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ON EQUIVALENCE OF SUPER LOG SOBOLEV AND
NASH TYPE INEQUALITIES

BY

MARCO BIROLI (Milano) and PATRICK MAHEUX (Orléans)

Abstract. We prove the equivalence of Nash type and super log Sobolev inequalities
for Dirichlet forms. We also show that both inequalities are equivalent to Orlicz–Sobolev
type inequalities. No ultracontractivity of the semigroup is assumed. It is known that
there is no equivalence between super log Sobolev or Nash type inequalities and ultra-
contractivity. We discuss Davies–Simon’s counterexample as the borderline case of this
equivalence and related open problems.

1. Introduction. Let (Tt)t>0 = (e−At)t>0 be a symmetric submarko-
vian semigroup with infinitesimal generator −A on L2(X,µ) where (X,µ)
is a σ-finite measure space. The symmetry means

(Ttf, g) = (f, Ttg), f, g ∈ L2, t > 0,

and the submarkovian property reads

0 ≤ f ≤ 1 ⇒ 0 ≤ Ttf ≤ 1, f ∈ L2.

Moreover, (Tt)t>0 is a C0-contraction semigroup on L2 which extends to a

C0-contraction semigroup Tt := T
(p)
t on each Lp = Lp(X,µ) with 1 ≤ p <∞

and acts as a contraction onL∞. The infinitesimal generator−A is defined by

Af := lim
t→0+

f − Ttf
t

,

for f ∈ D(A), i.e. f ∈ L2 such that the above limit exists in L2. In particular,
the operator A is non-negative and self-adjoint on L2.

The associated Dirichlet form E is defined as follows. Let D(E) = D(
√
A)

where
√
A is the positive square root of A. We set E(f, g) = (

√
Af,
√
Ag)

for f, g ∈ D(E). Then the bilinear form E is a positive, symmetric, bilin-
ear, closed, densely defined form on L2(µ). Moreover, E has the following
contraction property:

(1.1) ∀f ∈ D(E), g = (f ∧ 1) ∨ 0 ⇒ g ∈ D(E) and E(g) ≤ E(f)
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where E(f) := E(f, f). Furthermore, there is a bijective correspondence
between Dirichlet forms and submarkovian symmetric semigroups (see [F]).

A fundamental property of operator semigroups (Tt)t>0 is ultracontrac-
tivity, that is, the existence of a non-increasing function a from (0,∞) to
itself such that for any f ∈ L1,

(1.2) ‖Ttf‖∞ ≤ a(t)‖f‖1, t > 0.

Under some conditions described for instance in [GH, Section 3.3] (see
also [W2, Proposition 3.3.11]), ultracontractivity of a semigroup (1.2) im-
plies the existence of a heat kernel ht(x, y) for this semigroup, that is,

Ttf(x) =
�

X

ht(x, y)f(y) dµ(y),

and uniform bounds on this kernel,

sup
x,y∈X

ht(x, y) ≤ a(t), t > 0.

Conversely, the existence of a heat kernel and uniform bounds obviously
imply ultracontractivity of the semigroup.

Before going further, let us discuss some equivalent formulation of ultra-
contractivity. By interpolation, the semigroup property, duality and sym-
metry, inequality (1.2) is equivalent to the existence of a non-increasing
function c : (0,∞)→ (0,∞) such that for any f ∈ L1,

(1.3) ‖Ttf‖2 ≤ c(t)‖f‖1, t > 0,

or equivalently, for any f ∈ L2,

(1.4) ‖Ttf‖∞ ≤ c(t)‖f‖2, t > 0.

More precisely, (1.2) implies (1.3)&(1.4) with c(t) ≤
√
a(t), and conversely

(1.3) or (1.4) implies (1.2) with a(t) ≤ c2(t/2) (see [D]).
It is known that some regularization properties (for instance ultracon-

tractivity) of the semigroup (Tt)t>0 can be quantified by functional inequal-
ities satisfied by the infinitesimal generator −A. Let us recall two funda-
mental results in that direction.

Let M : (0,∞)→ R be a function. For any y ∈ R, we set

(1.5) Λ(y) = sup
t>0
{ty − 2tM(1/2t)} ∈ (−∞,∞].

The function Λ is the Legendre transform of t 7→ 2tM(1/2t).
In [C, Proposition II.2], T. Coulhon proved that if (Tt)t>0 is ultracon-

tractive with c(t) = eM(t) in (1.3), then the Nash type inequality

(1.6) Θ(‖f‖22) ≤ E(f), f ∈ D(E), ‖f‖1 ≤ 1,

holds true with Θ(x) = xΛ(log x), x > 0, and Λ given by (1.5). This specific
form of Θ will be of importance for the formulation of our main result,
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Theorem 1.1, as already noticed in [BM] in a particular case. This inequality
can be seen as a weak form of Sobolev inequality (see for instance [C],
[BCLS], [VSC], [W2], [BGL]).

On the other hand, E. B. Davies and B. Simon [D, Theorem 2.2.3] proved
that if (Tt)t>0 is ultracontractive with c(t) = eβ(t) in (1.3), then for any
non-negative function f in D(E) ∩ L1 ∩ L∞, we have f2 log f ∈ L1 and the
following super log Sobolev inequality (1.7) holds true:

(1.7)
�

X

f2 log f dµ ≤ tE(f) + β(t)‖f‖22 + ‖f‖22 log ‖f‖2, t > 0.

This inequality is modeled on the celebrated Gross inequality [G1] and equiv-
alent to supercontractivity of the semigroup (Tt)t>0, i.e. for each t > 0, Tt is
bounded from L2 to L4 (see [G2, Theorem 3.7]).

T. Coulhon’s and Davies–Simon’s results assert that ultracontractivity
of the semigroup implies the Nash type inequality (1.6) and the super log
Sobolev inequality (1.7) respectively for the generator of the semigroup.
Then it is natural to ask whether there exist direct relationships between
Nash type and super log Sobolev inequalities without the ultracontractivity
assumption.

Our main theorem provides a positive answer to that question.

Main Theorem 1.1. Let E be a Dirichlet form with domain D(E). Then
the following statements are equivalent:

(1) There exists M1 : (0,∞)→ R such that, for any f ∈ D(E),

(1.8)
�

X

f2 log

(
|f |
‖f‖2

)
dµ ≤ tE(f) +M1(t)‖f‖22, t > 0.

(2) There exists M2 : (0,∞) → R such that, for any f ∈ D(E) ∩ L1

with ‖f‖1 ≤ 1,

(1.9) ‖f‖22Λ(log ‖f‖22) ≤ E(f)

where Λ is defined by (1.5) with M = M2.

(3) There exists M3 : (0,∞) → R and constants c1, c2 > 0 such that,
for any f ∈ D(E) ∩ L1 with ‖f‖22 = 1,

(1.10) c1
�

X

f2Λ+(log c22f
2) dµ ≤ E(f)

with Λ+ = sup(Λ, 0) where Λ is defined by (1.5) with M = M3.

The proof is given in Section 2.

Remark 1.2. (1) The super log Sobolev inequality (1.8) implies the
Nash type inequality (1.9) with M = M2 = M1 in the definition (1.5) of Λ.
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(2) The Nash type inequality (1.9) implies the Orlicz–Sobolev inequality
(1.10) with M3 = M2, c1 = 16−1, c2 = 8−1.

(3) The Orlicz–Sobolev inequality (1.10) implies the super log Sobolev
inequality (1.8) with M1(t) = M3(c3t) + c4 and c3 = c1, c4 = − log c2.

(4) We do not need to assume that E is a Dirichlet form for the implica-
tions (1.8)⇒(1.9) and (1.10)⇒(1.8) to hold. But the assumption that E is
a Dirichlet form is fundamental for (1.9)⇒(1.10).

(5) Inequalities similar to (1.10) (called the F-Sobolev inequality) have
been obtained by F.-Y. Wang under a super Poincaré inequality assumption
(see [W1], [W2]). See also the comments at the end of Section 3.2.

As a direct consequence of Theorem 1.1, we can provide an alternative
proof of the Nash type inequality (1.6) under an ultracontractivity assump-
tion. Indeed, we just need to apply successively Davies–Simon’s result to
deduce the super log Sobolev inequality (1.7), and Theorem 1.1 to get ex-
actly the Nash type inequality (1.6). Likewise, we can provide an alternative
proof of the super log Sobolev inequality (1.7) (with some loss on β) under
an ultracontractivity assumption. Here again, we just need to apply succes-
sively Coulhon’s result to deduce (1.6), and Theorem 1.1 to get (1.7).

In practice, functional inequalities are used to prove ultracontractivity,
and hence to get bounds on the heat kernel of the semigroup, for instance,
under a Nash type inequality or a super log Sobolev inequality assumption.
Here, we briefly discuss these aspects of the theory by first quoting a result of
T. Coulhon which assumes a Nash type inequality. We restrict the statement
to the class of submarkovian semigroups. For a more general statement, we
refer to [C, Proposition II.1].

Assume that a quadratic form E(f) = (Af, f) satisfies (1.6) for a con-
tinuous function Θ : [0,∞)→ [0,∞) such that 1/Θ is integrable at infinity.
Then the semigroup (Tt)t>0 is ultracontractive and satisfies

(1.11) ‖Ttf‖∞ ≤ m(t)‖f‖1, 0 < t < t0,

where m is the inverse function of y 7→ p(y) =
	∞
y

dx
Θ(x) , y > 0, and t0 =

1
2

	∞
0

dx
Θ(x) ∈ (0,∞] (see also [BGL, Theorem 7.4.5] for a variant).

On the other hand, Theorem 2.2.7 and its Corollary 2.2.8 in [D], which
assume a super log Sobolev inequality, allow us to deduce ultracontractivity
under additional conditions on β in (1.7). This method has been refined by
D. Bakry [B] (see also [BGL, Theorem 7.1.2]). We will not go into details of
this refinement. Indeed, at the level of functional inequalities Theorem 1.1
says that super log Sobolev inequalities imply (in fact are equivalent to) Nash
type inequalities with exactly the same formula (1.6) forΘ as in T. Coulhon’s
result. So, we will emphasize this first method to get ultracontractive bounds
for various classes of behaviour in Section 3. We refer to [B], [BGL], [C], [D],
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[DS], [W2] (and references therein) for more details on ultracontractivity.
Note that sharp Euclidean ultracontractive bounds (heat kernel bounds)
may be deduced from the sharp super log Sobolev inequality in Rn (see
[BCL], [B], and also [BGL, Corollary 7.1.6] for a precise statement).

In Section 3, our goal is to briefly describe some classes of ultracontrac-
tivity and the corresponding functional inequalities using Theorem 1.1 and
known results such as (1.6), (1.7), (1.11). In particular, we examine two
classes of ultracontractivity where ultracontractivity and the corresponding
functional inequalities are equivalent. We also exhibit a third class of ul-
tracontractivity where the equivalence between ultracontractivity and the
functional inequalities (1.8), (1.9) and (1.10) does not hold. In Section 4, we
provide examples for these three particular classes of ultracontractivity. The
non-equivalence will be confirmed by the counterexample of E. B. Davies and
B. Simon described in Section 4.3. This leads us to discuss open problems
in Section 5.

The paper is organized as follows.
In Section 2, we prove our main result, Theorem 1.1. In Section 3, we

exhibit the functional inequalities for the polynomial, one-exponential and
double-exponential classes of ultracontractivity. In Section 4, we briefly de-
scribe some examples belonging to these classes and the Davies–Simon coun-
terexample. In Section 5, we suggest some open problems on the double-
exponential class and beyond.

2. Proof of Theorem 1.1

2.1. Super log Sobolev inequality implies Nash type inequality.
We prove that (1.8) implies (1.9) with M2=M1 using the following convexity
argument.

Lemma 2.1. If f ∈ L1 ∩ L2 with f ≥ 0 and ‖f‖1 ≤ 1 then

(2.1) ‖f‖22 log ‖f‖2 ≤
�

X

f2 log(|f |/‖f‖2) dµ.

Proof. First, assume ‖f‖1 = 1. We deduce (2.1) by applying Jensen’s
inequality to the convex function Ψ(x) = x log x and the probability measure
dν = |f |dµ. For any f ∈ L1∩L2 with f not identically zero, by homogeneity
we get

(2.2) ‖f‖22 log (‖f‖2/‖f‖1) ≤
�

X

f2 log(|f |/‖f‖2) dµ,

or equivalently,

(2.3) ‖f‖22 log ‖f‖2 ≤
�

X

f2 log(|f |/‖f‖2) dµ+ ‖f‖22 log ‖f‖1.

If we assume ‖f‖1 ≤ 1 then log ‖f‖1 ≤ 0 and we get (2.1) immediately.
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Now, we assume that the super log Sobolev inequality (1.8) holds true.
By Lemma 2.1, we deduce that for any function f in D(E) with ‖f‖1 ≤ 1,

(2.4) ‖f‖22 log ‖f‖2 ≤ sE(f) +M1(s)‖f‖22, s > 0.

Hence, for any s > 0,

‖f‖22
(

1

2s
log ‖f‖22 −

1

s
M1(s)

)
≤ E(f).

Taking the supremum over s > 0 yields

‖f‖22Λ(log ‖f‖22) ≤ E(f)

where Λ is defined by (1.5) with M = M1. Thus the Nash type inequality
(1.9) and Remark 1.2(1) are proved.

Remark 2.2. Note that we do not use any assumption on the func-
tional E in this proof. Moreover, the function Λ is automatically finite on
the set {log ‖f‖22 : f ∈ D(E) ∩ L1, ‖f‖1 ≤ 1}.

2.2. Nash type inequality implies Orlicz–Sobolev type inequal-
ity. We use the cut-off method developed in [BCLS] to show that the Nash
type inequality (1.9) implies the Orlicz–Sobolev type inequality (1.10). The
fact that E is a Dirichlet form is fundamental, due to the next lemma.

Lemma 2.3. Let E be a Dirichlet form with domain D(E). Let f be any
non-negative function in D(E). For any ρ > 1 and k ∈ Z, set

fρ,k = (f − ρk)+ ∧ ρk(ρ− 1).
Then fρ,k ∈ D(E) and ∑

k∈Z
E(fρ,k) ≤ E(f).(2.5)

This lemma can be compared with Corollary 2.3 of [BCLS] and Lemma
3.3.2 of [W2]. In what follows, we will write E(f) or E(f, f). The starting
point is the following important remark (1).

Remark 2.4. Let λ ≥ 0. Let g ∈ D(E) with g ≥ 0. Denote the support
of g by supp(g) = {x ∈ X : g(x) 6= 0}. If h ∈ D(E) with 0 ≤ h ≤ λ satisfies
h = λ on supp(g), then E(h, g) ≥ 0 (see [A, (ii) p. 2]).

We prove the remark as follows. For any ε > 0, we have (h+εg)∧λ = h.
By the Dirichlet property,

E(h) = E((h+ εg) ∧ λ) ≤ E(h+ εg) = E(h) + 2εE(h, g) + ε2E(g).

Subtracting E(h) from both sides and dividing by ε > 0 yields

0 ≤ 2E(h, g) + εE(g).

When ε goes to 0, we get E(h, g) ≥ 0 as stated.

(1) The main argument was pointed out to us by G. Allain (see [A, pp. 2, 5]).
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Proof of Lemma 2.3. Let f ∈ D(E) be non-negative. Fix ρ > 0. For any
n ∈ N, we set

fnρ = f ∧ ρn+1 = ρn+1

((
f

ρn+1
∧ 1

)
∨ 0

)
.

By the Dirichlet property, fnρ , f
−(n+1)
ρ and fρ,k belong to D(E). Indeed, each

one of these expressions is a normal contraction of f of the form φ(f) with
φ(u) = ((u− a) ∨ 0) ∧ b where a, b > 0 (see [F, p. 5]).

Applying Remark 2.4 to h = f
−(n+1)
ρ , λ = ρ−n and g = fρ,k with k =

−n, . . . , n, we deduce E(fρ,k, f
−(n+1)
ρ ) ≥ 0 for k = −n, . . . , n.

Let (p, k) ∈ Z2 with p < k. Once again, we apply Remark 2.4 with
h = fρ,p, λ = ρp(ρ − 1) and g = fρ,k to get E(fρ,p, fρ,k) ≥ 0. From the
relation

fnρ =

n∑
k=−∞

fρ,k =

n∑
k=−n

fρ,k + f−(n+1)
ρ

and the Dirichlet property, we obtain

E(f) ≥ E(fnρ ) = E
( n∑
k=−n

fρ,k

)
+ 2

n∑
k=−n

E(fρ,k, f
−(n+1)
ρ ) + E(f−(n+1)

ρ ).

Since the last two terms are non-negative, and by developing the third term,
we get

E(f) ≥
n∑

k,p=−n
E(fρ,p, fρ,k) =

n∑
k=−n

E(fρ,k, fρ,k) +

n∑
k 6=p, k,p≥−n

E(fρ,p, fρ,k).

Since the last term of the right-hand side is non-negative, we arrive at

E(f) ≥
n∑

k=−n
E(fρ,k, fρ,k).

The lemma is proved by letting n→∞.

We are now in a position to prove the Orlicz–Sobolev inequality (1.10).
We divide the proof into two steps.

Step 1. Let f ∈ L2 be a non-negative function such that ‖f‖2 = 1. Let
k ∈ Z. We define fk := f2,k = (f − 2k)+ ∧ 2k. By Hölder’s inequality,

(2.6) ‖fk‖21 ≤ ‖fk‖22µ(f ≥ 2k).

On the other hand, by Bienaymé–Chebyshev’s inequality we have

(2.7) 22(k−1)µ(f ≥ 2k) ≤ ‖fk−1‖22 ≤ ‖f‖22 ≤ 1.

Combining inequalities (2.6) and (2.7), we obtain

(2.8) 2k−1 ≤ ‖fk‖2/‖fk‖1.
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Again by Bienaymé–Chebyshev’s inequality, we have

(2.9) 22kµ(f ≥ 2k+1) ≤ ‖fk‖22.

Step 2. Assume that the Nash type inequality (1.9) holds true. For
convenience set B(x) = Λ(log x2). For a function H defined on [0,∞), we
define its non-negative part H+ by H+(x) = max(H(x), 0), x ≥ 0. As the
quadratic form E is non-negative, for any g ∈ D(E) ∩ L1 with ‖g‖1 = 1 we
have

‖g‖22Λ+(log ‖g‖22) = ‖g‖22B+(‖g‖2) ≤ E(g).

By homogeneity, this implies that for any g ∈ D(E) ∩ L1 and g 6= 0,

(2.10) ‖g‖22Λ+(log ‖g‖22/‖g‖21) = ‖g‖22B+(‖g‖2/‖g‖1) ≤ E(g).

Let f and fk := f2,k be as in Lemma 2.3. Applying (2.10) to g = fk yields

‖fk‖22B+(‖fk‖2/‖fk‖1) ≤ E(fk).

Since B+ is a non-negative non-decreasing function, from (2.8) and (2.9) we
obtain

(2.11) 22kB+(2k−1)µ(f ≥ 2k+1) ≤ E(fk), k ∈ Z,

for any non-negative function f ∈ D(E) ∩ L1. Let λ > 0, to be chosen later.
We discretize the integral

�

X

f2B+(λf) dµ =
∑
k∈Z

�

{2k≤f<2k+1}

f2B+(λf) dµ

≤
∑
k∈Z

22(k+1)B+(λ2k+1)µ(f ≥ 2k)

≤
∑
k∈Z

22(k+2)B+(λ2k+2)µ(f ≥ 2k+1).

We choose λ = 2−3 to get
�

X

f2B+(f/8) dµ ≤ 24
∑
k∈Z

22kB+(2k−1)µ(f ≥ 2k+1).

Applying (2.11) and Lemma 2.3 with ρ = 2 leads to

(2.12)
�

X

f2B+(f/8) dµ ≤ 24
∑
k∈Z
E(fk) ≤ 24E(f).

So, the Orlicz–Sobolev type inequality (1.10) is proved for f ≥ 0, ‖f‖2 = 1
with c1 = 1/16 and c2 = 1/8. For real-valued functions f ∈ D(E), we obtain
the same conclusion by using E(|f |) ≤ E(f), which is a consequence of the
Dirichlet property. This completes the proof of (1.10) and of Remark 1.2(2).
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2.3. Orlicz–Sobolev type inequalities implies super log Sobolev
inequalities. In this section, we prove the super log Sobolev inequality
(1.8) under the assumption of the Orlicz–Sobolev type inequality (1.10).

From the definition (1.5) of Λ we have, for any t > 0 and y ≥ 0,

ty/2− tM3(1/t) ≤ Λ(y) ≤ Λ+(y).

By the change of variable t = (c1s)
−1 for s > 0 with c1 > 0 as in (1.10), this

yields

y/2 ≤ c1sΛ+(y) +M3(c1s).

Let f ∈ D(E). Set y = log(c22f
2) with c2 > 0 as in (1.10). Hence

log(c2|f |) ≤ c1sΛ+(log(c22f
2)) +M3(c1s).

Multiplying this expression by f2 and integrating on X with respect to µ
leads to�

X

f2 log |f | dµ+ (log c2)‖f‖22 ≤ sc1
�

X

f2Λ+(log(c22f
2))dµ+M3(c1s)‖f‖22

≤ sE(f) +M3(c1s)‖f‖22.
The last inequality follows from the assumption (1.10). Thus we easily de-
duce (1.8) with M1(s) = M3(c3s) + c4, s > 0, and c3 = c1, c4 = − log c2.

2.4. Remarks and comments

2.4.1. A remark about the cut-off method. For the proof of Orlicz–
Sobolev type inequalities of Theorem 1.1, we have applied the cut-off method
with fk, i.e. fρ,k with ρ = 2. A similar proof of (1.10) under the assumption
of (1.9) can be performed with fρ,k of Lemma 2.3 for any ρ > 1. In that case,
we apply successively the circle of implications {(1.8) with M1} ⇒ (1.9) ⇒
(1.10) ⇒ {(1.8) with M̃1}. For any ρ > 1, we have

M̃1(t) = M1(t(ρ− 1)2ρ−4) + log(ρ3(ρ− 1)−1).

In terms of equivalence of these functional inequalities, it is of inter-
est to obtain M̃1 as close to M1 as possible, up to the additive constant
log(ρ3(ρ − 1)−1). Since in applications we can always assume that M1 is
a non-increasing function, we need to optimize the choice of ρ > 1 of the
expression M1(t(ρ − 1)2ρ−4) for any t > 0, i.e. to optimize the function
ρ 7→ (ρ− 1)2ρ−4 over (1,∞). This function attains exactly its supremum at
ρ = 2. This justifies our choice of ρ = 2 for the proof in Section 2.2.

2.4.2. Comments. After the submission of this paper, it was brought
to our attention that the relationship between the statement (1) of our
main Theorem 1.1 for a fixed t and a closed version of (2), namely (2.4)
for a fixed t, is implicitly described in Proposition 5.1.8, p. 241, of the very
recent book [BGL]. This is proved under the stronger assumptions that the
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Dirichlet form E is given by a carré du champ, satisfies the diffusion property,
is ergodic and the measure is invariant for the associated semigroup. These
conditions are imposed by the use of [BGL, Proposition 3.1.17]. Note that,
unlike Proposition 3.1.17 of [BGL], our Lemma 2.3 is valid for all Dirichlet
forms without additional assumptions.

We also refer the reader to [BGL] for an introduction to the subject of
functional inequalities treated here (see, in particular, Chapters 5 and 7) and
also for related topics, in particular, for the measure-capacity formulations
of Nash type inequalities which are not considered in this paper (see [BGL,
Chap. 8]). Similarly, one can consult the book by F.-Y. Wang [W2].

3. Examples of classes of ultracontractivity. In this section, we
consider three special classes of ultracontractivity. For the first two classes,
we state the equivalence between the specific ultracontractivity bound and
the corresponding functional inequalities. For the third class, ultracontrac-
tivity is a stronger property than the corresponding functional inequalities.

3.1. Polynomial class of ultracontractivity. We say that a semi-
group (Tt)t>0 with generator A belongs to the polynomial class of ultracon-
tractivity of order ν > 0 if c(t) = c1t

−ν/4 in (1.3) with c1 > 0. This case
is most common in applications: see for instance [N], [CKS], [VSC], [G],
[BGL]. We recall that E(f) = (

√
Af,
√
Af) with f ∈ D(

√
A). The following

statements are equivalent:

(1) The semigroup (Tt)t>0 belongs to the polynomial class of ultracon-
tractivity of order ν.

(2) The generator A satisfies the Nash inequality

‖f‖2+4/ν
2 ≤ c2E(f)‖f‖4/ν1 .

(3) The generator A satisfies the super log Sobolev inequality�

X

f2 log(|f |/‖f‖2) dµ ≤ tE(f) + log(c3t
−ν/4)‖f‖22, t > 0.

(4) The generator A satisfies the Orlicz–Sobolev type inequality�

X

f2+4/ν dµ ≤ c4E(f)‖f‖4/ν2 .

(5) The generator A satisfies the Sobolev inequality (ν > 2)

‖f‖22ν/(ν−2) ≤ c5E(f).

(6) The generator A satisfies the super Poincaré inequality

‖f‖22 ≤ tE(f) + c6t
−ν/2‖f‖21, t > 0,

for some positive constants ci, i = 1, . . . , 6.
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The equivalences between polynomial ultracontractivity, a Nash inequal-
ity, a super log Sobolev inequality and an Orlicz–Sobolev type inequality are
deduced from (1.6), (1.7), (1.11) and Theorem 1.1. A Nash inequality is a
super Poincaré inequality optimized over t > 0. Historically, the first proof
of equivalence between ultracontractivity and a Sobolev inequality can be
found in [V] and the one between ultracontractivity and a Nash inequal-
ity (and implicitly a super Poincaré inequality) in [CKS] inspired by [N].
A direct proof of the fact that a Nash inequality implies a Sobolev inequal-
ity using the cut-off method can be found in [BCLS]. The Orlicz–Sobolev
inequality (4) is also called Moser’s inequality.

3.2. One-exponential class of ultracontractivity. We say that a
semigroup (Tt)t>0 with generator A belongs to the one-exponential class of
ultracontractivity of order α > 0 if c(t) = exp(c1t

−α) in (1.3) with c1 > 0.
The following statements are equivalent:

(1) The semigroup (Tt)t>0 belongs to the one-exponential class of ultra-
contractivity of order α.

(2) The generator A satisfies the Nash type inequality (1.9) with

(3.1) Λ(log x) = c2[log+(c3x)]1+1/α.

(3) The generator A satisfies the super log Sobolev inequality (1.7) with
β(t) = c4t

−α.
(4) The generator A satisfies the Orlicz–Sobolev type inequality (1.10)

with Λ as in (3.1).

Here ci are positive constants for i = 1, . . . , 4.
The equivalences between one-exponential ultracontractivity, a Nash

type inequality, a super log Sobolev inequality and a Orlicz–Sobolev type
inequality can be deduced from (1.6), (1.7), (1.11) and Theorem 1.1.

These results apply to the family of examples of Section 4.1 described
below.

Comments. First, we notice the following fact. The usual semigroup
proof of a super Poincaré inequality under the ultracontractivity assumption

‖Ttf‖2 ≤ c(t)‖f‖1, t > 0,

is as follows. Let f ∈ D(E) ∩ L1 and t > 0. By symmetry and semigroup
properties, we obtain

‖f‖22 − ‖Tt/2f‖22 = (f − Ttf, f) =

t�

0

(ATs/2f, Ts/2f) ds

≤
t�

0

(Af, f) ds = tE(f)
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because s 7→ (ATs/2f, Ts/2f) is non-increasing for all f ∈ D(E). Hence, the
following super Poincaré inequality is satisfied:

(3.2) ‖f‖22 ≤ tE(f) + γ(t)‖f‖21, t > 0,

with γ(t) = c2(t/2). In the case where c(t) = exp[(c/2)(1 + (2t)−1/δ)] for
some δ > 0, we get γ(t) = exp[c(1 + t−1/δ)]. By [W1, Corollary 3.3], this
implies the so-called F-Sobolev inequality of index δ,

(3.3)
�

X

f2[log(1 + f2)]δ dµ ≤ c1E(f) + c2‖f‖22

for some constants c1, c2 > 0.
But below we follow another route and deduce an improved F-Sobolev

inequality under the same assumption of ultracontractivity by using Theo-
rem 1.1. In particular, this will show that (3.2) and (3.3) are not necessarily
sharp for the Dirichlet form E , despite the fact that they are equivalent in
a general framework [W1, Corollary 3.3]. Indeed, in Section 1 we have seen
that the super log Sobolev inequality

(3.4)
�

X

f2 log |f | dµ ≤ tE(f) + (log c(t))‖f‖22 + ‖f‖22 log ‖f‖2, t > 0,

holds true by using [D, Theorem 2.2.3]. Now by applying Theorem 1.1, we
deduce the following F-Sobolev inequality of index δ̃ = δ + 1:

(3.5)
�

X

f2[log(1 + f2)]δ+1 dµ ≤ c1E(f) + c2‖f‖22.

More precisely, we obtain (3.5) from the Orlicz–Sobolev type inequality as-
sociated to (3.1) with α = 1/δ and by adding the term c2‖f‖22. Since we are
considering the one-exponential class of order 1/δ, the index δ̃ = 1 + δ in
(3.5) is now sharp by the results described before these comments. More-
over, by applying [W1, Corollary 3.3] again, we obtain an improved super
Poincaré inequality (3.2) for small t with rate function

γ̃(t) = exp[c̃(1 + t−1/δ̃)], δ̃ = 1 + δ, t > 0,

in place of γ(t) since limt→0 γ̃(t)/γ(t) = 0.
The discussion above reveals some weakness of what we have called the

“usual” semigroup proof of (3.2). But note that the phenomenon described
above does not occur for the polynomial class studied in Section 3.1.

3.3. Double-exponential class of ultracontractivity. We say that a
semigroup (Tt)t>0 with generator A belongs to the double-exponential class
of ultracontractivity of order γ > 0 if c(t) = exp2(c1t

−γ) in (1.3) where
exp2 = exp ◦ exp and c1 > 0. For this class, the situation is quite different.
Ultracontractivity is now strictly stronger than the other functional inequali-
ties introduced in this paper. More precisely, if the semigroup (Tt)t>0 belongs
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to the double-exponential class of order γ > 0 then:

(1) The generator A satisfies the Nash type inequality (1.9) with

(3.6) Λ(log x) = k1 log+(k2x)[(log+)2(k2x)]1/γ .

(2) The generator A satisfies the super log Sobolev inequality (1.7) with
β(t) = exp(k0t

−γ).
(3) The generator A satisfies the Orlicz–Sobolev type inequality (1.10)

with Λ as in (3.6).

Here ki are positive constants for i = 0, 1, 2.

Ultracontractivity implies a Nash type inequality by (1.6) and a super log
Sobolev inequality by (1.7). Theorem 1.1 says that an Orlicz–Sobolev type
inequality is equivalent to a Nash type inequality and a super log Sobolev
inequality. The use of (1.11) fails for the converse. We postpone the dis-
cussion of the non-equivalence of one of these functional inequalities with
ultracontractivity to Section 5. Note that these functional inequalities are
equivalent to each other by Theorem 1.1, independently of the ultracontrac-
tivity assumption.

These results apply to the family of examples of Section 4.2 described
below.

4. Examples of ultracontractive semigroups. In this section, we
briefly describe examples of semigroups belonging to the one-exponential
and double-exponential classes of ultracontractivity for which the results of
Section 3 apply. The polynomial class of ultracontractivity is classical and
many examples of operators can be found in the literature. So, we will not
provide a detailed account of this class but just indicate some examples.
The first is the Laplacian on Rn and examples elaborated on this model (see
[N]). Sub-Laplacians on Lie groups of polynomial growth also provide many
examples (see [VSC] and references therein), as well as Laplace–Beltrami
operators on some Riemannian manifolds (see [G, p. 368]), and Laplacians
on fractals (see e.g. [K]). The list above is not exhaustive.

Here, we focus on examples in the one- and double-exponential classes.
The examples are taken from [B] and concern convolution semigroups on the
infinite-dimensional torus T∞. Other examples can be found for instance in
[BCS, Section 8]. Note that the study of the convolution of distributions of
probability measures on topological groups is an old and vast subject and
goes back at least to [ST]. See also the selected open problems gathered in
the recent paper [S] and references therein.

Let X = T∞ be the product of countably many copies of the torus T with
its ordinary product structure. The group T∞ is an abelian compact group.
We denote by 0 the neutral element and by µ the normalized Haar measure
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of the group. This measure is the countable product of the normalized Haar
measure on T.

Let µt be the Brownian semigroup on T. To a sequence A = {ak}∞k=1 of
positive numbers, we associate the product measure µAt on T∞ defined by

µAt = ⊗∞k=1 µakt, t > 0.

The family (µAt )t>0 of probability measures defines a symmetric convolution
semigroup on T∞ denoted by (TAt )t>0. Ultracontractivity reads

‖TAt ‖1→∞ = µAt (0) ∈ (0,∞]

where µAt (0) denotes the density of µAt (when it exists) evaluated at 0.
The infinitesimal generator A of (TAt )t>0 acts on cylindrical functions, i.e.
functions depending on a finite number of variables, as

Af =

∞∑
k=1

ak
∂2f

∂x2k
.

The associated counting function NA defined by

NA(x) = ]{k ≥ 1 : ak ≤ x}, x > 0,

is of fundamental importance for the study of ultracontractivity, as can be
seen from the following examples.

4.1. Examples in the one-exponential class. Let α > 0. If the
sequence (ak)k≥1 is chosen such that NA(x) ∼ xα as x→∞ then

logµAt (0) ∼ k(α)t−α as t↘ 0(4.1)

(see [B, Theorem 3.18]). Hence, the semigroup (TAt )t>0 belongs to the one-
exponential class of ultracontractivity, and the results of Section 3.2 hold
true for such families of (ak)k≥1. For example, one can take ak = k1/α.

4.2. Examples in the double-exponential class. Let γ > 0. If the
sequence (ak)k≥1 is chosen such that

logNA(x) ∼ xγ/(γ+1) as x→∞,
then

log logµAt (0) ∼ c(γ)t−γ as t↘ 0(4.2)

(see [B, Theorem 3.27]). Hence, the semigroup(TAt )t>0 belongs to the double-
exponential class of ultracontractivity and the results of Section 3.3 hold true
for such families of (ak)k≥1. For example, one can take ak = [log(k + 2)]δ

with δ = (γ + 1)/γ.

4.3. A borderline case of the double-exponential class: Davies–
Simon’s counterexample. In this section, we show that ultracontrac-
tivity and a super log Sobolev inequality are not equivalent properties in
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the double-exponential class. For that purpose, we describe Davies–Simon’s
counterexample, i.e. the generator of a submarkovian semigroup satisfying
the super log Sobolev inequality (1.7) with β(t) = exp(c/t) but not ultra-
contractive (see [DS, Theorem 6.1(b) and Remark 1, p. 359]). Later on, a
more detailed study was provided for a family of examples including this one
in [KKR], [BCL], [BGL, Sect. 7.3]. See also the comments after Proposition
7.3.1 of [BGL] on the examples treated by this proposition concerning the
one- and double-exponential classes.

Let A be the operator Af = ∆f+∇U.∇f defined on smooth functions f
on the real line R with ∆ = −d2/dx2 and let U : R → R be a function of
class C2. Let µ be the invariant measure dµ(x) = e−U(x) dx where dx denotes
the Lebesgue measure on R. The Dirichlet form associated to A is given by
E(f) =

	
R |∇f |

2 dµ. The expected counterexample corresponds to the choice
U(x) = (1+x2) log(1+x2). In the following, we denote by ‖·‖2 the L2-norm
with respect to the measure µ.

Theorem 4.1. Let (Tt)t>0 be the semigroup associated with the infinites-
imal generator A defined above. Then:

(1) The following log Sobolev inequality holds true: for any f ∈ D(E),

(4.3)
�

R

f2 log

(
f2

‖f‖22

)
dµ ≤ tE(f) +H(t)‖f‖22, t > 0,

where H(t) is such that there are constants c3, c4, c
′
3, c
′
4 > 0, with

(4.4) c3e
c4t−1 ≤ H(t) ≤ c′3ec

′
4t
−1

for t small enough.

(2) The Nash type inequality (1.9) and the Orlicz–Sobolev inequality
(1.10) hold true with Λ given by (3.6) where γ = 1.

(3) The semigroup (Tt)t>0 is not ultracontractive.

Gathering the arguments of the proof given in [DS] is rather difficult.
Therefore we propose a direct but different proof of the super log Sobolev
inequality following [BCL]. Here, we do not pretend to novelty. A simple
proof of non-ultracontractivity (using the subsolution method for instance)
is known and well detailed in [KKR, Example 5.3]. Statement (2) is obtained
from (1) and Theorem 1.1.

Proof of Theorem 4.1. Here we only prove the first statement. We divide
the proof into two steps. In the first step, we prove the super log Sobolev
inequality (4.3) with

(4.5) H(t) = −1

2
log(πe2t) + sup

x∈R
Vt(x)
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where Vt(x) = −t
[
−1

2U
′′(x) + 1

4(U ′(x))2
]

+ U(x) = −tV (x) + U(x). In the
second step, we provide the estimates (4.4) of H(t).

Step 1. We follow the arguments of Proposition 3.1 of [BCL] (see also
[BGL, Prop. 7.3.1]). We start from Gross’ inequality which reads

�

R

v2 log

(
v2

‖v‖2
L2(dγ)

)
dγ ≤ 2

�

R

|∇v|2 dγ

where v is a smooth function with compact support and dγ(x) =

(2π)−1/2e−x
2/2 dx is the Gaussian measure. We set G(x) = (2π)−1/2e−x

2/2

and g = v
√
G. By integration by parts, we obtain

�

R

g2 log

(
g2

‖g‖2
L2(dx)

)
dx ≤ 2

�

R

|∇g|2 dx− 1

2
log(2πe2)

�

R

|g|2 dx.

Let h be a smooth function with compact support on R. We set g(x) =

h(x
√

2−1t) with t > 0. The previous inequality becomes

�

R

h2 log

(
h2

‖h‖2
L2(dx)

)
dx ≤ t

�

R

|∇h|2 dx− 1

2
log(πe2t)

�

R

|h|2 dx.

Now, let f be a smooth function with compact support on R. Choose h =
fe−U/2 in the preceding inequality. Again by integration by parts, we obtain

�

R

f2 log

(
f2

‖f‖2
L2(dµ)

)
dµ ≤ t

�

R

|∇f |2 dµ− 1

2
log(πe2t)‖f‖2L2(dµ)

+
�

R

(
−t
[
−1

2
U ′′(x) +

1

4
(U ′(x))2

]
+ U(x)

)
f2 dµ.

This immediately implies (4.3) with H given by (4.5).

Step 2. Upper bound on H(t). Let 0 < t < 1. To obtain the upper bound
(4.4) on H(t), it is enough to find a similar upper bound on Vt where Vt(x)
is given by

Vt(x) = t
[
−x2 log2(e(1+x2))+log(e(1+x2))

]
+

2tx2

1 + x2
+(1+x2) log(1+x2).

The function Vt(x) is clearly uniformly bounded by a constant on the set
{x ∈ R : |x| ≤ 1} when 0 < t < 1. By symmetry, it suffices to bound the
supremum of Vt(x) for x ∈ [1,∞). For any δ > 0 and x ≥ 1, it is easily
shown that

δe log2(e(1 + x2)) + log(e(1 + x2)) ≤
(
δe+

1

log(2e)

)
x2 log2(e(1 + x2)).
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Now, choose δ such that 0 < δ ≤ 1
2e

log 2
1+log 2 . This implies δe+ 1

1+log 2 ≤ 1−δe
and

δe log2(e(1 + x2)) + log(e(1 + x2)) ≤ (1− δe)x2 log2(e(1 + x2)).

Then we deduce

−x2 log2(e(1 + x2)) + log(e(1 + x2)) ≤ δ[−e(1 + x2) log2(e(1 + x2))]

for all x ≥ 1. This yields

Vt(x) ≤ tδ[−e(1 + x2) log2(e(1 + x2))] + 2t+ e(1 + x2) log(e(1 + x2)).

Define

Ws(y) := −sy log2 y + y log y + 2t with y > 1.

The functionWs attains its supremum at y0 = exp((1−2s+
√

1+4s2)(2s)−1).
Since Vt(x) ≤Ws(y) for any x and y such that y = e(1 +x2) and s = tδ, we
deduce that

sup
x≥1

Vt(x) ≤Ws(y0) ≤
e−1

2s+
√

1 + 4s2
exp

(
1

2s
+

√
1 + 4s2

2s

)
+ 2t.

Thus for any 0 < t <
√
3

2δ , we have

sup
x≥1

Vt(x) ≤ e−1

2δt
exp

(
3

2δt

)
+

√
3

δ
.

From this inequality, we deduce the upper bound (4.4) on H(t) for t small
enough.

Lower bound on H. Let t > 0 and x0 > 0 be such that log(e(1 + x20)) =
(2t)−1. Thus for any 0 < t < 1/8,

sup
x∈R

Vt(x) ≥ Vt(x0) =

(
1

4t
− 1

)
e

1
2t
−1 +

1

4t
+

1

2
+ 2t(1− e1−

1
2t ).

Thus

sup
x∈R

Vt(x) ≥
(

1

4t
− 1

)
e

1
2t
−1 ≥ 1

8t
e

1
2t
−1 ≥ e−1e

1
2t .

This proves the lower bound (4.4) on H(t) and completes the proof of the
first statement of Theorem 4.1.

5. Open problems and concluding remarks. In this section, we ad-
dress questions about equivalence between ultracontractivity and the func-
tional inequalities introduced in this paper for the double-exponential class
and beyond this class. These problems deserve to be studied due to the
existence of many different ultracontractivity behaviours (see for instance
[BCS, Sections 6 and 8]).

Here is a list of questions and open problems.
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Equivalence theorems.

(i) To the authors’ knowledge, the characterization of the largest class of
functions Θ in the Nash type inequality or Λ in the Orlicz–Sobolev inequality
or β in the super log Sobolev inequality for a generator to be equivalent to
ultracontractivity of the semigroup remains an open problem.

(ii) It would be of interest to describe new stable classes of ultracontrac-
tivity as in Sections 3.1 and 3.2, in view of (i).

Sharpness of known theorems.

(iii) By (1.6), ultracontractivity for a semigroup with c(t) = exp2 (kt−γ)
in (1.3) implies a Nash type inequality for the generator with Θ of the form

Θ(x) ' x(log x)(log log x)1/γ for x large enough.

It would be interesting to know whether there are (Dirichlet) operators such
that both ultracontractivity and a Nash type inequality are sharp with c(t)
and Θ(x) as above, for all or some γ > 0. If the answer is positive, this
would show that (1.6) is sharp for the double-exponential class.

(iv) In the opposite direction, if an operator satisfies a Nash type inequal-
ity with Θ(x) ' x(log x)(log log x)1/γ for x large enough then by (1.11) the
semigroup is ultracontractive with c(t) = exp2(kt

−α) and the defective ex-
ponent α = γ/(1− γ) when γ ∈ (0, 1). It would be interesting to know
whether there are (Dirichlet) operators such that both ultracontractivity
and a Nash type inequality are sharp with Θ(x) and c(t) as above for some
or all γ ∈ (0, 1). If the answer is positive, this would show that (1.11) is
sharp for the double-exponential class.

(v) Also in another direction, if an operator satisfies a stronger Nash type
inequality with Θ(x) ' x(log x)(log log x)1/γ+1 for x large enough then by
(1.11) the semigroup is ultracontractive with c(t) = exp2 (kt−γ). A similar
question to the one of (iv) arises for some or all γ > 0. If the answer is
positive, this would show that (1.11) is sharp but (1.6) is not.

Concluding remarks. At present, we are not able to conjecture a gen-
eral equivalence theorem. In this regard, it would be interesting to compare
Theorem 2.2.7 of [D] and Coulhon’s result (1.11) in light of our Theorem 1.1
(see also [BGL, Theorems 7.1.2 and 7.4.5]). Indeed, such a relation is not
clear despite the fact that ultracontractivity (1.11) appears to be more direct
for the double-exponential class. In that direction, the contribution of The-
orem 1.1 is important since it describes the exact correspondence between
super log Sobolev inequalities and Nash type inequalities. As a consequence,
it should be possible to compare the ultracontractive bounds obtained by
both methods discussed above. The authors of this paper do not know if
such a comparison is really possible due to the fact that Theorem 7.1.2 of
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[BGL] treats also hypercontractivity and Theorem 7.4.5 of [BGL] appar-
ently does not. A restricted open problem is to find what general conditions
on β in the super log Sobolev inequality (1.7) and Λ in the Nash type in-
equality (1.6) related by (1.5) lead to comparable ultracontractive bounds
by applying both methods.

To conclude, we conjecture that the super log Sobolev profile H0 defined
by

(5.1) H0(t) = sup
{ �

X

f2 log f2 dµ− tE(f) : f ∈ D(E), ‖f‖22 = 1
}
, t > 0,

of Davies–Simon’s counterexample satisfies the same lower estimate as H in
(4.4). Note that the upper bound holds trivially by minimality of H0.

Acknowledgements. The authors thank the referee(s) for their com-
ments and suggestions leading to improvements of this paper, and in par-
ticular for drawing our attention to the very recent book [BGL].

REFERENCES

[A] G. Allain, Sur la représentation des formes de Dirichlet, Ann. Inst. Fourier
(Grenoble) 25 (1975), no. 3-4, 1–10.
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