VOL. 114

2009

NO. 2

ON THE PROLONGATION OF RESTRICTIONS OF BAIRE 1 FUNCTIONS TO FUNCTIONS WHICH ARE QUASICONTINUOUS AND APPROXIMATELY CONTINUOUS

 $_{\rm BY}$

ZBIGNIEW GRANDE (Bydgoszcz)

Abstract. Let $I \subset \mathbb{R}$ be an open interval and let $A \subset I$ be any set. Every Baire 1 function $f: I \to \mathbb{R}$ coincides on A with a function $g: I \to \mathbb{R}$ which is simultaneously approximately continuous and quasicontinuous if and only if the set A is nowhere dense and of Lebesgue measure zero.

Let μ be the Lebesgue measure on \mathbb{R} . For a (Lebesgue) measurable set $A \subset \mathbb{R}$ and a point x we define the upper density $D_u(A, x)$ and lower density $D_l(A, x)$ of A at x as

$$D_u(A, x) = \limsup_{h \to 0^+} \frac{\mu(A \cap [x - h, x + h])}{2h},$$
$$D_l(A, x) = \liminf_{h \to 0^+} \frac{\mu(A \cap [x - h, x + h])}{2h}.$$

A point x is called a *density point* of a set B if there is a Lebesgue measurable set $A \subset B$ such that $D_l(A, x) = 1$.

The family T_d of all sets A such that every $x \in A$ is a density point of A is a topology on \mathbb{R} , called the *density topology* ([1, 7]). All sets in T_d are Lebesgue measurable [1].

Moreover, let T_e denote the Euclidean topology on \mathbb{R} . The continuity of functions from (\mathbb{R}, T_d) to (\mathbb{R}, T_e) is called the *approximate continuity* ([1, 7]).

Let I be an open interval. A function $f: I \to \mathbb{R}$ is called *quasicontinuous* at a point x if for each positive real r and for each $U \in T_e$ contained in I and containing x there is an open interval $J \subset U$ such that |f(t) - f(x)| < r for all $t \in J$ ([2, 4]).

The following theorem is shown in [5].

THEOREM 1. Let $A \subset I$. Every Baire 1 function $f : I \to \mathbb{R}$ coincides on A with an approximately continuous function $g : I \to \mathbb{R}$ if and only if $\mu(A) = 0$.

²⁰⁰⁰ Mathematics Subject Classification: 26A21, 26A15.

Key words and phrases: density topology, approximate continuity, quasicontinuity, prolongation of functions.

We have the following simple observation concerning quasicontinuity.

REMARK 1. Let $A \subset I$. Every Baire 1 function (resp. every function) $f: I \to \mathbb{R}$ coincides on A with a Baire 1 quasicontinuous (resp. quasicontinuous) function $g: I \to \mathbb{R}$ if and only if the set A is nowhere dense.

Proof. If A is dense in some open interval J then we pick an $x \in J \cap A$ and put f(x) = 1 and f(t) = 0 for $t \neq x$. Then f is of the first Baire class and for each quasicontinuous function $g: I \to \mathbb{R}$ with g(x) = 1 there is a point $t \in A \cap I$ such that $t \neq x$ and $g(t) \neq 0$. So, $f|A \neq g|A$, and the proof of the necessity is complete.

To prove the sufficiency, enumerate all components of $I \setminus cl(A)$, where cl denotes closure, in a sequence $((a_n, b_n))_n$ of pairwise disjoint intervals. If $a_n \in I$ we find a sequence of points $c_{k,n} \in (a_n, b_n)$ such that

 $c_{k,n} > c_{k+1,n}$ for $k \ge 1$ and $\lim_{k \to \infty} c_{k,n} = a_n$.

Similarly if $b_n \in I$ we find a sequence of points $d_{k,n} \in (a_n, b_n)$ such that

$$d_{k,n} < d_{k+1,n}$$
 for $k \ge 1$ and $\lim_{k \to \infty} d_{k,n} = b_n$

Moreover, if $a_n, b_n \in I$ then we assume that $c_{n,1} < d_{n,1}$. If $a_n, b_n \in I$ then we define a continuous function $g_n : (a_n, b_n) \to \mathbb{R}$ such that $g_n([c_{n,2k}, c_{n,2k-1}]) = g_n([d_{n,2k-1}, d_{n,2k}]) = [-k, k]$ for each $k \ge 1$. If a_n or b_n is not in I then we define a continuous function $g_n : (a_n, b_n) \to \mathbb{R}$ such that for each $k \ge 1$, $g_n([d_{n,2k-1}, d_{n,2k}]) = [-k, k]$ or $g_n([c_{n,2k}, c_{n,2k-1}]) = [-k, k]$. To finish the proof it suffices to observe that the function

$$g(x) = \begin{cases} g_n(x) & \text{for } x \in (a_n, b_n), n \ge 1, \\ f(x) & \text{for } x \in cl(A), \end{cases}$$

is quasicontinuous and of Baire class 1 (resp. quasicontinuous) and $g|{\rm cl}(A)=f|{\rm cl}(A).$ \blacksquare

REMARK 2. If in Remark 1 we suppose that the function f is bounded, i.e. $c \leq f \leq d$, then we may find g such that $c \leq g \leq d$.

Proof. It suffices to put $g_1(x) = \min(d, \max(c, g(x)))$ for $x \in I$.

THEOREM 2. Let $A \subset I$. Every Baire 1 function $f : I \to \mathbb{R}$ coincides on A with an approximately continuous and quasicontinuous function $g : I \to \mathbb{R}$ if and only if the set A is nowhere dense and $\mu(A) = 0$.

Proof. The necessity follows from Theorem 1 and Remark 1. The sufficiency follows from Theorem 1 and Theorem 3 below. \blacksquare

THEOREM 3. Assume that $f : I \to \mathbb{R}$ is an approximately continuous function and $A \subset I$ is a nowhere dense set. Then there is an approximately continuous and quasicontinuous function $g : I \to \mathbb{R}$ such that g|A = f|A.

Proof. Let $A_1 = \{x \in I; \operatorname{osc} f(x) \ge 1/2\}$ and for n > 1 let $A_n = \{x \in I; 1/2^{n-1} > \operatorname{osc} f(x) \ge 1/2^n\}.$

Since the set C(f) of all continuity points of f is residual, the sets A_n , $n \ge 1$, are nowhere dense. Evidently the sets

 $B_1 = A_1$ and $B_n = \{x \in I; \text{osc } f(x) \ge 1/2^n\}, n \ge 2,$

are closed in I. We will construct a sequence of functions (g_n) by induction.

STEP 1. Let $((a_{1,k}, b_{1,k}))_k$ be a sequence of all components of $I \setminus A_1$ such that $(a_{1,k}, b_{1,k}) \cap (a_{1,m}, b_{1,m}) = \emptyset$ for $k \neq m$. If $a_{1,k} \in I$ then we find a sequence of points $c_{1,k,i} \in (a_{1,k}, b_{1,k}) \cap C(f)$ such that:

- $[c_{1,k,2i}, c_{1,k,2i-1}] \cap A = \emptyset$ for $i \ge 1$,
- $c_{1,k,i} > c_{1,k,i+1}$ for $i \ge 1$ and $\lim_{i \to \infty} c_{1,k,i} = a_{1,k}$,

•
$$\lim_{h \to 0^+} \frac{\mu([a_{1,k}, a_{1,k} + h] \cap \bigcup_{i=1}^{\infty} [c_{1,k,2i}, c_{1,k,2i-1}])}{h} = 0,$$

•
$$\frac{\mu(\bigcup_{i=1}^{\infty} [c_{1,k,2i}, c_{1,k,2i-1}])}{b_{1,k} - a_{1,k}} < \frac{1}{8k}.$$

Similarly if $b_{1,k} \in I$ then we find a sequence of points $d_{1,k,i} \in (a_{1,k}, b_{1,k}) \cap C(f)$ with $d_{1,k,1} > c_{1,k,1}$ such that:

•
$$[d_{1,k,2i-1}, d_{1,k,2i}] \cap A = \emptyset$$
 for $i \ge 1$,

• $d_{1,k,i} < d_{1,k,i+1}$ for $i \ge 1$ and $\lim_{i \to \infty} d_{1,k,i} = b_{1,k}$, • $\lim_{h \to 0^+} \frac{\mu([b_{1,k}, b_{1,k} - h] \cap \bigcup_{i=1}^{\infty} [d_{1,k,2i-1}, d_{1,k,2i}])}{h} = 0$,

•
$$\frac{\mu(\bigcup_{i=1}^{\infty}[d_{1,k,2i-1}, d_{1,k,2i}])}{b_{1,k} - a_{1,k}} < \frac{1}{8k}.$$

If $a_{1,k}$ or $b_{1,k}$ is not in I then we find only one monotone sequence satisfying the above conditions convergent to that endpoint of $(a_{1,k}, b_{1,k})$ which belongs to I.

Now for each $k \geq 1$ we define an approximately continuous function $g_{1,k}: (a_{1,k}, b_{1,k}) \to \mathbb{R}$ such that

• for each $i \ge 1$ the restrictions $g_{1,k}|[c_{1,k,2i}, c_{1,k,2i-1}]$ and $g_{1,k}|[d_{1,k,2i-1}, d_{1,k,2i}]$ are continuous and $g_{1,k}([c_{1,k,2i}, c_{1,k,2i-1}]) \cap g_{1,k}([d_{1,k,2i-1}, d_{1,k,2i}]) \supset [-i, i],$

•
$$g_{1,k}(x) = f(x)$$
 for $x \in I \setminus \bigcup_{i \ge 1} ((c_{1,k,2i}, c_{1,k,2i-1}) \cup (d_{1,k,2i-1}, d_{1,k,2i})).$

Putting

$$g_1(x) = \begin{cases} g_{1,k}(x) & \text{for } x \in (a_{1,k}, b_{1,k}), \ k \ge 1, \\ f(x) & \text{elsewhere on } I, \end{cases}$$

we obtain an approximately continuous function $g_1 : I \to \mathbb{R}$ which is quasicontinuous at each $x \in C(f) \cup A_1$ and $g_1|A = f|A$. STEP 2. Let (K_n) be a sequence of bounded closed nondegenerate intervals such that

$$K_n \subset K_{n+1}$$
 for $n \ge 1$ and $I = \bigcup_{n=1}^{\infty} K_n$.

Observe that $\operatorname{osc} g_1(x) < 1/2$ for each $x \in A_2$, so for each $x \in A_2 \cap K_2$ there is an open bounded interval $I(x) \subset I$ such that $x \in I(x)$ and $\operatorname{diam}(g_1(I(x))) < 1/2$. Since $A_2 \cap K_2$ is compact, there are $x_1, \ldots, x_m \in A_2 \cap K_2$ such that

$$A_2 \cap K_2 \subset \bigcup_{i=1}^m I(x_i).$$

But $A_2 \cap K_2$ is nowhere dense and $C(g_1)$ is dense, so there are pairwise disjoint open intervals $J_1, \ldots, J_r \subset \bigcup_{i=1}^m I(x_i)$ such that

$$A_2 \cap K_2 \subset \bigcup_{j=1}^r J_j$$

and the endpoints of all J_j , $j \ge r$, belong to $C(g_1)$.

Fix $j \leq r$ and enumerate all components of $I_j \setminus (A_2 \cap K_2)$ in a sequence $((a_{2,j,k}, b_{2,j,k}))_k$ with $(a_{2,j,k}, b_{2,j,k}) \cap (a_{2,j,l}, b_{2,j,l}) = \emptyset$ for $k \neq l$. Now for each $k \geq 1$ we find a sequence of points $c_{2,j,k,i}, d_{2,j,k,i} \in (a_{2,j,k}, b_{2,j,k}) \cap C(g_1)$ such that:

- $[c_{2,j,k,2i}, c_{2,j,k,2i-1}] \cap A = \emptyset$ for $i \ge 1$,
- $c_{2,j,k,i} > c_{2,j,k,i+1}$ for $i \ge 1$ and $\lim_{i \to \infty} c_{2,j,k,i} = a_{2,j,k}$,
- $\lim_{h \to 0^+} \frac{\mu([a_{2,j,k}, a_{2,j,k} + h] \cap \bigcup_{i=1}^{\infty} [c_{2,j,k,2i}, c_{2,j,k,2i-1}])}{h} = 0,$ • $\frac{\mu(\bigcup_{i=1}^{\infty} [c_{2,j,k,2i}, c_{2,j,k,2i-1}])}{b_{2,j,k} - a_{2,j,k}} < \frac{1}{8(k+j)},$

and similarly a sequence of points $d_{2,j,k,i} \in (a_{2,j,k}, b_{2,j,k}) \cap C(g_1)$ with $d_{1,k,1} > c_{1,k,1}$ such that:

- $[d_{2,i,k,2i-1}, d_{2,i,k,2i}] \cap A = \emptyset$ for $i \ge 1$,
- $d_{2,j,k,i} < d_{2,j,k,i+1}$ for $i \ge 1$ and $\lim_{i \to \infty} d_{2,j,k,i} = b_{2,j,k}$,
- $\lim_{h \to 0^+} \frac{\mu([b_{2,j,k}, b_{2,j,k} h] \cap \bigcup_{i=1}^{\infty} [d_{2,j,k,2i-1}, d_{2,j,k,2i}])}{h} = 0,$ • $\frac{\mu(\bigcup_{i=1}^{\infty} [d_{2,j,k,2i-1}, d_{2,j,k,2i}])}{b_{2,j,k} - a_{2,j,k}} < \frac{1}{8(k+j)}.$

Now for each $k \geq 1$ we define an approximately continuous function $g_{2,j,k}: (a_{2,j,k}, b_{2,j,k}) \to \mathbb{R}$ such that

• for each $i \ge 1$ the restrictions

$$g_{2,j,k}|[c_{2,j,k,2i}, c_{2,j,k,2i-1}]$$
 and $g_{2,j,k}|[d_{2,j,k,2i-1}, d_{2,j,k,2i}]$

are continuous and their images both equals the smallest closed interval containing $g_1(J_r)$,

•
$$g_{2,j,k}(x) = g_1(x)$$
 for $x \in J_r \setminus \bigcup_{i \ge 1} ((c_{2,j,k,2i}, c_{2,j,k,2i-1}) \cup (d_{2,j,k,2i-1}, d_{2,j,k,2i}))$.

Putting

$$g_2(x) = \begin{cases} g_{2,j,k}(x) & \text{for } x \in (a_{2,j,k}, b_{2,j,k}), \ k \ge 1, \ j \le r, \\ g_1(x) & \text{elsewhere } I, \end{cases}$$

we obtain an approximately continuous function $g_2 : I \to \mathbb{R}$ which is quasicontinuous at each $x \in C(f) \cup (B_2 \cap K_2)$, and such that $g_2|A = f|A$ and $|g_2 - g_1| \leq 1/2$.

Similarly in step $n \ge 2$ we construct an approximately continuous function $g_n : I \to \mathbb{R}$ which is quasicontinuous at each $x \in C(f) \cup (B_n \cap K_n)$ and such that $g_n | A = f | A$ and $|g_n - g_{n-1}| \le 1/2^{n-1}$. The sequence (g_n) uniformly converges to an approximately continuous and quasicontinuous function such that g | A = f | A.

REMARK 3. Let $A \subset \mathbb{R}$. For each approximately continuous function $f : \mathbb{R} \to \mathbb{R}$ there is an approximately continuous and quasicontinuous function $g : \mathbb{R} \to \mathbb{R}$ with g|A = f|A if and only if A is a nowhere dense subset of \mathbb{R} .

Proof. If A is nowhere dense and $f : \mathbb{R} \to \mathbb{R}$ is approximately continuous then by Theorem 3 there is an approximately continuous and quasicontinuous function $g : \mathbb{R} \to \mathbb{R}$ such that f|A = g|A. Conversely, if A is dense in an open interval I then we find two countable disjoint subsets $B, C \subset I \cap A$ dense in I and a G_{δ} -set $E \supset B$ with $E \cap C = \emptyset$ and $\mu(E) = 0$. By Zahorski's theorem ([8, Lem. 11]) there is an approximately continuous function $f : \mathbb{R} \to [0, 1]$ such that $f(E) = \{0\}$ and f(x) > 0 for $x \in \mathbb{R} \setminus E$. To finish the proof it suffices to observe that no function $h : \mathbb{R} \to \mathbb{R}$ with h|A = f|A is quasicontinuous at any $x \in I \cap C$.

REMARK 4. Let $A \subset \mathbb{R}$. For each Baire 1 quasicontinuous function $f : \mathbb{R} \to \mathbb{R}$ there is an approximately continuous and quasicontinuous function $g : \mathbb{R} \to \mathbb{R}$ with g|A = f|A if and only if A is a nowhere dense subset of \mathbb{R} and $\mu(A) = 0$.

Proof. The sufficiency follows from Theorem 2. For the proof of the necessity we consider two cases.

1. If A is not of measure zero then we find a measurable set $G \supset A$ such that each measurable subset of $G \setminus A$ is of measure zero. Let $a \in A$ be a density point of G and let

$$f(x) = \begin{cases} 0 & \text{for } x \in (-\infty, a), \\ 1 & \text{for } x \in [a, \infty). \end{cases}$$

Ewidently f is a quasicontinuous Baire 1 function and no function $h : \mathbb{R} \to \mathbb{R}$ with h|A = f|A is approximately continuous at a.

2. If A is dense in an open interval J then we find a countable subset $B = \{x_n; n \ge 1\} \subset J \cap A$ dense in J and define

$$f(x) = \begin{cases} 0 & \text{for } x \in (-\infty, \inf B), \\ \sum_{x_n \le x} \frac{1}{2^n} & \text{for } x \ge \inf B. \end{cases}$$

The function f is monotone and right-continuous, so it is Baire 1 quasicontinuous. Moreover, it is continuous at each point of $\mathbb{R} \setminus B$ and discontinuous at all points of B. Suppose towards a contradiction that there is an approximately continuous and quasicontinuous function $g : \mathbb{R} \to \mathbb{R}$ with g|A = f|A. Then $E = C(f) \cap C(g)$ is residual, where C(h) denotes the set of all continuity points of h. Since B is dense in J and f|B = g|B, we have $f|(J \cap E) = g|(J \cap E)$. Fix $x_k \in B$. Observe that

$$g(x_k) = f(x_k) = \lim_{x \to x_k^-} f(x) + \frac{1}{2^k}$$
 and $f(x) \le g(x_k) - \frac{1}{2^k}$ for $x \le x_k$.

Since g is approximately continuous at x_k , there is a point $u \in (\inf J, x_k)$ such that $g(u) > g(x_k) - 1/2^{k+1}$. But g is quasicontinuous at u, so there is an open interval $K \subset (\inf J, x_k)$ such that $g(x) > g(x_k) - 1/2^{k+1}$ for $x \in K$. Pick $w \in K \cap E$. Observe that

$$f(w) = g(w) > g(x_k) - \frac{1}{2^{k+1}} > f(x_k) - \frac{1}{2^k}$$

Since $w < x_k$, we obtain a contradiction which completes the proof.

As an application of the above observations to transfinite sequences of functions ([6]) we observe that the function

$$f(x) = \sum_{r_n \le x} \frac{1}{2^n},$$

where (r_n) is an enumeration of all rationals such that $r_n \neq r_m$ for $n \neq m$, is quasicontinuous and of Baire class 1, but is not the transfinite limit of any sequence of functions $f_{\alpha} : \mathbb{R} \to \mathbb{R}$, $\alpha < \omega_1$, which are simultaneously approximately continuous and quasicontinuous. Indeed, if there are approximately continuous and quasicontinuous functions $f_{\alpha} : \mathbb{R} \to \mathbb{R}$, $\alpha < \omega_1$, such that $f = \lim_{\alpha < \omega_1} f_{\alpha}$ then there is a countable ordinal β such that for all countable ordinals $\alpha \geq \beta$ and all rationals r_n we have $f_{\alpha}(r_n) = f(r_n)$ and $f_{\alpha}(r_n + 2^{1/2}) = f(r_n + 2^{1/2})$. This means that f may be extended from $\mathbb{Q} \cup (\mathbb{Q} + 2^{1/2})$ to a function f_{β} which is simultaneously approximately continuous and quasicontinuous. The reasoning from the proof of Remark 4 shows that this is impossible. On the other hand, we recall that the transfinite limit of quasicontinuous (resp. Baire 1) functions $f_{\alpha} : \mathbb{R} \to \mathbb{R}$, $\alpha < \omega_1$, is quasicontinuous (resp. Baire 1), and each Baire 1 function $f : \mathbb{R} \to \mathbb{R}$ is the limit of a transfinite sequence of approximately continuous functions f_{α} , $\alpha < \omega_1$ ([6, 4, 3]).

Finally, consider a general problem. Let Φ , Φ_1 and Φ_2 be some classes of functions from \mathbb{R} to \mathbb{R} such that $\Phi_1 \cap \Phi_2 \neq \emptyset$ and $\Phi \supset \Phi_1 \cup \Phi_2$. For i = 1, 2 let H_{Φ_i} denote the class of all subsets $A \subset \mathbb{R}$ such that for each $f \in \Phi$ there is a $g \in \Phi_i$ with $f|_A = g|_A$. A natural question is whether

$$H_{\Phi_1 \cap \Phi_2} = H_{\phi_1} \cap H_{\phi_2}.$$

In the next example we show that the answer is negative.

EXAMPLE. Let Φ be the class of all functions from \mathbb{R} to \mathbb{R} , let Φ_1 denote the family of all polynomials and let Φ_2 be the family of all trigonometric polynomials. Then $\Phi_1 \cap \Phi_2$ is the family of all constant functions, $H_{\Phi_1} \cap H_{\phi_2}$ is the class containing all finite subsets of \mathbb{R} and $H_{\Phi_1 \cap \Phi_2}$ is the family composed of all singletons and \emptyset .

REMARK 5. If for each $A \in H_{\Phi_1} \cap H_{\Phi_2}$ there is $i \leq 2$ such that for each $f \in \Phi_i$ there is $g \in \Phi_1 \cap \Phi_2$ with f|A = g|A then $H_{\Phi_1 \cap \Phi_2} = H_{\Phi_1} \cap H_{\Phi_2}$.

Proof. The proof is evident.

REFERENCES

- A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, Berlin, 1978.
- [2] S. Kempisty, Sur les fonctions quasi-continues, Fund. Math. 19 (1932), 184–197.
- [3] J. S. Lipiński, On transfinite sequences of mappings, Casopis Pěst. Mat. 101 (1976), 153–158.
- [4] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988-89), 259–306.
- [5] G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hungar. 25 (1974), 189–212.
- [6] W. Sierpiński, Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math. 1 (1920), 132–141.
- [7] F. D. Tall, The density topology, Pacific J. Math. 62 (1976), 275–284.
- [8] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54.

Institute of Mathematics Kazimierz Wielki University Plac Weyssenhoffa 11 85-072 Bydgoszcz, Poland E-mail: grande@ukw.edu.pl

> Received 21 February 2008; revised 21 May 2008

(5013)