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Abstract. Let R be a commutative Noetherian ring, I a proper ideal of R, and M
be a finitely generated R-module. We provide bounds for the cohomological dimension of
the R-module M with respect to the ideal I in several cases.

1. Introduction. Throughout, let R denote a commutative Noetherian
ring (with identity) and I an ideal of R. The notions of the cohomologi-
cal dimension and the arithmetic rank of algebraic varieties have produced
some interesting results and problems in local algebra. The local cohomol-
ogy modules H i

I(M), i = 0, 1, 2, . . . , of an R-module M with respect to I
were introduced by Grothendieck [Ha1]. They arise as the derived functors
of the left exact functor ΓI(−), where for an R-module M , ΓI(M) is the
submodule of M consisting of all elements annihilated by some powers of I,
i.e.,

⋃∞
n=1(0 :M In). There is a natural isomorphism

H i
I(M) ∼= lim−→

n≥1
ExtiR(R/In,M).

We refer the reader to [Ha1] or [BS] for more details about local cohomology.

For an R-module M , the cohomological dimension of M with respect to
I is defined as

cd(I,M) := max{i ∈ Z : H i
I(M) 6= 0}.

The cohomological dimension has been studied by several authors; see, for
example, Faltings [F], Hartshorne [Ha2], Huneke–Lyubeznik [HL], Divaani-
Aazar, Naghipour and Tousi [DNT], Hellus [He], Hellus–Stückrad [HS] and
Mehrvarz, Bahmanpour and Naghipour [MBN].

Our aim in this paper is to provide some bounds for the cohomological
dimensions of finitely generated R-modules over Noetherian rings.
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Throughout this paper, for any R-module N , we use the notation ER(N)
for the injective envelope of the R-module N .

2. The results. The following two lemmata will be useful in this sec-
tion.

Lemma 2.1. Let a ⊆ b be ideals of a Noetherian ring R (not necessarily

local) and M be an R-module such that ExtjR(R/b, H i
a(M)) = 0 for all i

and j (respectively, for i ≤ n and all j). Then ExtiR(R/b,M) = 0 for all i
(respectively, for all i ≤ n).

Proof. The case n = 0 is clear, so let n > 0 and argue by induction
on n. We first reduce to the case Γa(M) = 0. This is possible, since if we let
M = M/Γa(M), we have the long exact sequence

· · · → Exti−1R (R/b,M)

→ ExtiR(R/b, Γa(M))→ ExtiR(R/b,M)→ ExtiR(R/b,M)

→ Exti+1
R (R/b, Γa(M))→ · · · ,

and the isomorphisms H0
a (M) = 0 and H i

a(M) ∼= H i
a(M) for each i ≥ 1.

So let us assume that Γa(M) = 0. Let E be an injective hull of M and set
L = E/M . Then also Γa(E) = 0 and HomR(R/b, E) = 0, and therefore we
get isomorphisms H i

a(L) ∼= H i+1
a (M) and ExtiR(R/b, L) ∼= Exti+1

R (R/b,M)
for all i ≥ 0. Now the assertion follows easily by applying the inductive
hypothesis to the R-module L.

Lemma 2.2. Let a ⊆ b be ideals of a Noetherian ring R (not necessarily

local) and M be an R-module such that Hj
b(H i

a(M)) = 0 for all i and j.
Then H i

b(M) = 0 for all i.

Proof. Since Hj
b(H i

a(M)) = 0 for all i and j, [Me, Proposition 3.9] yields

ExtjR(R/b, H i
a(M)) = 0 for all i and j. Hence by Lemma 2.1, ExtiR(R/b,M)

= 0 for all i. But, in this case, it follows from the method of the proof of
[K, Lemma 1] that ExtiR(R/bn,M) = 0 for all i and j and n ∈ N. Because
Supp(R/bn) ⊆ Supp(R/b) for each n ∈ N it follows from the definition of
local cohomology modules that H i

b(M) = 0 for each i ≥ 0, as required.

Corollary 2.3. If a ⊆ b are ideals of a Noetherian ring R (not neces-
sarily local) and M is an R-module such that cd(b,M) ≥ 0, then

cd
(
b,

cd(a,M)⊕
i=0

H i
a(M)

)
= sup{cd(b, H i

a(M)) : i ∈ N0} ≥ 0.

In particular, cd(a,M) ≥ 0.

Proof. The assertion is clear by Lemma 2.2.
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The following theorem is one of the main results of this section.

Theorem 2.4. Let R be a Noetherian ring (not necessarily local) and
I ⊆ J be ideals of R. Then, for any R-module M 6= 0 with cd(J,M) ≥ 0,
we have

cd(J,M) ≤ cd(I,M) + cd
(
J,

cd(I,M)⊕
i=0

H i
I(M)

)
= cd(I,M) + sup{cd(J,H i

I(M)) : i ∈ N0}.
Proof. Note that by Corollary 2.3 we have

sup{cd(J,H i
I(M)) : i ∈ N0} ≥ 0 and cd(I,M) ≥ 0.

Now, we use induction on t := cd(I,M). In the case t = 0 we have
H i

I(M/ΓI(M)) = 0 for each i ≥ 0, and hence by [Me, Proposition 3.9],
we have ExtiR(R/I,M/ΓI(M)) = 0 for each i ≥ 0. But in this case, as
Supp(R/Jn) ⊆ Supp(R/I) for each n ∈ N, it follows that

ExtiR(R/Jn,M/ΓI(M)) = 0

for each i ≥ 0 and n ∈ N. Therefore it follows from the definition of local
cohomology modules that H i

J(M/ΓI(M)) = 0 for each i ≥ 0. Hence the
exact sequence

0→ ΓI(M)→M →M/ΓI(M)→ 0

implies that cd(J,M) = cd(J, ΓI(M)) ≤ cd(J,
⊕cd(I,M)

i=0 H i
I(M)), as re-

quired.
Now, let t > 0 and suppose the result holds for t − 1. Then it follows

from the exact sequence

0→ ΓI(M)→M →M/ΓI(M)→ 0

that

cd(J,M) ≤ sup{cd(J, ΓI(M)), cd(J,M/ΓI(M))}.
Now if cd(J,M) ≤ t+cd(J, ΓI(M)), then there is nothing to prove. Therefore
we may assume that cd(J,M) > t+ cd(J, ΓI(M)). Then we have

sup{cd(J, ΓI(M)), cd(J,M/ΓI(M))} = cd(J,M/ΓI(M)),

and hence cd(J,M) ≤ cd(J,M/ΓI(M)). Let N := M/ΓI(M). Then from
the exact sequence

0→ N → ER(N)→ ER(N)/N → 0

it follows that cd(I, ER(N)/N) = t−1, and hence from inductive hypothesis,

cd(J,ER(N)/N) ≤ t− 1 + sup{cd(J,H i
I(ER(N)/N)) : i ∈ N0},

thus

cd(J,ER(N)/N) ≤ t− 1 + sup{cd(J,H i
I(N)) : i ∈ N},
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and therefore

cd(J,ER(N)/N) ≤ t− 1 + sup{cd(J,H i
I(M)) : i ∈ N}.

But cd(J,ER(N)/N) = cd(J,N)− 1 implies

cd(J,M) ≤ cd(J,M/ΓI(M)) ≤ cd(I,M) + sup{cd(J,H i
I(M)) : i ∈ N}.

This completes the inductive step and the proof.

We are now ready to state and prove the second main result of this
paper.

Theorem 2.5. If R is a Noetherian ring (not necessarily local), I ⊆ J
are ideals of R, and M is a non-zero finitely generated R-module, then

cd(J,M) ≤ cd(I,M) + cd(J,M/IM).

Proof. Without loss of generality we may assume that cd(J,M) ≥ 0.
Hence by Lemma 2.3, cd(I,M) ≥ 0. Let t := cd(I,M). Then, in view of
Theorem 2.4, we have

cd(J,M) ≤ t+ cd
(
J,

t⊕
i=0

H i
I(M)

)
.

Now let k := cd(J,
⊕t

i=0H
i
I(M)). Then by definition we have

Hk
J

( t⊕
i=0

H i
I(M)

)
6= 0.

But as the local cohomology functor commutes with direct limits and each
R-module is the direct limit of the family of all finitely generated submod-
ules, it follows that there exists a finitely generated submodule L of the
R-module

⊕t
i=0H

i
I(M) such that Hk

J (L) 6= 0. But

Supp(L) ⊆ Supp
( t⊕
i=0

H i
I(M)

)
⊆ Supp(M/IM).

Therefore, it follows from [DNT, Theorem 2.2] that

cd(J,M/IM) ≥ cd(J, L) ≥ k.
Consequently,

cd(I,M) + cd(J,M/IM) ≥ cd(I,M) + cd(J, L)

≥ t+ cd
(
J,

t⊕
i=0

H i
I(M)

)
≥ cd(J,M).

The following corollary is a generalization of [MBN, Lemma 2.10].
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Corollary 2.6. Let (R,m) be a Noetherian local ring, I an ideal of R,
and M a non-zero finitely generated R-module. Then

cd(I,M) ≥ dim(M)− dim(M/IM).

Proof. If we set J = m in Theorem 2.5, then the assertion follows im-
mediately from [BS, Theorems 7.3.2 and 6.1.2].

As an immediate consequence of Corollary 2.6, we get the following re-
sult.

Corollary 2.7. Let (R,m) be a Noetherian local ring, I an ideal of R,
and M a non-zero finitely generated R-module such that

grade(I,M) + dim(M/IM) < dim(M).

Then cd(I,M) > grade(I,M).

We are now ready to state and prove the next main result of this paper.

Theorem 2.8. Let R be a Noetherian ring (not necessarily local), let I
and J be ideals of R, and let M be a non-zero finitely generated R-module
such that (I + J)M 6= M . Then

cd(I,M) ≤ cd(IJ,M) + cd(I,M/JM).

Proof. Since IJ ⊆ I, by Theorem 2.5 we have

cd(I,M) ≤ cd(IJ,M) + cd(I,M/IJM).

On the other hand, as cd(I, JM/IJM) = 0, the exact sequence

0→ JM/IJM →M/IJM →M/JM → 0

yields cd(I,M/IJM) = cd(I,M/JM).

The following corollary is a consequence of Theorem 2.8.

Corollary 2.9. Under the assumptions of Theorem 2.8,

cd(IJ,M) ≥ 1
2

(
cd(I,M) + cd(J,M)− cd(I,M/JM)− cd(J,M/IM)

)
.

Proof. By Theorem 2.8, we have

cd(I,M) ≤ cd(IJ,M) + cd(I,M/JM),

and

cd(J,M) ≤ cd(IJ,M) + cd(J,M/IM).

Hence, the corollary follows.

The following theorem is another main result of this paper.

Theorem 2.10. Under the assumptions of Theorem 2.8,

cd(I + J,M) ≤ cd(I,M) + cd(J,M/IM).
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Proof. Apply Theorem 2.5 and the equality

cd(I + J,M/IM) = cd(J,M/IM).

As a consequence of Theorem 2.10, we get the following result.

Corollary 2.11. Under the assumptions of Theorem 2.8,

cd(I + J,M) ≤ 1
2

(
cd(I,M) + cd(J,M) + cd(I,M/JM) + cd(J,M/IM)

)
.

Proof. By Theorem 2.10, we have

cd(I + J,M) ≤ cd(I,M) + cd(J,M/IM),

and
cd(I + J,M) ≤ cd(J,M) + cd(I,M/JM).

Hence, the corollary follows.

Using Corollaries 2.9 and 2.11 we get the following proposition.

Proposition 2.12. Under the assumptions of Theorem 2.8,

cd(I + J,M)− cd(IJ,M) ≤ cd(I,M/JM) + cd(J,M/IM).

Proof. Apply Corollaries 2.9 and 2.11.

The following proposition is a consequence of Theorem 2.10.

Proposition 2.13. Under the assumptions of Theorem 2.8,

cd(I + J,M) ≤ cd(I,M) + cd(J,M).

Proof. Since Supp(M/IM) ⊆ Supp(M), [DNT, Theorem 2.2] yields
cd(J,M/IM) ≤ cd(J,M). Hence, the proposition follows by applying The-
orem 2.10.

The following propositions are immediate consequences of Proposition
2.13.

Proposition 2.14. Let (R,m) be a Noetherian local ring and I, J be a
pair of proper ideals of R. If M is a finitely generated non-zero R-module of
dimension d ≥ 0 such that M/(I + J)M is of dimension 0, then

cd(I,M) + cd(J,M) ≥ d.
Proof. Apply Proposition 2.13 and use the well-known Grothendieck

vanishing and non-vanishing theorems (see [BS, Theorems 6.1.2 and 6.1.4]).
Note that in this situation we have cd(I + J,M) = d.

Proposition 2.15. Under the assumptions of Theorem 2.8,

cd(IJ,M) ≤ cd(I,M) + cd(J,M)− 1.

Proof. Apply Proposition 2.13 and [BS, Theorem 3.2.3].

The following example shows that the bounds given in Propositions 2.13
and 2.15 are optimal.
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Example 2.16. Let (R,m) be a Noetherian local ring of dimension
d ≥ 2, and let s and t be positive integers such that s + t ≤ d. Let
x1, . . . , xs+t be a part of a system of parameters for R. Let L := (x1, . . . , xs),
K := (xs+1, . . . , xs+t) and I := LK. Then using [BN, Proposition 3.2] and
[BS, Theorem 3.2.3], it is easy to see that cd(L,R) = s, cd(K,R) = t and

cd(L+K,R) = s+ t = cd(L,R) + cd(K,R),

cd(I,R) = s+ t− 1 = cd(L,R) + cd(K,R)− 1.

The following result is a consequence of Proposition 2.15.

Proposition 2.17. Let R be a Noetherian ring (not necessarily local),
n ≥ 2 and I1, . . . , In be proper ideals of R with cd(Ij , R) = 1 for each
1 ≤ j ≤ n. Then cd(

⋂n
j=1 Ij , R) ≤ 1 .

Proof. Apply Proposition 2.15 and induction on n ≥ 2.

Corollary 2.18. Let R be a Noetherian ring (not necessarily local) and
I be a proper ideal of R with height(I) = 1. If cd(p, R) = 1 for each minimal
prime ideal p of I, then cd(I,R) = 1.

Proof. It follows from Proposition 2.17 that cd(I,R) ≤ 1. On the other
hand as height(I) = 1, it follows from [BS, Theorems 7.3.2 and 4.3.2] that
cd(I,R) ≥ 1.
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