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A QUASI-DICHOTOMY FOR C(α,X) SPACES, α < ω1

BY

ELÓI MEDINA GALEGO (São Paulo) and MAURÍCIO ZAHN (Rio Grande do Sul)

Abstract. We prove the following quasi-dichotomy involving the Banach spaces
C(α,X) of all X-valued continuous functions defined on the interval [0, α] of ordinals
and endowed with the supremum norm.

Suppose that X and Y are arbitrary Banach spaces of finite cotype. Then at least one
of the following statements is true.

(1) There exists a finite ordinal n such that either C(n,X) contains a copy of Y , or
C(n, Y ) contains a copy of X.

(2) For any infinite countable ordinals α, β, ξ, η, the following are equivalent:

(a) C(α,X)⊕ C(ξ, Y ) is isomorphic to C(β,X)⊕ C(η, Y ).
(b) C(α) is isomorphic to C(β), and C(ξ) is isomorphic to C(η).

This result is optimal in the sense that it cannot be extended to uncountable ordinals.

1. Introduction. We follow the standard notation and terminology for
Banach space theory, as can be found in [5]. Let K be a compact Hausdorff
space and X a Banach space. We denote by C(K,X) the Banach space of all
X-valued continuous functions defined on K endowed with the supremum
norm. If X is the scalar field, this space will be denoted by C(K). When K is
the interval [0, α] of ordinals endowed with the order topology, these spaces
will be denoted respectively by C(α,X) and C(α). Let ω denote the first
infinite ordinal, and ω1 the first uncountable ordinal. Given Banach spaces
X and Y , we write X ∼ Y whenever X and Y are isomorphic, and Y ↪→ X
when X contains a copy of Y , that is, a subspace isomorphic to Y .

The notion of cotype of a Banach space emerged from the works of
Hoffmann-Jorgensen, S. Kwapień, B. Maurey and G. Pisier in the early
1970’s [4], [6], [7] and [9], and has since found frequent use in the geom-
etry of Banach spaces; see for instance [8]. A Banach space X 6= {0} is of
finite cotype if there exist 2 ≤ q < ∞ and a constant K > 0 such that no
matter how we select finitely many vectors v1, . . . , vn from X, we have
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where ri : [0, 1]→ R denote the Rademacher functions, defined by setting

ri(t) = sign(sin 2iπt).

It is well known that the classical lp spaces, 1 ≤ p <∞, are of finite cotype,
and no infinite-dimensional C(K) space is.

Moreover, in the setting of the local theory of Banach spaces, it was
proved in [9, Corollary 1.2] that a Banach space X is of finite cotype if and
only if C(ω) is not finitely representable inX, that is, there exists ε > 0 and a
finite-dimensional subspace F of C(ω) such that for every linear isomorphism
T of F onto T (F ) ⊂ X we have ‖T‖ · ‖T−1‖ ≥ 1 + ε.

So, it seems natural to also investigate the interplay between the geom-
etry of finite cotype spaces with the geometry of infinite-dimensional C(K)
spaces.

In this direction, the main purpose of this paper is to show that for
any two Banach spaces of finite cotype, either one of them is isomorphic
to a subspace of some finite sum of the other, or their respective spaces of
vector-valued continuous functions defined on [0, α] for α an infinite count-
able ordinal are in some sense very far from each other. More precisely, our
main result is the following theorem.

Theorem 1.1. Suppose that X and Y are Banach spaces of finite cotype
such that neither X embeds into Y n nor Y embeds into Xn for any finite
ordinal n. Then for any infinite countable ordinals α, β, ξ, η, the following
are equivalent:

(a) C(α,X)⊕ C(ξ, Y ) ∼ C(β,X)⊕ C(η, Y ).
(b) C(α) ∼ C(β) and C(ξ) ∼ C(η).
Remark 1.2. It is interesting to notice that Theorem 1.1 cannot be

extended to uncountable ordinals. Indeed, take 1 < p 6= q <∞, X = lp and
Y = lq. It is well known that X and Y satisfy the hypotheses of Theorem
1.1. Moreover, since X is isomorphic to its square X2 = X ⊕ X, it follows
that

C(ω1, X) ∼ C(ω1, X
2) ∼ C(ω1, X)⊕ C(ω1, X) ∼ C(ω12, X).

Thus, for every ordinal ξ we have

C(ω1, X)⊕ C(ξ, Y ) ∼ C(ω12, X)⊕ C(ξ, Y ).

However, according to [11], C(ω1) is not isomorphic to C(ω12).

Remark 1.3. Without the assumption of finite cotype of X and Y , the
statement of Theorem 1.1, may be false. Indeed, it is easy to check that for
any Banach space Y 6= {0} we have

C(ω,C(ω))⊕ C(ωω, Y ) ∼ C(ωω, C(ω))⊕ C(ωω, Y ),

but by [1] we know that C(ω) is not isomorphic to C(ωω).
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The paper is organized as follows. In order to prove Theorem 1.1, in
Section 2, we first extend [3, Theorem 1.3.a] by proving:

Theorem 1.4. Let X be a Banach space of finite cotype, Y a Banach
space, and α, β ordinals with ω ≤ α ≤ β < ω1. Then

C(α,X ⊕ Y ) ∼ C(β,X ⊕ Y ) ⇒ either X ↪→ Y n for some 1 ≤ n < ω,

or C(α) ∼ C(β).
Remark 1.5. We stress that Theorem 1.4 in the case X = l1 solves [3,

Problem 5.2.a]. However, it remains an open problem whether the conclusion
of Theorem 1.4 is also true when X = l∞ (see [3, Problem 5.2.b]).

Finally, in Section 3, we give the proof of Theorem 1.1. It was inspired by
the proof of [3, Theorem 4.1], where the particular case X = lp and Y = lq
with 1 < p 6= q <∞ was considered.

2. C(α,X⊕Y ) spaces for X of finite cotype. Before proving Theorem
1.4, we state some preliminary results. We set C0(α,X) = {f ∈ C(α,X) :
f(α) = 0}. In what follows, we will often make use without explicit mention
of [1, Lemma 1.2.1] which states that C(α,X) is isomorphic to C0(α,X)
whenever α ≥ ω.

Proposition 2.1. Let X be a Banach space of finite cotype, Y a Banach
space containing no copy of X, and ξ an ordinal with ω ≤ ξ < ω1. Then

C(ξω, X) ↪→ C(ξ,X)⊕ Y ⇒ C(ξ,X) ↪→ C(γ,X)⊕ Y for some ω ≤ γ < ξ.

Proof. Let 2 ≤ q <∞, and K > 0 be a constant satisfying (1). Suppose
for contradiction that

C(ξ,X) X↪→ C0(γ,X)⊕ Y, ∀γ < ξ.

By hypothesis there exist bounded linear operators T1 : C(ξω, X)→ C0(ξ,X)
and T2 : C(ξω, X) → Y and a constant M > 0 such that for every f in
C(ξω, X) we have

(2) M‖f‖ ≤ sup(‖T1(f)‖, ‖T2(f)‖) ≤ ‖f‖.
Fix m ∈ N such that

M q
√
m/K > 1,

and ε > 0 such that

(3) 1 + ε < M q
√
m/K.

For every η ∈ [0, ξ), denote

∆1
η = [ξmη + 1, ξm(η + 1)],

and let Xm be the subspace of all f ∈ C(ξω, X) satisfying

∀η ∈ [0, ξ), f is constant in ∆1
η and f(γ) = 0, ∀γ ∈ [ξm+1, ξω].
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As we can easily see, Xm is isometric to C0(ξ,X). Since Y contains no copy
of X, the restriction of T2 to Xm is not an isomorphism onto its image. Thus,
there exists f1 ∈ Xm with

‖f1‖ = 1 and ‖T2(f1)‖ ≤ ε/2.
Let 0 ≤ η1 < ξ be such that there exists x1 ∈ X with

‖x1‖ = 1 and f1(γ) = x1, ∀γ ∈ ∆1
η1 .

Since T1(f1) ∈ C0(ξ,X), it follows that there exists γ1 < ξ such that
‖T1(f1(γ))‖ ≤ ε/2, ∀γ ∈ [γ1 + 1, ξ).

For every η ∈ [0, ξ), denote
∆2
η = [ξmη1 + ξm−1η + 1, ξmη1 + ξm−1(η + 1)],

and let Xm−1 the subspace of all f ∈ C(ξω, X) satisfying
∀η ∈ [0, ξ), f is constant in ∆2

η and f(γ) = 0, ∀γ 6∈ [ξmη1, ξ
m(η1 + 1)].

We can again easily see that Xm−1 is isometric to C0(ξ,X). Let Pγ1 be the
canonical projection from C(ξ,X) onto C(γ1, X). By our hypothesis

C(ξ,X) X↪→ C(γ1, X)⊕ Y.
Thus, the restriction to Xm−1 of the bounded linear operator T2 + Pγ1T1
defined by

(T2 + Pγ1T1)(g) = (T2(g), Pγ1T1(g))

cannot be an isomorphism onto the image. So, there exists f2 ∈ Xm−1 such
that

‖f2‖ = 1, ‖T2(f2)‖ ≤ ε/22, ‖T1(f2)(γ)‖ ≤ ε/22, ∀γ ∈ [0, γ1].

Fix γ2 ∈ [γ1 + 1, ξ) such that
‖T1(f2)(γ)‖ ≤ ε/22, ∀γ ∈ [γ2 + 1, ξ).

Let 0 ≤ η2 < ξ be such that there exists x2 ∈ X with
‖x2‖ = 1 and f2(γ) = x2, ∀γ ∈ ∆2

η2 .

Repeating this procedure m times we can find ordinals η1 < · · · < ηm < ξ
and γ1 < · · · < γm < ξ, functions f1, . . . , fm and elements x1, . . . , xm ∈ X
such that:

(i) ‖T2(fi)‖ ≤ ε/2i, 1 ≤ i ≤ m.
(ii) ‖T1(fi)(γ)‖ ≤ ε/2i, ∀γ ∈ [0, γi−1] and 2 ≤ i ≤ m.
(iii) ‖T1(fi)(γ)‖ ≤ ε/2i, ∀γ ∈ [γi + 1, ξ] and 1 ≤ i < m.
(iv) ‖xi‖ = 1, 1 ≤ i ≤ m.
(v) fi(γ) = xi, ∀γ ∈ ∆i

ηi and 1 ≤ i ≤ m, where

∆i
ηi = [ξmη1 + ξm−1η2 + · · ·+ ξm−(i−1)ηi + 1,

ξmη1 + ξm−1η2 + · · ·+ ξm−(i−1)(ηi + 1)].
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Since ‖xi‖ = 1, 1 ≤ i ≤ m, it follows from (1) that

q
√
m/K ≤

(
‖x1 + x2 + · · ·+ xm‖2

2m
+
‖x1 − x2 + · · ·+ xm‖2

2m

+ · · ·+ ‖ − x1 − x2 − · · · − xm‖
2

2m

)1/2

.

Thus, for an appropriate choice of scalars ri = ±1, we have∥∥∥ m∑
i=1

rixi

∥∥∥ ≥ q
√
m/K.

Let f =
∑m

i=1 rifi. It is clear that:

(vi) ‖f‖ ≥ q
√
m/K.

(vii) ‖T2(f)‖ ≤ ε.
(viii) ‖T1(f)‖ ≤ 1 + ε.

Consequently, by (2) we see that

M q
√
m/K ≤ 1 + ε.

This contradicts (3), and the proposition is proved.

Since Banach spaces of finite cotype contain no copy of c0, we can use
Proposition 2.1 and follow step by step the proof of [3, Proposition 2.3] to
prove the following proposition.

Proposition 2.2. Let X be a Banach space of finite cotype, and Y a
Banach space containing no copy of X. Then, for every ω ≤ ξ < ω1,

C(ξω, X) X↪→ C(ξ,X)⊕ Y.
Finally, we need to recall [2, Theorem 2.3].

Theorem 2.3. Let ξ be any ordinal, Y a Banach space, and X a closed
subspace of C(ξ, Y ). Then either X is isomorphic to a subspace of Y n for
some 1 ≤ n < ω, or X contains a copy of c0 complemented in C(ξ, Y ).

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose that ω ≤ α ≤ β < ω1,

C(α,X ⊕ Y ) ∼ C(β,X ⊕ Y ),

and

(4) X X↪→ Y n, ∀1 ≤ n < ω.

We will prove that C(α) is isomorphic to C(β). For the classical Bessaga and
Pełczyński Theorem [1] it suffices to show that β < αω. For contradiction
assume that αω ≤ β. Then by our hypothesis,

C(αω, X) ↪→ C(αω, X ⊕ Y ) ↪→ C(β,X ⊕ Y ) ∼ C(α,X ⊕ Y ).
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That is,

(5) C(αω, X) ↪→ C(α,X)⊕ C(α, Y ).

On the other hand, since X contains no copy of c0 and (4) holds, it follows
from Theorem 2.3 that

X X↪→ C(α, Y ).

Hence according to Proposition 2.2, (5) cannot hold. Thus, the theorem is
proved.

3. The proof of the quasi-dichotomy Theorem 1.1. In this section
we prove Theorem 1.1 which provides a quasi-dichotomy for spaces of finite
cotype involving the C(α,X) spaces, α < ω1.

Proof of Theorem 1.1. First assume that statement (b) is true. Then
according to [12, Corollary 21.5.2], we see that C(α,X) is isomorphic to
C(β,X), and C(ξ, Y ) is isomorphic to C(η, Y ). Consequently, (a) is also
true.

Now, we will prove that (a) implies (b). Take ordinals ω ≤ α, β, ξ, η < ω1

satisfying

(6) C(α,X)⊕ C(ξ, Y ) ∼ C(β,X)⊕ C(η, Y ).

We will prove that C(α) is isomorphic to C(β). Without loss of generality, we
may assume that α ≤ β. By the Bessaga and Pełczyński Theorem [1], C(ωωγ )
for 0 ≤ γ < ω1 are a complete set of representatives of the isomorphism
classes of C(α) spaces, ω ≤ α < ω1. Thus, without loss of generality we can
suppose that α = ωω

δ1 , ξ = ωω
δ2 , β = ωω

δ3 and η = ωω
δ4 for some ordinals

δi, 1 ≤ i ≤ 4.
Pick ω < θ < ω1 such that θ > δi for every 1 ≤ i ≤ 4. For every 1 ≤ i ≤ 4

consider the compact metric spaces

Fi = [0, ωω
δi ]× [0, ωω

θ
] and K = [0, ωω

θ
].

It is easy to check that

C(K)⊕ C(ωωδi ) ∼ C(K), ∀1 ≤ i ≤ 4,(7)

C([0, ωω
δi ]×K) ∼ C(K), ∀1 ≤ i ≤ 4,(8)

and

(9) C(K,X) ∼ C(K,X)n, ∀1 ≤ n < ω.

Moreover, since X contains no copy of c0, and by hypothesis no Y n contains
a copy of X for any 1 ≤ n < ω, Theorem 2.3 implies that

(10) X X↪→ C(K,Y ).
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Now, by (6) we deduce

C(K,Y )⊕ C(α,X)⊕ C(ξ, Y ) ∼ C(K,Y )⊕ C(β,X)⊕ C(η, Y ).

Thus, from (7) we infer that

C(α,X)⊕ C(K,Y ) ∼ C(β,X)⊕ C(K,Y ).

Next, in view of (8) we see that

C(α,X)⊕ C([0, α]×K,Y ) ∼ C(β,X)⊕ C([0, β]×K,Y ),

that is,

C(α,X)⊕ C(α,C(K,Y )) ∼ C(β,X)⊕ C(β,C(K,Y )).

Consequently,

(11) C(α,X ⊕ C(K,Y )) ∼ C(β,X ⊕ C(K,Y )).

Hence from (9)–(11) and Theorem 1.4 we conclude that C(α) is isomor-
phic to C(β).

Analogously, we prove that C(ξ) is isomorphic to C(η), and the proof is
complete.

4. Final remarks and open problems on C(α,X) spaces

Remark 4.1. Concerning extensions of Theorem 1.1, recall that if K is
a countable compact metric space, then by the classical Mazurkiewicz and
Sierpiński Theorem [10] K is homeomorphic to an ordinal interval [0, α] with
α < ω1. Thus, the equivalence of assertions (a) and (b) of Theorem 1.1 is
a cancellation law for infinite countable compact metric spaces. We do not
know whether this cancellation law can be extended to uncountable compact
metric spaces, whenever the Banach spaces X and Y satisfy the hypotheses
of Theorem 1.1.

However, notice that if [0, 1] is the interval of real numbers, then we have:

Corollary 4.2. Let X and Y be Banach spaces of finite cotype, and let
α and β be infinite countable ordinals. Suppose that

C([0, 1], X)⊕ C([0, 1], Y ) ∼ C(α,X)⊕ C(β, Y ).

Then there exist 1 ≤ m,n < ω such that

X ↪→ Y m and Y ↪→ Xn.

Proof. Towards a contradiction, by symmetry we can assume that

(12) X X↪→ Y m

for every 1 ≤ m < ω. Since C([0, 1]) contains a copy of C(αω), we would
have

(13) C(αω, X) ↪→ C([0, 1], X) ↪→ C(α,X)⊕ C(β, Y ).
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Thus, fron (12) and Theorem 2.3, we infer that C(β, Y ) contains no copy
of X. Therefore, by Proposition 2.2, (13) cannot hold.

Remark 4.3. Observe that Theorem 1.4 is a vector-valued extension of
the classical isomorphic classification of C(α) spaces, ω ≤ α < ω1, due to
Bessaga and Pełczyński [1]. Of course, Theorem 1.4 can be used to provide
the isomorphic classification of many spaces involving finite cotype spaces.
For example, let c denote the cardinality of the continuum. Then it is well
known that l∞ contains no copy of lp(c), 1 < p < ∞ [13, p. 48]. Hence it
follows directly from Theorem 1.4 that if ω ≤ α ≤ β < ω1, then

(14) C(α, lp(c)⊕ l∞) ∼ C(β, lp(c)⊕ l∞) ⇔ C(α) ∼ C(β).

However, we have not been able to solve the following problem closely
related to Theorem 1.1 and (14).

Problem 4.4. Let 1 < p <∞ and let α, β, ξ, η be countable ordinals. Is
C(α) isomorphic to C(β), and C(ξ) isomorphic to C(η), whenever

C(α, lp(c))⊕ C(ξ, l∞) ∼ C(β, lp(c))⊕ C(η, l∞)?
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