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ASSOCIATED PRIMES AND PRIMAL DECOMPOSITION OF
MODULES OVER COMMUTATIVE RINGS

BY

AHMAD KHOJALI and REZA NAGHIPOUR (Tabriz)

Abstract. Let R be a commutative ring and let M be an R-module. The aim of
this paper is to establish an efficient decomposition of a proper submodule N of M as
an intersection of primal submodules. We prove the existence of a canonical primal de-
composition, N = ﬂp N(p), where the intersection is taken over the isolated components
Ny of N that are primal submodules having distinct and incomparable adjoint prime
ideals p. Using this decomposition, we prove that for p € Supp(M/N), the submodule N
is an intersection of p-primal submodules if and only if the elements of R\ p are prime
to N. Also, it is shown that M is an arithmetical R-module if and only if every primal
submodule of M is irreducible. Finally, we determine conditions for the canonical primal
decomposition to be irredundant or residually maximal, and for the unique decomposition
of N as an irredundant intersection of isolated components.

1. Introduction. Throughout this paper, all rings considered will be
commutative and will have non-zero identity elements and all modules will
be unitary. Such a ring will be denoted by R, and the terminology is, in
general, the same as that in [1] and [6]. Associated primes and primary
decompositions are the most basic notions in the study of modules over
commutative Noetherian rings. However, for modules over non-Noetherian
rings the classical associated primes and primary decompositions are also
interesting (see [7] and [8]). Let M be an R-module and N a proper submod-
ule of M. In [13] (resp. [16]) Krull (resp. Noether) has introduced the most
useful concept of associated primes (resp. primary decomposition) of N.

A prime ideal p of R is said to be a Krull associated prime of the
submodule N if for every element x € p, there exists m € M such that
x € N :gm C p. A prime ideal p of R is called a weakly (resp. Zariski—
Samuel) associated prime to N if there exists an element m € M such that
p is minimal over the annihilator N :g m (resp. p = Rad(N :g m)). We will
denote the set of Krull (resp. weakly) associated primes to N by Assp M /N
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(resp. Assy M/N). Many of the basic properties of these primes are found
in [1], [10], [12], [9], [15] and have led to some interesting results.

Let M be an R-module. Recall that a submodule N of M is said to be
decomposable if N is a finite intersection of primary submodules of M, and
M is said to be Laskerian if each proper submodule of M is decomposable.
We say that M is uniserial if the submodules of M are linearly ordered with
respect to inclusion. Finally, M is said to be an arithmetical module if My,
is a uniserial Ry-module for all maximal ideals m of R.

The purpose of the present paper is to establish an efficient decomposi-
tion of a proper submodule N of M as an intersection of primal submodules.
We prove the existence of a canonical primal decomposition, N = ﬂp Ny
where the intersection is taken over the isolated components N, of N
that are primal submodules having distinct and incomparable adjoint prime
ideals p. (Recall that a submodule N of M is said to be primal if the set
of all zero-divisors of the factor module M /N is an ideal of R.) Using the
above canonical primal decomposition, we prove that for p € Supp(M/N),
the submodule N is an intersection of p-primal submodules if and only if the
elements of R\ p are prime to N. Also, it is shown that M is an arithmetical
R-module if and only if every primal submodule of M is irreducible.

Let p be a prime ideal of R. For a submodule N of M, we use Ny to
denote the submodule (J;ep\ (N :ar s) of M. For any ideal a of R, the
radical of a, denoted by Rad(a), is defined to be the set {x € R : 2™ € a for
some n € N}. Finally, for any R-module L, the set of all zero-divisors of L
is denoted by Zr(L).

In the second section, we prove some basic results about primal submod-
ules. Among other things, we prove the following theorem:

THEOREM 1.1. Let M be an R-module. Then the following conditions
are equivalent:

(i) M is an arithmetical module.
(ii) Every primal submodule of M is irreducible.
(iii) For each mazximal ideal m of R and each finitely generated submodule

N of M with Ny # 0, the submodule mNy is irreducible.

This result of 1.1 is proved as Theorem 2.7. Let M be an R-module
and N a proper submodule of M. An intersection N = [;c; N; is said
to be residually maximal at N; if replacing N; by a residue N; :p; x that
properly contains IV; leads to a submodule larger than N. If the intersection
is residually maximal at each INV; then the intersection is said to be residually
mazimal. Set

2y = {p : p is a maximal member of Assp M/N}.
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As the main result of Section 3, we characterize the primal decomposition
property of a proper submodule of a non-zero module M over a commutative
ring R. More precisely, we prove:

THEOREM 1.2. Let M be an R-module and N a proper submodule of M.
Let p be a prime ideal of R. Then Ny is a p-primal submodule of M if and
only if p is a Krull associated prime to N. Consequently, N = ﬂPGQN N
1s a primal decomposition of N.

Moreover, if p € 2y is a Zariski-Samuel associated prime to N, then
the above primal decomposition of N is residually mazimal at N(y), and so
if each p € 2N is a Zariski-Samuel associated prime to N, then this primal
decomposition of N is residually mazimal.

This result is given in Theorems 3.3 and 3.9. Finally, we determine condi-
tions for the canonical primal decomposition to be irredundant or residually
maximal, and for the unique decomposition of N as an irredundant inter-
section of isolated components of N.

The results of this paper are generalizations of the corresponding results
of [4], where the focus was on ideals of the given ring R, rather than on
R-modules.

2. Some basic results on primal submodules. In this section we
prove some basic results about primal submodules and we characterize the
arithmetical modules over a commutative ring in terms of primal submod-
ules. The main result of this section is Theorem 2.7, which is a generalization
of [4, Theorem 1.8]. We begin with:

REMARK 2.1. Let M be an R-module and N a proper submodule of M.
For any prime ideal p of R, denote by N, the submodule UseR\p(N M S),
the isolated p-component of N in the sense of Krull [14]. It is easy to check
that m € Ny if and only if N :g m € p, and (N :g m)() = Ny :r m for
each m € M.

The important notion of primal ideals in a commutative ring (with
identity) was introduced by L. Fuchs in [3] and developed further in [4]
and [5]. They have proved useful in many situations in commutative alge-
bra. J. Dauns [2] extended this concept to modules over an arbitrary ring.

An element x € R is called non-prime to N if N C N s x, i.e., there
exists an element m € M \ N such that xm € N. Evidently, the set of all
non-prime elements to IV corresponds to the set of zero-divisors of the factor
R-module M/N; which is a union of prime ideals.

Recall that a proper submodule N of an R-module M is said to be pri-
mal if Zr(M/N), the set of zero-divisors of the R-module M /N, is an ideal
of R. Then the ideal Zr(M/N) is a prime ideal, called the adjoint prime
of N. In this case we say that N is a p-primal submodule of M.
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The following lemma was proved by Fuchs [3] when R = M. It is easy
to carry it over to modules, so we omit the proof.

LEMMA 2.2. Let M be an R-module. Then:

(i) Every irreducible submodule of M is primal.
(ii) Every submodule of M is an intersection of primal submodules.

The following two lemmas will be needed in the proof of the main result
of this section.

LEMMA 2.3. Let M be an R-module and p € Spec R. Let N be a p-primal
submodule of M.

(i) If q is a prime ideal containing p, then Nig = N.
(ii) If q is a prime ideal not containing p, then Ng 2 N.
(iii) If N(q) is q-primal submodule for some q € Supp(M/N), then q C p.

Proof. (i) Let m € N(q). Then there exists s € R\ q such that sm € N.
Since N is p-primal it follows that m € N, as required.

(ii) Let q be a prime ideal not containing p. Hence there exists ¢ € p \ q.
Then em € N for some m € M \ N, and so m € Neg) \ N.

(iii) Let = € q. By our assumption q = UmEM\N(q)(N(CI) :g m). Then
there exists m € M \ N(g) such that xm € N(,). Hence there exists y € R\ q
such that yxm € N. Therefore it is enough to show that N :p ym C p.
Suppose the contrary and that ysm € N for some s € R\ p. Then in view of
part (i) we have ym € N, which implies that y € q. This is a contradiction. =

REMARK 2.4. Although, by Lemma 2.3, primal submodules behave like
primary submodules, there are notable differences. For example, the inter-
section of two primal submodules with the same adjoint prime need not be
primal. As an example consider the polynomial ring R = k[x,y, z|, where
x,y and z are indeterminates over a field k. Then the ideal (zy, z) is not
primal, but

(zy, 2) = (2%, 2y, 2) N (4%, 2y, 2),
and (22, ry, z) and (y?, 2y, 2) are (x,y, z)-primal. Dauns [2] proved that a
reduced intersection N = [\, N; of p;-primal submodules of an R-module

M is primal if and only if there exists a unique maximal member in the set
{p1,...,pn}. This maximal element is then the adjoint prime of N.

DEFINITION 2.5 (see [11]). Let M be an R-module. We say that M is
an arithmetical module if My, is a uniserial Ry-module for each maximal
ideal m of R, i.e., the submodules of M, are linearly ordered with respect
to inclusion.
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It is easy to see that an R-module M is arithmetical if and only if for
each proper submodule N of M, Ny, is an irreducible submodule of My, for
every maximal ideal m of R.

LEMMA 2.6. Let N be a finitely generated submodule of an R-module M
and let p € Supp N. Then (pN)(py is a p-primal submodule of M.

Proof. Obviously those elements of R that are non-prime to (pN), are
in p. Now since NV, # 0 by Nakayama’s lemma we have (pN),) & Ny C
(PN)(p) :m p. Hence there exists y € ((pN)(p) 1 P) \ (PN)(p)- It follows that
the elements of p are not prime to (pIN)(p), and this completes the proof of
the lemma. u

We are now ready to state and prove the main theorem of this section,
generalizing [4, Theorem 1.8] which concerned the case M = R.

THEOREM 2.7. Let M be an R-module. Then the following conditions
are equivalent:

(i) M is an arithmetical module.
(ii) Ewvery primal submodule of M is irreducible.
(iii) For each mazximal ideal m of R and each finitely generated submodule
N of M with Ny # 0, the submodule mN  is irreducible.

Proof. (i)=-(ii). Let N be a primal submodule of M. Then by Lem-
ma 2.3, N = N, for some prime ideal p. Since M is an arithmetical module,
Ny and hence N are irreducible, and this proves (ii).

(ii)=-(iii). Let N be a finitely generated submodule of M and let m
be a maximal ideal in Supp N. First we show that mN(yy = (mN)qy). To
this end, let n be an arbitrary maximal ideal of R such that n # m. Since
mN(m) - (mN)(m) it follows that

(Nm))n = (MN(m))n S (MN)(m))n € (Nm))n-
Therefore
(MN(m))n = (MN) (m) ),

and this implies the desired equality.
Now, by Lemma 2.6, (mN )(m) is primal, and so irreducible by hypothesis.
(iii)=(i). Let z,y € M, and let m be a maximal ideal of R. Let N =
xR + yR. By assumption mN(y,), and so mNy, is irreducible. Therefore,
as Npm/mNy, is a finite-dimensional vector space over R/m, it follows that
Nu = (RZ)m + MmNy or Ny = (RY)m + mNp. Hence by Nakayama’s lemma
N = (RZ)m or Ny = (Ry)m. Consequently,

(Rx)m C (RYy)m or (RY)m C (RT)m. =
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3. Associated primes and primal decomposition. In this section
we characterize the primal decomposition property of a proper submodule N
of a non-zero module M over a commutative ring R. The main results of
this section are Theorems 3.3 and 3.9. Recall that saying that (R, m) is a
quasilocal ring means that R is a commutative ring with unique maximal
ideal m.

LEMMA 3.1. Let M be an R-module and N a proper submodule of M.
A prime ideal q is a Krull associated prime ideal of N if and only if q is a
union of weakly associated prime ideals of N.

Proof. Let p be a weakly associated prime to N. Then there exists m €

M \ N such that p is a minimal prime ideal of (N :g m). Since
Ny :rm = (N g m))

is a p-primary ideal of R, for every u € p there exists a smallest integer
k > 1 such that u¥sm € N for some s € R\ p. Now u € N :g v~ lsm, and
the minimality of k shows that N :p u* 'sm C p. This means that every
weakly associated prime ideal of N is a Krull associated prime ideal of N.
Therefore if the prime ideal q is a union of weakly associated primes of NV,
then for every u € q there exists a weakly associated prime ideal p of N such
that u € p. This implies that x € N :g m C q for some m € M \ N. So q is
a Krull associated prime ideal of N. The converse is obvious. =

The next result provides a slight generalization of [4, Theorems 3.4 and
3.5].

THEOREM 3.2. Let M be an R-module, N a proper submodule of M,
and p a prime ideal of R. Then Ny is a p-primal submodule of M if and
only if p is a Krull associated prime to N. Consequently, N = ﬂpeﬂN Ny
which we call the canonical primal decomposition of N, is a decomposition
of N into primal submodules, where the isolated components N, are primal
submodules with distinct adjoint primes.

Proof. If N(y) is a p-primal submodule of M then it is easy to see that

= U a

qEAss M/N<p>
Now Lemma 3.1 implies that p is a Krull associated prime ideal of N().
Conversely, let p be a Krull associated prime of N(,). We have to show that
the elements of p are non-prime to Np). Let 2 € p. Then there exists y €
M \ N(p) such that x € N(p) 'Ry C p. This yields p = UyEM\N(p)(N(P) ‘R y)
Therefore N(y) is a p-primal submodule of M. This proves the first assertion.
Now, let m € ﬂpeQN Ny Then for all p € 2y there exists an element
sp € R\ p such that s, € N :g m. Therefore N :gr m contains no minimal
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prime ideal, which implies that m € N. The final assertion is obvious by
Lemma 3.1. =

Now we are prepared to prove the first main theorem of this section,
which is an extension of [4, Proposition 3.7].

THEOREM 3.3. Let M be an R-module, N a proper submodule of M,
and p a prime ideal in Supp(M/N). Then N is an intersection of p-primal
submodules if and only if all the elements of R\ p are prime to N. In
particular, Ny is an intersection of p-primal submodules.

Proof. Suppose that N = (| N; is an intersection of p-primal submod-
ules N;. Then by Lemma 2.3, (N;)) = N;. Hence N () = N, and so the
elements of R\ p are prime to N. Conversely, suppose that the elements
of R\ p are prime to N. We may assume that (R,p) is a quasilocal ring.
Let m € M \ N. Then the ideal N :p m is contained in p, and so m ¢
N + pm. Enlarge N + pm to a submodule, say N(m), which is maximal not
containing m. Obviously N(m) is a p-primal submodule of M and we have

N = mmgéN N(m) u

LEMMA 3.4. Let M be an R-module and N a proper submodule of M.
Suppose that p € 2N satisfies one of the following conditions:

(1) P £ Ugen\ i 0

(i) p is a Zariski-Samuel associated prime of N.

Then in the canonical primal decomposition of N (see Theorem 3.2), the
isolated p-component N, is relevant.

Proof. First let p & Ugeon\(py 9- Then there exists 2 € p such that
z & Ugeon\gpy 8- Since N C N =y x and Nig :m @ = Ng) for all q €
On \ {p}, it follows that

NgN:MSU:(N:M$)ﬂ ﬂ N(q)g ﬂ N(q)
a€2n\{p} AENQN, a£p

Therefore Ny, is relevant.

Now suppose that p is a Zariski-Samuel associated prime of N. Then
p = Rad(N :g m) for some m € M \ N. Let q € 2y \ {p}. Maximality

of p in 2y implies that m € Ng for all ¢ € 2y \ {p}. Consequently,
m € ﬂquN, ap Ng, which implies the relevance of N;. =

COROLLARY 3.5. Let M be an R-module and N a proper submodule
of M. Suppose that each p € 2y satisfies one of the following conditions:

(1) » € Ugean\ip 9

(ii) p is a Zariski-Samuel associated prime of N.

Then the canonical primal decomposition of N is irredundant.
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PROPOSITION 3.6. Let R be a ring such that every radical ideal a of R
has a minimal prime divisor p such that p/a is the radical of a finitely gen-
erated ideal in the quotient ring R/a. Let M be an R-module and let N be
a proper submodule of M. Then N = (\,czn)N(p), where Z(N) denotes
the set of Zariski—-Samuel associated primes of N. Furthermore, if R satis-
fies the ascending chain condition on prime ideals and Z*(N) denotes the
mazimal elements of Z(N), then N = (Ve z () N(p), and this intersection
15 irredundant.

Proof. First of all we have to show that Z(N) # 0. Let m € M\ N and set
a = Rad (N :g m). Our hypothesis yields the existence of a finitely generated
ideal ¢ and a minimal prime divisor p of a such that p = Rad(a + ¢). Since
p = ap) it follows that ¢ C a(,). As c is finitely generated there exist n € N
and y € R\ p such that ¢ C N :p ym. Therefore

"+ N:pmCN:gymChp.
Hence Rad(N :g ym) = p, and so Z(N) # 0. It is easy to see that this
implies N = ﬂpEZ(N) N(p)

Now suppose that R satisfies the ascending chain condition on prime
ideals. Then for each p € Z(N) there exists q € Z*(IN) such that p C q.
This implies that N = ﬂpez*( N) N(py- To prove that this intersection is
irredundant, let p € Z*(N). Then p = Rad(N :g m) for some m € M \ N.
Hence N :g m ¢ q for all g € Z*(N) and so m € (Nyez+(n), g0 Nea) \ Np):
as required. m

DEFINITION 3.7. Let M be an R-module and N a proper submodule
of M. An intersection N = [;c; IV; is said to be residually mazximal at Nj if
replacing N; by a residue N; :pr x, x € R, that properly contains IV; leads
to a submodule larger than N. If the intersection is residually maximal at
each N; then the intersection is said to be residually mazximal.

PRrROPOSITION 3.8. Let M be an R-module and N a proper submodule
of M. Ifp € 2N is a Zariski-Samuel associated prime of N then the canon-
ical primal decomposition of N (see Theorem 3.2) is residually maximal
at N(p). Consequently if each p € 2N is a Zariski-Samuel associated prime
to N, then the canonical primal decomposition of N is residually mazimal.

Proof. Suppose that N(y,) can be replaced by N, :a @ for some x € R.
We have to show that N, = N, i z. By hypothesis, p = Rad(N :g m)
for some m € M. Then m € ﬂpequ# N(q)- Since N :g m is a p-primary
ideal of R and

N:gm= Ny :rm= Ny :mz):rm= Ny :rm):gz=(N:rm) gz,

it follows that = € p. As N(y) is primal, we have N, iy 7= N(p). =
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By a primal isolated component of a submodule N we mean a primal
submodule B such that B = N, for some prime ideal q. If p is the ad-
joint prime of N4 then necessarily p C q, which yields N4 C N(y). Since
(N(q))(p) = N(q) and N C N(q), it follows that N(q) = N(p) This shows
that if B is a primal isolated component of N then B = N, for some
p € Assp M/N.

We are now ready to state and prove the second main theorem of this
section, which is a generalization of [4, Theorem 4.6].

THEOREM 3.9. Let M be an R-module and N a proper submodule of M .
For a prime ideal p € 2y, the following conditions are equivalent:

(i) p is a Zariski-Samuel associated prime ideal to N.
(ii) The isolated component N, must appear in every representation of
N as an intersection of primal isolated components.

Proof. The implication (i)=-(ii) is proved in Lemma 3.4.

(i)=(i). Let m € Myeassp m/N, qrpV(@) \ Np)- Then, as m ¢ N, it is
easy to see that N :g m C p, and if p’ is a minimal prime ideal of N :gp m
such that p’ # p, then p’ € Assg M/N, and so m € N(,. Hence there exists
s € R\ p’ such that s € N :p m, which is a contradiction. Therefore p is the
unique minimal prime ideal of N :g m. Hence p = Rad(N :g m), and so p
is a Zariski-Samuel associated prime to N. =

COROLLARY 3.10. Let M be an R-module and N a proper submodule
of M. Then the following statements are equivalent:

(i) 25 CC for each C C Assp M/N with N = (\,ec Nip)-
(ii) Each p € 2n is a Zariski-Samuel associated prime to N.

In particular, if each p € 2N is a Zariski-Samuel associated prime to N,
then the canonical primal decomposition of N is irredundant.

Proof. (i)=»(ii). By Theorem 3.2, we have N = [, N(p) and Ny is
p-primal. Now the result follows easily from Proposition 3.6.

(i)=-(i). Suppose N =\, N(p) for some C C 2y. By Proposition 3.6
for each p € 2y there exists q € 2y such that Ny = N,. But p and g
belong to Assg M/N. Consequently, N,) is p-primal and N, is g-primal.
Therefore q =p and so 2y CC. =

The following theorem extends the main result of [4, Theorem 5.1].

THEOREM 3.11. Let M be an R-module and N a proper submodule of M .
Let C be a collection of prime ideals of R such that N = ﬂpec Ny is an
irredundant intersection of irreducible isolated components of N. Then this
intersection is residually mazimal and is the unique irredundant decomposi-
tion of N into irreducible isolated components of N.
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Proof. Let q be the adjoint prime of N(). Without loss of generality we
may assume that q = p, and therefore C C Assp M/N. Now suppose that
for some p € C there exists x € R such that

N = (N z) N[ {Ng:a€C a#p}

Since Ny is irreducible, it follows that N,y = N i @, and so the rep-
resentation is residually maximal. It only remains to show that it is unique
among irredundant intersections of irreducible isolated components of N. To
do this, suppose that C" = {q;}icr € Assg M/N is such that N = (;c; N(g,)

is also an irredundant intersection of irreducible components B; = N(g,) of
N with adjoint primes g;. It is enough to show that for each ' € I, there
exists py such that py C g;. Fix j € I, and define C; = ﬂ#j B;. Since Ny
is irreducible and for each p € C, we have

Nipy = (Bj)p) N (C5) ()
it follows that Ny = (Bj)(p) or Nip) = (Cj)p- As the decomposition N =
Nicr Bi is irredundant, it follows that N, = (Bj)) and so (Bj)qy is
p-primal. As Bj is gj-primal, we find that p C q;. By symmetry, q; C p;
for some p; € C, and so N, ) € Nig,) € Np). Again by irredundancy,
N(pj) = N(Clj) = N(p), and so pj=4q; =9p. Therefore

{N(p) pGC}:{N(q) ZEI} [ |

REMARK 3.12. Let M be an R-module and N a proper submodule
of M. Assume that C C Assg M/N contains at least two elements. If
N = ﬂpec Ny and if the intersection is irredundant, then C consists of
incomparable primes. Also, for each p € C there exists q € {2y such that
p C g, and so N(g) C Npy. Thus if ¢" = C\ {p} and B =, ¢, then Ny
is relevant in the intersection N = N4 N B. Note that

NCNgNBCNyNnB= () Ny =N.
p eC
Since Ny is p-primal and N(g is g-primal, we have N,y = Ny if and only
if p =gq. If Ny is irreducible, from N = N, N B we obtain

Ny = (Nip)) ) N B(g) = Nip) N Ba):

and this yields N = N(). Thus q = p. Therefore if N(g is irreducible for
each q € 2y, then C C Qy.

COROLLARY 3.13. Let M be an R-module and N a proper submodule
of M. Suppose that C C Assg M/N. Let N(q) be irreducible for each q € 2y
and let N = ﬂquN (q) be an irredundant intersection. Then C C {2y and
N = ﬂquN (q) 18 the unique decomposition of N into an intersection of
wrreducible isolated components.
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REMARK 3.14. Let M be an arithmetical R-module and N a proper
submodule of M. Suppose N = (,c; N;. If for each i € I, N; is a primal
submodule of M that is relevant to this decomposition, then N; = (N;)(p,)
for some prime ideal p;. Let ¢ € I, and suppose N; is relevant to the given
decomposition. Since N(y,) is irreducible, it follows that N; = N(p,).

We close this section with a characterization of arithmetical modules in
terms of irredundant irreducible decompositions, which is an extension of
Fuchs-Heinzer—Olberding’s result in [4].

THEOREM 3.15 (cf. [4, Theorem 5.8]). Let M be an R-module and N a
proper submodule of M. The following statements are equivalent.

(i) M is an arithmetical R-module.
(ii) For each proper submodule N of M, N = (e, Ny is an inter-
section of irreducible submodules.

(iii) Fach proper submodule N can be represented as an intersection of

irreducible isolated components.

Proof. By Theorems 2.7 and 3.2 the implications (i)=-(ii) and (ii)=-(iii)
are obvious. To show (iii)=(i), in view of Theorem 2.7, we establish that, for
each maximal ideal m of R and each finitely generated submodule N of M
with Ny # 0, the submodule m Ny, is irreducible. To do this, by hypothesis
there exists a collection C of prime ideals of R such that

mN = () (mN) ),
peC

and each (mN)(y) is irreducible. Now, if m & C, then (mN),) = Ny for all
p € C. Hence

N € (] Ny =mN.

peC

As N is a finitely generated submodule, Nakayama’s lemma yields Ny, = 0,
which is a contradiction. Therefore m € C and (mN)(y) is an irreducible
submodule of M. Since mN(y,) = (MmN )(m), by the proof of Theorem 2.7
((ii)=(iii)), the result follows. m
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