find that p ⊆ qj . By symmetry, qj ⊆ pj
for some pj ∈ C, and so N(pj) ⊆ N(qj) ⊆ N(p). Again by irredundancy,
N(pj) = N(qj) = N(p), and so pj = qj = p. Therefore

{N(p) : p ∈ C} = {N(q) : i ∈ I}.

Remark 3.12. Let M be an R-module and N a proper submodule
of M . Assume that C ⊆ AssRM/N contains at least two elements. If
N =

⋂
p∈C N(p) and if the intersection is irredundant, then C consists of

incomparable primes. Also, for each p ∈ C there exists q ∈ ΩN such that
p ⊆ q, and so N(q) ⊆ N(p). Thus if C′ = C \ {p} and B =

⋂
p′∈C′ , then N(q)

is relevant in the intersection N = N(q) ∩B. Note that

N ⊆ N(q) ∩B ⊆ N(p) ∩B =
⋂

p ∈C
N(p) = N.

Since N(p) is p-primal and N(q) is q-primal, we have N(p) = N(q) if and only
if p = q. If N(q) is irreducible, from N = N(p) ∩B we obtain

N(q) = (N(p))(q) ∩B(q) = N(p) ∩B(q),

and this yields N(q) = N(p). Thus q = p. Therefore if N(q) is irreducible for
each q ∈ ΩN , then C ⊆ ΩN .

Corollary 3.13. Let M be an R-module and N a proper submodule
of M . Suppose that C ⊆ AssRM/N . Let N(q) be irreducible for each q ∈ ΩN
and let N =

⋂
q∈ΩN

N(q) be an irredundant intersection. Then C ⊆ ΩN and
N =

⋂
q∈ΩN

N(q) is the unique decomposition of N into an intersection of
irreducible isolated components.
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Remark 3.14. Let M be an arithmetical R-module and N a proper
submodule of M . Suppose N =

⋂
i∈I Ni. If for each i ∈ I,Ni is a primal

submodule of M that is relevant to this decomposition, then Ni = (Ni)(pi)

for some prime ideal pi. Let i ∈ I, and suppose Ni is relevant to the given
decomposition. Since N(pi) is irreducible, it follows that Ni = N(pi).

We close this section with a characterization of arithmetical modules in
terms of irredundant irreducible decompositions, which is an extension of
Fuchs–Heinzer–Olberding’s result in [4].

Theorem 3.15 (cf. [4, Theorem 5.8]). Let M be an R-module and N a
proper submodule of M . The following statements are equivalent.

(i) M is an arithmetical R-module.
(ii) For each proper submodule N of M , N =

⋂
p∈ΩN

N(p) is an inter-
section of irreducible submodules.

(iii) Each proper submodule N can be represented as an intersection of
irreducible isolated components.

Proof. By Theorems 2.7 and 3.2 the implications (i)⇒(ii) and (ii)⇒(iii)
are obvious. To show (iii)⇒(i), in view of Theorem 2.7, we establish that, for
each maximal ideal m of R and each finitely generated submodule N of M
with Nm 6= 0, the submodule mN(m) is irreducible. To do this, by hypothesis
there exists a collection C of prime ideals of R such that

mN =
⋂
p∈C

(mN)(p),

and each (mN)(p) is irreducible. Now, if m 6∈ C, then (mN)(p) = N(p) for all
p ∈ C. Hence

N ⊆
⋂
p∈C

N(p) = mN.

As N is a finitely generated submodule, Nakayama’s lemma yields Nm = 0,
which is a contradiction. Therefore m ∈ C and (mN)(m) is an irreducible
submodule of M . Since mN(m) = (mN)(m), by the proof of Theorem 2.7
((ii)⇒(iii)), the result follows.
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