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SEPARABLE AND FROBENIUS MONOIDAL HOM-ALGEBRAS

BY

YUANYUAN CHEN and XIAOYAN ZHOU (Nanjing)

Abstract. As generalizations of separable and Frobenius algebras, separable and
Frobenius monoidal Hom-algebras are introduced. They are all related to the Hom-Fro-
benius-separability equation (HFS-equation). We characterize these two Hom-algebraic
structures by the same central element and different normalizing conditions, and the
structure of these two types of monoidal Hom-algebras is studied. The Nakayama auto-
morphisms of Frobenius monoidal Hom-algebras are considered.

1. Introduction. Hom-type algebras appeared first in physical con-
texts, in connection with twisted, discretized or deformed derivatives and
corresponding generalizations, discretizations and deformations of vector
fields and differential calculus. The notion of Hom-Lie algebras was intro-
duced by Hartwig, Larsson, and Silvestrov [19, 20, 16] as part of a study
of deformations of Witt algebras and Virasoro algebras. In a Hom-Lie al-
gebra, the Jacobi identity is twisted by a linear map called the Hom-Jacobi
identity,

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0,

where α is a Lie algebra endomorphism. Because of their close relation to
discrete and deformed vector fields and differential calculus, Hom-Lie alge-
bras are widely studied recently: see [26, 2, 36, 38, 1, 17, 10, 30].

Hom-associative algebras play the role of associative algebras in the
Hom-Lie setting. They were introduced by Makhlouf and Silvestrov [24].
Hom-associative algebras and their related structures have recently become
rather popular, due to the prospect of having a general framework in which
one can produce many types of natural deformations of algebras, includ-
ing Hom-coassociative coalgebras, Hom-Hopf algebras, Hom-alternative al-
gebras, Hom-Jordan algebras, Hom-Poisson algebras, Hom-Leibniz algebras,
infinitesimal Hom-bialgebras, Hom-power associative algebras, quasi-trian-
gular Hom-bialgebras (see [15, 23, 26, 37, 39, 6, 11]). Furthermore, some
categories of Hom-modules on Hom-Hopf algebras are studied, such as the
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category of Hom-Hopf modules and the category of Yetter–Drinfel’d Hom-
modules [13].

Makhlouf and Silvestrov [25, 26] further investigate Hom-associative al-
gebras and Hom-coassociative coalgebras. Here the associativity of algebras
and the coassociativity of coalgebras are twisted by two different endo-
morphisms. Hom-bialgebras are both Hom-associative algebras and Hom-
coassociative coalgebras such that comultiplication and counit are mor-
phisms of algebras. These objects are slightly different from the ones studied
in this paper (see Section 2).

Frobenius extensions and separable extensions are two fundamental con-
cepts in the theory of (non)commutative rings. The concept of Frobenius
algebras is important because of its connections to such diverse areas as
group representations, homology of a compact oriented manifold, topological
quantum field theories, quantum cohomology, Gorenstein rings in commuta-
tive algebras, Hopf algebras, coding theory, Lie quasi-Frobenius algebras, the
classical (quantum) Yang–Baxter equation (see [3, 4, 5]). In addition, there is
a “quantum version” of the classical result that any finite-dimensional Hopf
algebra is Frobenius. The main properties of Frobenius algebras were de-
veloped by Nakayama [28]. The Nakayama automorphism is a distinguished
k-algebra automorphism of a Frobenius algebra A which measures how far
A is from being a symmetric algebra, where k is a fixed field. The automor-
phism is the identity if and only if A is symmetric. To solve the problem of
whether a symmetric algebra is independent of k, Murray [27] shows that the
Nakayama automorphism of a Frobenius algebra over k is independent of k.

The existing versions of Maschke’s Theorem provide the notion of sepa-
rable functors (see [8]), which is applied to the category of representations.
Caenepeel et al. [7] present a unified approach to the study of separable
and Frobenius algebras. To do this, Frobenius-separability equation (FS-
equation) is introduced, whose solution also satisfies the braided equation
(which is in a sense equivalent to the quantum Yang–Baxter equation).
As the main result, the structure of separable and Frobenius algebras is
investigated in [9]. Naturally, we are interested in these two structures in
Hom-setting. We have performed a preliminary study of monoidal Hom-Hopf
algebras with Frobenius and separable property. In [11] we discuss the prob-
lem of when finite-dimensional monoidal Hom-Hopf algebras are Frobenius
associated with integral spaces and describe the semisimplicity and separa-
bility of monoidal Hom-Hopf algebras by proving a Maschke type theorem
for monoidal Hom-Hopf algebras. We now wish to study Frobenius monoidal
Hom-algebras and separable monoidal Hom-algebras from a unifying point
of view. Moreover, we want to see whether the Nakayama automorphism of
a Frobenius monoidal Hom-algebras in the Hom-category H̃(Mk) is inde-
pendent of the field.
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The main purpose of this paper is to study the structure of Frobenius and
separable monoidal Hom-algebras related to the Hom-Frobenius-separability
equation (HFS-equation). The paper is organized as follows. In Section 3,
we introduce the HFS-equation and study its matrix form. In Section 4, we
characterize Frobenius and separable monoidal Hom-algebras by the same
central element and different normalizing conditions, and study the structure
of these two types of monoidal Hom-algebras. In Section 5, we prove that the
Nakayama automorphism of a Frobenius monoidal Hom-algebra in H̃(Mk)
is independent of the field k.

Throughout the paper, all vector spaces, tensor products and homomor-
phisms are over k. We use Sweedler’s notation for coalgebras and comodules:
For a coalgebra C, we write its comultiplication ∆(c) = c1⊗c2, for any c ∈ C;
for a right C-comodule M , we denote its coaction by ρ : m 7→ m(0) ⊗m(1),
for any m ∈ M , where we omit the summation symbols for convenience.
The symbol τ denotes the transposition map.

Throughout this paper we freely use the Hopf algebras and coalgebras
terminology introduced in [14, 29, 32, 35]. The reader is also referred to [34]
for basic facts on Frobenius algebras, related Hopf algebras, and their ap-
plications.

The authors were informed by the Editor that the three papers [12, 21,
22], related to the subject of our paper, are accepted for publication.

2. Preliminaries. Let Mk = (Mk,⊗, k, a, l, r) be the category of k-
modules. We define a new monoidal categoryH(Mk). The objects ofH(Mk)
are the couples (M,µ), whereM ∈Mk and µ ∈ Autk(M). The morphisms of
H(Mk) are the morphisms f : (M,µ)→ (N, ν) inMk such that ν◦f = f ◦µ.
For any objects (M,µ), (N, ν) ∈ H(Mk), the monoidal structure is given by

(M,µ)⊗ (N, ν) = (M ⊗N,µ⊗ ν) and (k, id).

Briefly, all Hom-structures are objects in the monoidal category H̃(Mk)

= (H(Mk), ⊗, (k, id), ã, l̃, r̃) introduced in [6], where the associator ã is given
by the formula

(2.1) ãM,N,L = aM,N,L ◦ ((µ⊗ id)⊗ ς−1) = (µ⊗ (id⊗ ς−1)) ◦ aM,N,L,

for any objects (M,µ), (N, ν), (L, ς) ∈ H(Mk), and the unitors l̃ and r̃ are

l̃M = µ ◦ lM = lM ◦ (id⊗ µ), r̃M = µ ◦ rM = rM ◦ (µ⊗ id).

The category H̃(Mk) is called the Hom-category associated to the monoidal
category Mk. A k-submodule N ⊆ M is called a subobject of (M,µ) if

µ restricts to an automorphism of N , that is, (N,µ|N ) ∈ H̃(Mk). Since

the category Mk has left duality, so does the category H̃(Mk). Now let
M∗ = Homk(M,k) be the left dual of M ∈ Mk, and let bM : k →M ⊗M∗



232 Y. Y. CHEN AND X. Y. ZHOU

and dM : M∗ ⊗M → k be the coevaluation and evaluation maps. Then
the left dual of (M,µ) ∈ H̃(Mk) is (M∗, (µ∗)−1), and the coevaluation and
evaluation maps are given by the formulas

b̃M = (µ⊗ µ∗)−1 ◦ bM , d̃M = dM ◦ (µ∗ ⊗ µ).

We now recall from [6] some information about Hom-structures.

Definition 2.1. A unital monoidal Hom-associative algebra (called a
monoidal Hom-algebra in [6, Proposition 2.1]) is a vector space A together
with an element 1A ∈ A and linear maps

m : A⊗A→ A, a⊗ b 7→ ab, α ∈ Autk(A),

such that

α(a)(bc) = (ab)α(c),(2.2)

α(ab) = α(a)α(b),(2.3)

a1A = 1Aa = α(a),(2.4)

α(1A) = 1A,(2.5)

for all a, b, c ∈ A.

Throughout, we use the concepts of [6] for convenience. The definition
of unital monoidal Hom-associative algebra is different from that of uni-
tal Hom-associative algebra in [25, 26] in the following sense. The same
twisted associativity condition (2.2) holds in both cases. However, the uni-
tality condition for unital Hom-associative algebras is the usual untwisted
one: a1A = 1Aa = a, for any a ∈ A, and the twisting map α does not need
to be monoidal (that is, (2.3) and (2.5) are not required).

In the language of Hopf algebras, m is called Hom-multiplication, α is
the twisting automorphism and 1A is the unit. Let (A,α) and (A′, α′) be
two monoidal Hom-associative algebras. A monoidal Hom-algebra map f :
(A,α)→ (A′, α′) is a linear map such that f ◦ α = α′ ◦ f, f(ab) = f(a)f(b)
and f(1A) = 1A′ .

Definition 2.2. A counital monoidal Hom-coassociative coalgebra (called
a monoidal Hom-coalgebra in [6, Proposition 2.4]) is a vector space C together
with linear maps ∆ : C → C ⊗ C,∆(c) = c1 ⊗ c2, and ε : C → k and
γ ∈ Autk(C) such that

γ−1(c1)⊗∆(c2) = ∆(c1)⊗ γ−1(c2),(2.6)

∆(γ(c)) = γ(c1)⊗ γ(c2),(2.7)

c1ε(c2) = γ−1(c) = ε(c1)c2,(2.8)

ε(γ(c)) = ε(c),(2.9)

for all c ∈ C.
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Note that (2.6) is equivalent to c1 ⊗ (c21 ⊗ γ(c22)) = (γ(c11)⊗ c12)⊗ c2,
which is often used in the rest of the paper. Let (C, γ) and (C ′, γ′) be two
monoidal Hom-coassociative coalgebras. A monoidal Hom-coalgebra map f :
(C, γ)→ (C ′, γ′) is a linear map such that f ◦ γ = γ′ ◦ f,∆ ◦ f = (f ⊗ f) ◦∆
and ε′ ◦ f = ε.

The definition of monoidal Hom-coassociative coalgebra here is some-
what different from the counital Hom-coassociative coalgebra in [25, 26].
Their coassociativity condition is twisted by some endomorphism, not nec-
essarily by the inverse of the automorphism γ. The counitality condition
is the usual untwisted one. Counital Hom-coassociative coalgebras are not
monoidal, that is, (2.7) and (2.9) are not required.

With the same compatibility conditions as for Hom-bialgebras in [26],
we introduce the concept of monoidal Hom-bialgebras.

Definition 2.3. A monoidal Hom-bialgebra H = (H,α,m, η,∆, ε) is a

bialgebra in the monoidal category H̃(Mk). This means that (H,α,m, η)
is a monoidal Hom-associative algebra and (H,α,∆, ε) is a monoidal Hom-
coassociative coalgebra such that ∆ and ε are algebra maps, that is, for any
h, g ∈ H,

∆(hg) = ∆(h)∆(g), ∆(1H) = 1H ⊗ 1H ,

ε(hg) = ε(h)ε(g), ε(1H) = 1.

Remark 2.4. The definition of Hom-bialgebra proposed in [25] contains
two different endomorphisms governing the Hom-associativity and Hom-
coassociativity. For any bialgebra (H,m, η,∆, ε), and any bialgebra endo-
morphism α of H, the authors in [25] show that (H,α, α ◦m, η,∆◦α, ε) is a
Hom-bialgebra in their sense. In our case, there is a monoidal Hom-bialgebra
(H,α, α ◦m, η,∆ ◦ α−1, ε), provided that α : H → H is a bialgebra auto-

morphism. The superiority of our definition is that these objects in H̃(Mk)
are self-dual.

Definition 2.5. A monoidal Hom-bialgebra (H,α) is a monoidal Hom-
Hopf algebra if there exists a morphism (called antipode) S : H → H in

H̃(Mk) (i.e. S ◦ α = α ◦ S) such that

S ∗ id = η ◦ ε = id ∗ S.

Note that a monoidal Hom-Hopf algebra is by definition a Hopf algebra
in H̃(Mk). Further, the antipode of monoidal Hom-Hopf algebras has almost
all the properties of the antipode of Hopf algebras such as

S(hg) = S(g)S(h), S(1H) = 1H ,

∆(S(h)) = S(h2)⊗ S(h1), ε ◦ S = ε.
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That is, S is a monoidal Hom-anti-(co)algebra homomorphism. Since α
is bijective and commutes with the antipode S, we can also see that the
inverse α−1 commutes with S, that is, S ◦ α−1 = α−1 ◦ S.

For a finite-dimensional monoidal Hom-Hopf algebra (H,α,m, η,∆, ε, S),
the dual (H∗, (α∗)−1) is also a monoidal Hom-Hopf algebra with the follow-
ing structure: for all g, h ∈ H and φ, ϕ ∈ H∗,

〈φϕ, h〉 = 〈φ, h1〉〈ϕ, h2〉, 1H∗ = ε,

〈∆(φ), g ⊗ h〉 = 〈φ, gh〉, εH∗ = η,

(α∗)−1(φ) = φ ◦ α−1, S∗(φ) = φ ◦ S−1.

In the following, we recall the actions of monoidal Hom-associative alge-
bras and coactions of monoidal Hom-coassociative coalgebras.

Definition 2.6. Let (A,α) be a unital monoidal Hom-associative alge-

bra. A left (A,α)-Hom-module consists of (M,µ) in H̃(Mk) together with a
morphism ψ : A⊗M →M , ψ(a⊗m) = a ·m, such that

α(a) · (b ·m) = (ab) · µ(m),

µ(a ·m) = α(a) · µ(m), 1A ·m = µ(m),

for all a, b ∈ A and m ∈M .

A monoidal Hom-associative algebra (A,α) can be considered as a Hom-
module over itself via Hom-multiplication. Let (M,µ), (N, ν) be two left
(A,α)-Hom-modules. A map f : (M,µ) → (N, ν) is called a morphism of
left (A,α)-Hom-modules if f(a ·m) = a · f(m) and f ◦ µ = ν ◦ f . We denote

by H̃(AM) the category of left (A,α)-Hom-modules and left (A,α)-linear
morphisms between them.

If (M,µ) is both a left (A,α)-Hom-module and a right (A,α)-Hom-
module such the compatibility condition

α(a) · (m · b) = (a ·m) · α(b)(2.10)

holds, then (M,µ) is called an (A,α)-Hom-bimodule.

Dually, we can define Hom-comodules. Now let (C, γ) be a monoidal
Hom-coassociative coalgebra.

Definition 2.7. A right (C, γ)-Hom-comodule is an object (M,µ) in

H̃(Mk) together with a k-linear map ρM : M → M ⊗ C, ρM (m) = m(0) ⊗
m(1), such that

µ−1(m(0))⊗4C(m(1)) = (m(0)(0) ⊗m(0)(1))⊗ γ−1(m(1)),(2.11)

ρM (µ(m)) = µ(m(0))⊗ γ(m(1)), m(0)ε(m(1)) = µ−1(m),

for all m ∈M.
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Note that (2.11) can be equivalently restated as m(0)⊗(m(1)1⊗γ(m(1)2))
= (µ(m(0)(0))⊗m(0)(1))⊗m(1). (C, γ) is a Hom-comodule over itself via Hom-
comultiplication. Let (M,µ) and (N, ν) be two right (C, γ)-Hom-comodules.
A map g : (M,ν)→ (N, ν) is called a right (C, γ)-Hom-comodule morphism

if g◦µ = ν ◦g and g(m(0))⊗m(1) = g(m)(0)⊗g(m)(1). We denote by H̃(MC)
the category of right (C, γ)-Hom-comodules and right (C, γ)-colinear mor-
phisms between them.

3. Hom-Frobenius-separability equation. In this section, we intro-
duce the HFS-equation and show that it implies the Hom-braided equation.
Also we study the matrix form of the HFS-equation.

For any monoidal Hom-algebra (A,α), (A⊗A,α⊗α) can be considered
as an (A,α)-Hom-bimodule with the actions

aB (b⊗ c) = ab⊗ α(c), (b⊗ c) C a = α(b)⊗ ca,
for all a, b, c ∈ A.

Indeed, under the action aB (b⊗ c) = ab⊗ α(c), (A⊗A,α⊗ α) is a left
(A,α)-Hom-module. Explicitly,

α(a) B (bB (c⊗ d)) = α(a) B (bc⊗ α(d)) = α(a)(bc)⊗ α2(d)

= (ab)α(c)⊗ α2(d) = (ab) B (α(c)⊗ α(d))

= (ab) B (α⊗2(c⊗ d)),

1A B (c⊗ d) = 1A B (c⊗ d) = 1Ac⊗ α(d) = α⊗2(c⊗ d),

for all a, b, c, d ∈ A. Similarly, (A⊗A,α⊗ α) is a right (A,α)-Hom-module
with the action (b⊗c)Ca = α(b)⊗ca. Moreover, the compatibility condition
(2.10) holds, that is,

(aB (b⊗ c)) C α(d) = α(ab)⊗ α(cd) = α(a) B ((b⊗ c) C d).

So (A⊗A,α⊗ α) is an (A,α)-Hom-bimodule.
An α⊗2-invariant element e =

∑
e1 ⊗ e2 ∈ A ⊗ A will be called (A,α)-

central if for any a ∈ A,
aB e = eC a.

Explicitly, e satisfies the following two conditions:

(α⊗ α)(e) = e

and ∑
ae1 ⊗ α(e2) =

∑
α(e1)⊗ e2a.(3.1)

For an object (M,µ) ∈ H̃(Mk), let R : M ⊗M → M ⊗M be a linear
map and consider the maps R12,R13,R23 : M ⊗M ⊗M →M ⊗M ⊗M in
H̃(Mk) given by the formulas

R12 = R⊗ µ, R23 = µ⊗R, R13 = (id⊗ τ) ◦ (R⊗ µ) ◦ (id⊗ τ).
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A similar notation will be used for elements e ∈ A ⊗ A, where (A,α) is a
monoidal Hom-algebra with unit 1A. If e =

∑
e1 ⊗ e2, then

e12 =
∑

e1 ⊗ e2 ⊗ 1A, e13 =
∑

e1 ⊗ 1A ⊗ e2, e23 =
∑

1A ⊗ e1 ⊗ e2.

Definition 3.1. Let (A,mA, 1A, α) be a Hom-algebra and let R =∑
R1 ⊗R2 ∈ A⊗A.

(1) R is called a solution of the Hom-Frobenius-separability equation (or
HFS-equation for brevity) if

R12R23 = R23R13 = R13R12

in A⊗A⊗A.
(2) R is called a solution of the Hom-separability equation (or HS-equation)

if R is a solution of the HFS-equation and satisfies the normalizing
separability condition ∑

R1R2 = 1A.

(3) (R, ϕ) is called a solution of the Hom-Frobenius equation (or HF-
equation) if R is a solution of the HFS-equation and there exists
an element ϕ ∈ A∗ such that the normalizing Frobenius condition
holds: ∑

ϕ(R1)R2 =
∑
R1ϕ(R2) = 1A.

(4) R is called a solution of the Hom-braided equation if

(R12R23)α⊗3(R12) = α⊗3(R23)(R12R23).

Note that if R is a solution of the HFS-equation then

(R12R23)α⊗3(R12) = (R23R13)α⊗3(R12) = α⊗3(R23)(R13R12)

= α⊗3(R23)(R12R23),

so R is a solution of the Hom-braided equation.
In addition, if e is (A,α)-central, then writing E =

∑
E1⊗E2 as another

copy of e, we have

e12e23 =
∑

(e1 ⊗ e2 ⊗ 1A)(1A ⊗ E1 ⊗ E2)

=
∑

α(e1)⊗ e2E1 ⊗ α(E2)

(3.1)
=

∑
E1e1 ⊗ α(e2)⊗ α(E2) = e13e12,

and

e12e23 =
∑

α(e1)⊗ e2E1 ⊗ α(E2)

(3.1)
=

∑
α(e1)⊗ α(E1)⊗ E2e2 = e23e13,

so e is a solution of the HFS-equation.
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For any monoidal Hom-algebra (A,α), there is another (A,α)-Hom-
bimodule structure on (A⊗A,α⊗ α) given by

a→ (b⊗ c) = α−1(a)b⊗ α(c),

(a⊗ b)← c = α(a)⊗ bα−1(c),
for any a, b, c ∈ A.

Proposition 3.2. Let (A,mA, 1A, α) be a monoidal Hom-algebra and
let ∆ : A → A ⊗ A be an (A,α)-Hom-bimodule map with the left action →
and right action ←. Set e = ∆(1A). Then

(1) e is α⊗2-invariant and a solution of the HFS-equation.
(2) ∆ is Hom-coassociative.
(3) If (A,∆, ε, α) is a monoidal Hom-coassociative coalgebra structure

on A, then A is finitely generated and projective in H̃(Mk).

Proof. Firstly,

e = ∆(1A) = ∆(α(1A)) = (α⊗ α)(∆(1A)) = (α⊗ α)(e),

so e is α⊗2-invariant. Secondly, since ∆ is an (A,α)-Hom-bimodule map, we
obtain

∆(α2(a)) = ∆(1Aα(a)) = ∆(1A)← α(a) = eC a,

∆(α2(a)) = ∆(α(a)1A) = α(a)→ ∆(1A) = aB e.

So e C a = a B e, that is, e is (A,α)-central. Thus e is a solution of the
HFS-equation.

(2) From [11, proof of Proposition 5.2],

∆(a) = α(e1)⊗ e2α−2(a) = α−2(a)e1 ⊗ α(e2)

is Hom-coassociative.
(3) For all a ∈ A, applying ε⊗ id and id⊗ ε to ∆(α(a)),

a = (ε⊗ id) ◦∆(α(a)) =
∑

(ε⊗ id)(α−1(a)e1 ⊗ α(e2)) =
∑

ε(ae1)e2,

a = (id⊗ ε) ◦∆(α(a)) =
∑

(id⊗ ε)(α(e1)⊗ e2α−1(a)) =
∑

ε(e2a)e1,

which implies that {e1, ε(e2·)} or {e2, ε(· e1)} are dual bases of (A,α) in

H̃(Mk).

Let (H,α) be a monoidal Hom-Hopf algebra with antipode S. It follows
from [11, Section 4] that R =

∑
t1 ⊗ S(t2) ∈ H ⊗ H is (H,α)-central,

where t ∈ H is a left integral for (H,α). Therefore it is a solution of the
HFS-equation and Hom-braided equation.

Observe that if t is a right integral for a monoidal Hom-Hopf algebra
(H,α), then a similar argument can show that S(t1) ⊗ t2 is also a solution
of the HFS-equation.
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Proposition 3.3. Let (A,α) be a monoidal Hom-algebra, and e ∈ A⊗A
an (A,α)-central element. Then for any left (A,α)-Hom-module (M,µ), the
map R = Re : M ⊗M →M ⊗M given by

R(m⊗ n) =
∑

e1 ·m⊗ e2 · n

is a solution of the HFS-equation in Endk(M ⊗M ⊗M).

Proof. For all m, l, n ∈M , we have

R12R23(m⊗ l ⊗ n) = R12(µ(m)⊗ e1 · l ⊗ e2 · n)

= E1 · µ(m)⊗ E2 · (e1 · l)⊗ µ(e2 · n)

= α(E1) · µ(m)⊗ α(E2) · (e1 · l)⊗ α(e2) · µ(n)

= α(E1) · µ(m)⊗ (E2e1) · µ(l)⊗ α(e2) · µ(n).

Similarly,

R13R12(m⊗ l ⊗ n) = (E1e1) · µ(m)⊗ α(e2) · µ(l)⊗ α(E2) · µ(n),

R23R13(m⊗ l ⊗ n) = α(e1) · µ(m)⊗ α(E1) · µ(l)⊗ (E2e2) · µ(n).

Since e is (A,α)-central, we know it is a solution to the HFS-equation, that
is, α(E1)⊗(E2e1)⊗α(e2) = (E1e1)⊗α(e2)⊗α(E2) = α(e1)⊗α(E1)⊗(E2e2),
which implies that R12R23 = R13R12 = R23R13.

In particular, we have the following corollary.

Corollary 3.4. If (A,α) is a monoidal Hom-algebra and e ∈ A⊗A is
an (A,α)-central element, then Re : A⊗A→ A⊗A,Re(a⊗b) =

∑
e1a⊗e2b,

is a solution of the HFS-equation. Moreover, if e is a separable idempotent
element (resp. (e, ε) is a Frobenius pair), then Re is a solution of the HS-
equation (resp. HF-equation).

In the following, we introduce the notation of matrix Hom-algebras and
comatrix Hom-coalgebras. Then we can study the HFS-equation in the form
of matrix equations.

Let (M,µ) ∈ H̃(Mk) and M be a finite-dimensional vector space with
a basis {e1, . . . , en}, and {f1, . . . , fn} the corresponding basis of the dual
space M∗ with 〈f i, ej〉 = δij for all i, j ∈ {1, . . . , n}. Then {aij = f i ⊗ ej |
i, j = 1, . . . , n} and {cij = ej ⊗ f i | i, j = 1, . . . , n} are bases for respectively
Endk(M) ∼= M∗ ⊗M and Endk(M

∗) ∼= M ⊗M∗. The isomorphisms are
given by the formula

aij(ek) = δikej , cij(f
k) = δkj f

i.

Then there is a monoidal Hom-associative algebra structure on (M∗⊗M,α =
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µ∗ ⊗ µ) given by

aija
k
l = δilα(akj ),

n∑
i=1

aii = 1,(3.2)

which is isomorphic to the n × n-matrix algebra Mn(k) in H̃(Mk), i.e.,

the n × n-matrix Hom-algebra H̃(Mn(k)), where α is an algebra automor-
phism. Moreover there is a monoidal Hom-coassociative coalgebra structure
on (M ⊗M∗, γ = µ⊗ µ∗) given by

∆(cij) =
∑
k

γ−1(cik)⊗ γ−1(ckj ), ε(cij) = δij ,

which is isomorphic to the n×n-comatrix Hom-coalgebra H̃(Mn(k)), where
γ is a coalgebra automorphism.

A linear map R : M ⊗M → M ⊗M in H̃(Mk) can be described by a

matrix, with n4 entries xijkl ∈ k, where i, j, k, l ∈ {1, . . . , n}. This means that

(3.3) R(mk ⊗ml) =
∑
i,j

xijklmi ⊗mj ,

or

(3.4) R =
∑
i,j,k,l

xijkle
k
i ⊗ elj .

In the following, we use the Einstein summation convention as in [9,
Section 5.1]. In summations, all indices run from 1 to n. If an index occurs
twice or more in an expression, then it is understood implicitly that we take
the sum where this index runs from 1 to n, so we often omit the summation
symbol. Indices that occur only once are not summation indices, and an
index is not allowed to occur more than twice in one expression.

Furthermore, we can represent the automorphism µ by a matrix, with
n2 entries zji ∈ k. Explicitly,

(3.5) µ(mi) =
∑
j

zjimj ,

where i, j ∈ {1, . . . , n}. Then it is straightforward to compute

R12R23(mu ⊗mv ⊗mw) = zruz
k
t x

st
vwx

ij
rsmi ⊗mj ⊗mk,

R23R13(mu ⊗mv ⊗mw) = zsvz
i
rx
rt
uwx

jk
stmi ⊗mj ⊗mk,

R13R12(mu ⊗mv ⊗mw) = ztwz
j
sx

rs
uvx

ik
rtmi ⊗mj ⊗mk.

Now, the HFS-equation can be rewritten as the following matrix equation.

Proposition 3.5. Let (M,µ) ∈ H̃(Mk) with a basis {m1, . . . ,mn}, and
let R ∈ Endk(M ⊗M) and µ be given by (3.3) and (3.5) respectively.
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(1) R is a solution of the HFS-equation if and only if

zruz
k
t x

st
vwx

ij
rs = zsvz

i
rx
rt
uwx

jk
st = ztwz

j
sx

rs
uvx

ik
rt

for all u, v, w, i, j, k ∈ {1, . . . , n}.
(2) R satisfies the separability condition if and only if xijkvz

k
i = δjk.

(3) R satisfies the Frobenius condition if and only if xkjki = xjkik = δji .

Proof. (1) This is obvious from the above analysis.
(2) and (3) follow from (3.4) by using the multiplication rule (3.2) and

the formula ε(cij) = δij .

Example 3.6. (1) Let (A,α) be a monoidal Hom-algebra. If an element
a ∈ A satisfies the condition a2 = α(a), then a ⊗ a is a solution of the
HFS-equation.

(2) Let (A,α) = H̃(Mn(k)), and let (eji )1≤i,j≤n be the basis, where

α(eji ) = −eji . Then

R =
n∑
i=1

eji ⊗ e
i
j

is a solution of the HS-equation, but not a solution of the HF-equation.

4. The structure of separable and Frobenius monoidal Hom-
algebras. In this section, we introduce separable monoidal Hom-algebras
and Frobenius monoidal Hom-algebras, and describe them by the same
(A,α)-central element and different normalizing conditions. Any (A,α)-
central element is a solution of the HFS-equation. As the main result of
this section, we show that any solution of the HFS-equation arises in this
way. In the following, we assume that (A,α) is a finite-dimensional monoidal
Hom-algebra.

Definition 4.1. (1) A monoidal Hom-algebra (A,m, 1A, α) is called sep-
arable if there exists a separability idempotent element, that is, an (A,α)-
central element e =

∑
e1⊗e2 ∈ A⊗A satisfying the normalizing separability

condition ∑
e1e2 = 1A.

(2) A monoial Hom-algebra (A,m, 1A, α) is called Frobenius if there ex-
ists a coalgebra structure (A,∆, ε) such that the comultiplication ∆ : A →
A⊗A is an (A,α)-Hom-bimodule map.

We note that a monoidal Hom-algebra (A,m,α) is separable if and only
if the Hom-multiplication m splits in the category of (A,α)-Hom-bimodules
(see [11, Section 4]). A finite-dimensional monoidal Hom-algebra (A,α) is
Frobenius if and only if (A,α) ∼= (A∗, (α∗)−1) as left (or right) (A,α)-Hom-
modules if and only if there exists a Frobenius structure of (A,α) if and only
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if there exists a Hom-associative, nondegenerate bilinear form B : (A,A)→
k for (A,α) (see [11, Proposition 5.2]).

By defining λ : (A,α) → k, λ(a) := B(a, 1) = B(1, a) and B(a, b) :=
λ(ab), it is not difficult to show that the above conditions are all equivalent

to the assertion that there exists a morphism λ in H̃(Mk) whose kernel
contains no nonzero Hom-ideals.

If the bilinear form B is symmetric, that is, B(a, b) = B(b, a) for any
a, b ∈ A, then (A,α) is called symmetric.

Furthermore, we will study the relation between Frobenius monoidal
Hom-algebras and the HF-equation.

Proposition 4.2. Let (A,α) be a monoidal Hom-algebra. Then (A,α)
is Frobenius if and only if there exist e =

∑
e1 ⊗ e2 ∈ A ⊗ A and ϕ ∈ A∗

such that (e, ϕ) is a solution of the HF-equation.

Proof. Firstly, the property of counit is satisfied if and only if the nor-
malizing Frobenius condition holds.

Next, from the fact that ∆ : A → A ⊗ A is an (A,α)-Hom-bimodule
map, set e = ∆(1A). Then e is (A,α)-central by the proof of the first part
of Proposition 3.2. So e is a solution of the HFS-equation. Conversely, the
(A,α)-central element determines the (A,α)-Hom-bimodule map ∆ and it
is Hom-coassociative by Proposition 3.2(2).

Recall that any finite-dimensional monoidal Hom-Hopf algebra is semi-
simple if and only if it is separable (see [11, Theorem 4.6]). We will see below
that a Frobenius monoidal Hom-algebra is separable under some assump-
tion.

Proposition 4.3. Let (A,α) be a Frobenius monoidal Hom-algebra such
that w = mA ◦ ∆(1A) is invertible. Then (A,α) is a separable monoidal
Hom-algebra.

Proof. Let e = ∆(1A) = e1 ⊗ e2. Then e is (A,α)-central of (A,α). So,

(e1e2)a = α(e1)(e2α−1(a)) = (α−1(a)e1)α(e2) = a(e1e2),

that is, w ∈ Z(A), the center of (A,α). And the α⊗2-invariance of e implies
that w is α-invariant too. It follows that its inverse w−1 is also α-invariant
and also in Z(A). Now set

R = w−1e1 ⊗ α(e2),

which is a separability idempotent. Indeed, for any a ∈ A,

a(w−1e1)⊗ α2(e2) = (α−1(a)w−1)α(e1)⊗ α2(e2)

= (w−1α−1(a))α(e1)⊗ α2(e2)
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= α(w−1)(α−1(a)e1)⊗ α(α(e2))

= α(w−1)α(e1)⊗ α(e2α−1(a))

= α(w−1e1)⊗ α(e2)a,

which shows that R is (A,α)-central. Moreover, the normalizing separability
condition holds: (w−1e1)α(e2) = w−1(e1e2) = 1A. Thus (A,α) is a separable
monoidal Hom-algebra.

We have seen that, for a monoidal Hom-algebra (A,α), any (A,α)-central
element R ∈ A ⊗ A is a solution of the HFS-equation. Conversely, in the
category H̃(Mk), any α⊗2-invariant solution of the HFS-equation arises in
this way.

Theorem 4.4. Let (A,α) be a monoidal Hom-algebra, and suppose an
α⊗2-invariant element R =

∑
R1 ⊗R2 ∈ A ⊗ A is a solution of the HFS-

equation.

(1) There exists a monoidal sub-Hom-algebra A(R) of (A,α) such that
R ∈ A(R)⊗A(R) and R is A(R)-central.

(2) (A(R),R) satisfies the following universal property: if (B, β) is a
monoidal Hom-algebra, and e ∈ B ⊗ B is (B, β)-central, then any
Hom-algebra map f : (B, β) → (A,α) with (f ⊗ f)(e) = R factors

through a Hom-algebra map f̃ : B → A(R).
(3) If R ∈ A ⊗ A is a solution of the HS-equation (resp. HF-equation),

then A(R) is a separable (resp. Frobenius) monoidal Hom-algebra.

Proof. (1) Let A(R) = {a ∈ A | a BR = R C a} and let the automor-
phism on A(R) be α restricted to A(R). Obviously, 1A ∈ A(R). For any
a, b ∈ A(R), we have

(ab) BR = (ab)R1 ⊗ α(R2) = α(a)(bα−1(R1))⊗ α(R2)

= α(a)(bR1)⊗ α(α(R2)) = α(a)α(R1)⊗ α(R2b)

= α(aR1)⊗ α(R2)α(b) = α(α(R1))⊗ (R2a)α(b)

= α2(R1)⊗ α(R2)(ab) = α(R1)⊗R2(ab) = RC (ab),

and
α(a) BR = α(a)R1 ⊗ α(R2) = α(aR1)⊗ α(α(R2))

= α(α(R1))⊗ α(R2a) = α(R1)⊗R2α(a)

= RC α(a),

so ab, α(a) ∈ A(R), which implies that (A(R), α|A(R)) is a monoidal sub-
Hom-algebra of (A,α).

Next, we have to show that R ∈ A(R) ⊗ A(R). Consider the map ϕ :
A→ A⊗Aop given by

ϕ(a) = aBR−RC a = aR1 ⊗ α(R2)− α(R1)⊗R2a.
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Then we find that A(R) = kerϕ. Since A is flat as a k-module, we have

A(R)⊗A = ker(ϕ⊗ α).

Now,

(ϕ⊗ α)(R) =
∑

ϕ(R1)⊗ α(R2)

=
∑
R1r1 ⊗ α(r2)⊗ α(R2)− α(r1)⊗ r2R1 ⊗ α(R2)

= R13R12 −R12R23 = 0,

where r =
∑
r1⊗r2 is another copy of R. Thus R ∈ ker(ϕ⊗α) = A(R)⊗A.

Similarly, we also have R ∈ A⊗A(R) from the fact R12R23 = R23R13. So
R ∈ A(R)⊗A(R). Thus R is an A(R)-central element of A(R)⊗A(R).

(2) For any b ∈ B, applying f ⊗ f to the equality bB e = eC b, we have
f(b) BR = R C f(b) since (f ⊗ f)(e) = R. So Im f ⊆ A(R), which yields
the commutative diagram

B

f̃
��

f
// A

A(R)

i

<<

that is, we obtain the universal property of (A(R),R).
(3) The first statement follows from the definition of separable monoial

Hom-algebra and the second one is also true by Proposition 4.2.

Let (A,α) be a monoidal Hom-algebra. If A is finite-dimensional, then
we can describe the monoidal Hom-algebra A(R) using generators and re-
lations. Let {m1, . . . ,mn} be a basis of a finite-dimensional vector space

M in H̃(Mk). Suppose that R is a solution of the HFS-equation satisfying

(3.3). Identifying Endk(M) with H̃(Mn(k)), we will write A(n,R) for the

monoidal sub-Hom-algebra of H̃(Mn(k)) corresponding to A(R).
Now we have the main result of this paper.

Theorem 4.5. Let (A,α) be an n-dimensional monoidal Hom-algebra.
Then the following statements are equivalent:

(1) Aα is a separable (resp. Frobenius) monoidal Hom-algebra, where
Aα = {a | α(a) = a}.

(2) There exists a Hom-algebra isomorphism

Aα ∼= A(n,R),

where R = (xijuv) = H̃(Mn(k)) ⊗ H̃(Mn(k)) ∼= Endk(A) ⊗ Endk(A)
is a solution of the HFS-equation.

Proof. The implication (2)⇒(1) is a consequence of the final statement
of Theorem 4.4.
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(1)⇒(2). It follows from the above discussion that both separable and
Frobenius monoidal Hom-algebras are characterized by the existence of an
(A,α)-central element with different normalizing conditions. Let now e =∑
e1 ⊗ e2 be such an (A,α)-central element. Then the map

R = Re : A⊗A→ A⊗A, a⊗ b 7→
∑

e1a⊗ e2b,

is a solution of the HFS-equation. Since A is finite-dimensional, we view
Re ∈ Endk(A⊗ A) ∼= Endk(A)⊗ Endk(A). Consequently, we can construct
a monoidal Hom-algebra A(R) ⊆ Endk(A).

First, we consider the injection i : Aα → Endk(A) given by i(a)(b) = ab
for all a ∈ Aα and b ∈ A. We claim that A(R) ⊆ Im(i), when (A,α) is a
separable (resp. Frobenius) Hom-algebra, where

A(R) = {f ∈ Endk(A) | (f ⊗ α) ◦ R = R ◦ (α⊗ f)},

with the twisting map $ : A(R) → A(R), $(f)(a) = f(α(a)) = α(f(a)).
Indeed, if f ∈ A(R), then (f ⊗ α) ◦ R = R ◦ (α ⊗ f), and evaluating this
equality at 1a ⊗ a, we have∑

f(α(e1))⊗ α(e2a) =
∑

α(e1)⊗ e2f(a).(4.1)

Now, suppose that A is separable, so
∑
e1e2 = 1A. Applying mA to

(4.1), we obtain∑
f(α(e1))α(e2a) =

∑
α(e1)(e2f(a)) =

∑
(e1e2)α(f(a)) = α2(f(a)).

So,

f(a) =
∑

α−2(f(α(e1)))α−1(e2a)

=
∑

α−1(α−2(f(α(e1)))e2)a

=
∑

(f(α−1(e1))e2)a

for all a ∈ A. The α⊗2-invariance of e implies that
∑
f(α−1(e1))e2 ∈ Aα.

Thus, f = i(
∑
f(α−1(e1))e2).

If (A,α) is Frobenius, then there exists ε : A→ k such that
∑
ε(e1)e2 =∑

e1ε(e2) = 1A. Applying ε⊗ id to (4.1), we get∑
ε(f(α(e1)))α(e2a) = ε(e1)e2f(a).

So f(a) = (
∑
ε(f(α(e1)))e2)a for all a ∈ A. In addition,

∑
ε(f(α(e1)))e2 is

in Aα, thus f = i(
∑
ε(f(α(e1)))e2), proving that A(R) ⊆ Im(i).

Conversely, Im(i) ⊆ A(R). That is,

(i(a)⊗ α) ◦ R = R ◦ (α⊗ i(a))
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for all a ∈ Aα. In fact, for all b, c ∈ A,

(i(a)⊗ α) ◦ R(b⊗ c) =
∑

(i(a)⊗ α)(e1b⊗ e2c)

=
∑

a(e1b)⊗ α(e2c) =
∑

α(a)(e1b)⊗ α(e2c)

=
∑

(ae1)α(b)⊗ α(e2c)
(3.3)
=

∑
α(e1)α(b)⊗ (e2a)α(c)

=
∑

α(e1)α(b)⊗ α(e2)(ac) =
∑

e1α(b)⊗ e2(ac)

= R(α(b)⊗ ac) = R ◦ (α⊗ i(a))(b⊗ c).

So Im(i) = A(R), proving that Aα is isomorphic to A(R).

In the following, we will consider a Hom-coalgebra version of a separable
monoidal Hom-algebra.

Definition 4.6. Let (C, γ) be a monoidal Hom-coalgebra.

(1) A map σ : C ⊗ C → k in H̃(Mk) is called an HFS-map if

(4.2) σ(γ−1(c)⊗ d1)d2 = σ(c2 ⊗ γ−1(d))c1

for all c, d ∈ C. In addition, if σ satisfies the normalizing condition

σ(c1 ⊗ c2) = ε(c),

then σ is called a coseparability idempotent.
(2) If there exists an element e ∈ C such that the HFS-map satisfies the

normalizing condition

σ(e⊗ c) = σ(c⊗ e) = ε(c)

for all c ∈ C, then we call (σ, e) an HF-map.
(3) A monoidal Hom-coalgebra (C, γ) is called coseparable if there exists

a coseparability idempotent.

Since σ is γ⊗2-invariant, (4.2) is equivalent to

σ(c⊗ γ(d1))γ(d2) = σ(γ(c2)⊗ d)γ(c1)(4.3)

for all c, d ∈ C, which will be used later.

Proposition 4.7. Let (C, γ) be a monoidal Hom-coalgebra, (M,µ) a
right (C, γ)-Hom-comodule, and σ : C⊗C → k an HFS-map. Then the map

R = Rσ : M⊗M →M⊗M,Rσ(m⊗n) = σ(m(1)⊗n(1))µ2(m(0))⊗µ2(n(0)),

is a solution of the HFS-equation in Endk(M ⊗M ⊗M).
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Proof. For all l,m, n ∈M , we have

R12R23(l ⊗m⊗ n) = R12(σ(m(1) ⊗ n(1))µ(l)⊗ µ2(m(0))⊗ µ2(n(0)))
= σ(γ(l(1))⊗ γ2(m(0)(1)))σ(m(1) ⊗ n(1))µ3(l(0))⊗ µ4(m(0)(0))⊗ µ3(n(0))
= σ(l(1) ⊗ γ(m(1)1))σ(γ(m(1)2)⊗ n(1))µ3(l(0))⊗ µ3(m(0))⊗ µ3(n(0))

(4.3)
= σ(γ(l(1)1)⊗ n(1))σ(γ(l(1)2)⊗m(1))µ

3(l(0))⊗ µ3(m(0))⊗ µ3(n(0))
= σ(γ(l(0)(1))⊗ n(1))σ(l(1) ⊗m(1))µ

4(l(0)(0))⊗ µ3(m(0))⊗ µ3(n(0))
= R13(σ(l(1) ⊗m(1))µ

2(l(0))⊗ µ2(m(0))⊗ µ(n)) = R13R12(l ⊗m⊗ n),

and

R12R23(l ⊗m⊗ n) = R12(σ(m(1) ⊗ n(1))µ(l)⊗ µ2(m(0))⊗ µ2(n(0)))
= σ(γ(l(1))⊗ γ2(m(0)(1)))σ(m(1) ⊗ n(1))µ3(l(0))⊗ µ4(m(0)(0))⊗ µ3(n(0))
= σ(l(1) ⊗ γ(m(1)1))σ(γ(m(1)2)⊗ n(1))µ3(l(0))⊗ µ3(m(0))⊗ µ3(n(0))

(4.3)
= σ(l(1) ⊗ γ(n(1)2))σ(m(1) ⊗ γ(n(1)1))µ

3(l(0))⊗ µ3(m(0))⊗ µ3(n(0))
= σ(l(1) ⊗ n(1))σ(m(1) ⊗ γ(n(0)(1)))µ

3(l(0))⊗ µ3(m(0))⊗ µ4(n(0)(0))
= R23(σ(l(1) ⊗ n(1))µ2(l(0))⊗ µ(m)⊗ µ2(n(0))) = R23R13(l ⊗m⊗ n).

So, R is a solution of the HFS-equation.

If (C, γ) is finitely generated and projective, and (C∗, (γ∗)−1) is its dual
Hom-algebra, then there is a one-to-one correspondence between HFS-maps
σ : C ⊗ C → k and C∗-central elements f =

∑
f1 ⊗ f2 ∈ C∗ ⊗ C∗. The

correspondence is given by the formula

σ(c⊗ d) =
∑
〈f1, c〉〈f2, d〉

for all c, d ∈ C. In fact, for all x ∈ C∗,∑
〈xf1, c〉〈(γ∗)−1(f2), d〉 =

∑
〈(γ∗)−1(f1), c〉〈f2x, d〉

if and only if∑
〈x, c1〉〈f1, c2〉〈f2, γ−1(d)〉 =

∑
〈f1, γ−1(c)〉〈f2, d1〉〈x, d2〉,

which is equivalent to∑
〈x, c1〉σ(c2 ⊗ γ−1(d)) = σ(γ−1(c)⊗ d1)〈x, d2〉,

that is, ∑
〈x, c1σ(c2 ⊗ γ−1(d))〉 = 〈x, σ(γ−1(c)⊗ d1)d2〉.

So f is C∗-central if and only if σ is an HFS-map.
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If (M,µ) is a right (C, γ)-Hom-comodule with the coaction ρ : m 7→
m(0)⊗m(1), then it is also a left (C∗, (γ∗)−1)-Hom-module (see [13, Lemma
4.2]), and the action is given by

f i ·m = 〈f i, γ(m(1))〉µ2(m(0))

for any f i ∈ C∗,m ∈M .

In this situation, the map Re defined in Proposition 3.3 is equivalent to
the Rσ given in Proposition 4.7. Indeed, for all m,n ∈M ,

Rσ(m⊗ n) =
∑

σ(m(1) ⊗ n(1))µ2(m(0))⊗ µ2(n(0))

=
∑

σ(γ(m(1))⊗ γ(n(1)))µ
2(m(0))⊗ µ2(n(0))

=
∑
〈f1, γ(m(1))〉〈f2, γ(n(1))〉µ2(m(0))⊗ µ2(n(0))

= f1 ·m⊗ f2 · n = Re(m⊗ n).

5. Nakayama automorphisms of Frobenius monoidal Hom-alge-
bras. In this section, we consider the Nakayama automorphisms of Fro-
benius monoidal Hom-algebras, which generalize the Nakayama automor-
phisms of Frobenius algebras in [27].

Let (A,α) be a finite-dimensional Frobenius monoidal Hom-algebra with
the nondegenerate Hom-associative bilinear form B : A × A → k defined
in [11, Proposition 5.2]. Note that there are two isomorphisms (A,α) ∼=
(A∗, α∗−1) in H̃(Mk), namely,

a 7→ λ(a−) = B(a,−) and a 7→ λ(−a) = B(−, a),

where λ is the Frobenius structure of (A,α) defined in [11, Proposition 5.2].
So for any a ∈ A, the function λ(a−) : (A,α) → k can be represented
as λ(−a′) : (A,α) → k for some a′ ∈ A. This defines an automorphism

σ : (A,α) → (A,α) in H̃(Mk) given by a 7→ a′. Then B(a, b) = B(b, σ(a))
for any a, b ∈ A. Furthermore, for x ∈ A,

B(ax, 1) = B(α(a), α(x)) = B(α(x), σ(α(a)))

= B(α(x), σ(a)1) = B(xσ(a), 1).

So we have

B((ab)x, 1) = B(α(a)(bα−1(x)), 1) = B((bα−1(x))σ(α(a)), 1)

= B(α(b)(α−1(x)σ(a)), 1) = B((α−1(x)σ(a))σ(α(b)), 1)

= B(x(σ(a)σ(b)), 1).

On the other hand, B((ab)x, 1) is also equal to B(xσ(ab), 1), giving σ(ab) =
σ(a)σ(b). So σ is a Hom-algebra automorphism, called the Nakayama auto-
morphism of (A,α).
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Instead of the form B we can also use the map λ : (A,α)→ k defined in
Section 3 to define σ as follows: for any a, b ∈ A,

λ(ab) = λ(bσ(a)).

Then we have the main result of this section.

Theorem 5.1. Let (A,α) be a finite-dimensional Frobenius monoidal
Hom-algebra. Then the Nakayama automorphism σ is independent of the
field k.

Proof. Let k1 and k2 be two fields, associated with two monoidal cate-
gories H̃(Mk1) and H̃(Mk2), in which (A,α) is a finite-dimensional monoidal
Hom-algebra. And assume that the Nakayama automorphism of (A,α) is σ1
with respect to H̃(Mk1). Then σ1 arises from a map λ1 : (A,α)→ k1 via

λ1(ab) = λ1(bσ1(a))

for any a, b ∈ A.
Hence, C := {

∑
(aibi−biσ1(ai)) | ai, bi ∈ A} ⊆ kerλ1. It is easy to check

that C is closed under the twisting automorphism α and Hom-multiplication
by any element from the center Z(A). Note that (C,α|C) is indeed a sub-

object of (A,α) both in H̃(Mk1) and H̃(Mk2), since σ1 is a Hom-algebra
morphism.

As in the non-Hom case, (A,α) is the only principal indecomposable left
(A,α)-Hom-module via multiplication, and so (A,α) has a simple socle S
by [18, Theorem 16.4]. Then S * kerλ1, so S * C.

Since (S, α|S) and (C,α|C) are both subobjects of (A,α) in H̃(Mk2), we

define a map λ2 : (A,α)→ k2 in H̃(Mk2) that is 0 on C but not on S. Then
since S * kerλ2, kerλ2 contains no nonzero Hom-ideals, and the Nakayama

automorphism σ2 of (A,α) in H̃(Mk2) is given by

λ2(ab) = λ2(bσ2(a))

for any a, b ∈ A. That is, σ2(a) is uniquely defined by

ab− bσ2(a) ∈ kerλ2, ∀b ∈ A.
In addition, for any b ∈ A we have ab−bσ1(a) ∈ kerλ2 ∈ C, so σ1(a) = σ2(a)
for any a ∈ A, as required.

In particular, if a Frobenius monoidal Hom-algebra (A,α) is symmetric,
then for any choice of the Frobenius structure the Nakayama automorphism
is of the form a 7→ b−1(ab) in H̃(Mk) for any a, b ∈ A.

6. Concluding remarks and a future work. After the acceptance of
the paper, Professor D. Simson has pointed out to us that one can simplify
part of the calculations in the paper if one uses the functorial isomorphism
between our monoidal categoryH(Mk) defined in Section 2 and the category
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Mk[t,t−1] of all modules over the k-algebra k[t, t−1] of all polynomials in one
indeterminate t, with coefficients in the field k, localized at the multiplicative
system {1, t, t2, . . .}. More precisely, we have the following useful fact.

Proposition 6.1. Let k[t, t−1] be the localized polynomial k-algebra de-
fined above and H(Mk) be the monoidal category defined in Section 1. Then
we have the following assertions:

(1) There exists an exact category isomorphism

Φ : H(Mk)→Mk[t,t−1].

(2) The monoidal category H(Mk) is a full exact subcategory of the cat-
egory RepkQ of all k-linear representations of the quiver Q with one
vertex and one loop.

Proof. (1) Given an object (M,µ) in the monoidal category H(Mk),
with µ ∈ AutkM , we define Φ(M) to be the k-module M equipped with
the K[t, t−1]-action ·µ : M × k[t, t−1] → M defined by m ·µ t = µ(m) and
m ·µ t−1 = µ−1(m), for all m ∈M . In other words, we set Φ(M) = (M, ·µ).
It is easy to see that, given a morphism f : (M,µ) → (M ′, µ′) in H(Mk),
the underlying k-module homomorphism f : M → M ′ is a homomorphism
of k[t, t−1]-modules by the fact f ◦ µ = µ′ ◦ f , and we set Φ(f) := f :
Φ(M)→ Φ(M ′). A standard checking shows that Φ is an exact functor and
is a category isomorphism.

(2) Apply the well known results in Section 14.1-4 of [31] and [33].

Motivated by Professor D. Simson’s suggestions, we intend to study
“Hom-structures” in the more natural category H̃(Mk[t,t−1]) via twisting
the associator and unitors. Explicitly, some questions (such as Galois exten-
sions as well as dual theory) of Hom-Hopf algebras may be considered in

the category H̃(Mk[t,t−1]).
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