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Abstract. We provide a characterization of all finite-dimensional selfinjective alge-
bras over a field K which are socle equivalent to a prominent class of selfinjective algebras
of tilted type.

Introduction and the main results. Throughout the paper, by an
algebra we mean a basic, indecomposable, finite-dimensional associative K-
algebra with an identity over a (fixed) field K. For an algebra A, we denote by
mod A the category of finite-dimensional right A-modules, by D the standard
duality Homg (—, K) on mod A, and by ind A the full subcategory of mod A
formed by the indecomposable modules. Moreover, we denote by I'4 the
Auslander—Reiten quiver of A, and by 74 and Tgl the Auslander—Reiten
translations D Tr and Tr D, respectively. We do not distinguish between
a module in ind A and the vertex of Iy corresponding to it. An algebra
A is called selfinjective if A4 is an injective module, or equivalently, the
projective modules in mod A are injective. For a selfinjective algebra A, we
denote by I'; the stable Auslander-Reiten quiver of A, obtained from Iy
by removing the projective modules and the arrows attached to them. If A
is a selfinjective algebra, then the left socle of A and the right socle of A
coincide, and we denote them by soc A. Two selfinjective algebras A and A
are said to be socle equivalent if the quotient algebras A/soc A and A/soc A
are isomorphic. Moreover, two selfinjective algebras A and A are called stably
equivalent if their stable module categories mod A and mod A are equivalent.

In the representation theory of selfinjective algebras an important role is
played by the selfinjective algebras A which admit Galois coverings of the
form B — B/G = A, where B is the repetitive category of an algebra B
with acyclic Gabriel quiver and G is an admissible group of automorphisms
of B. Namely, frequently interesting selfinjective algebras are socle equiv-
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alent to such orbit algebras B /G and we may reduce their representation
theory to that for the corresponding algebras of finite global dimension oc-
curring in B. For example, for K algebraically closed, this is the case for
selfinjective algebras of polynomial growth (see [34], [35]), the restricted en-
veloping algebras of restricted Lie algebras [I1], or more generally the tame
Hopf algebras of infinitesimal group schemes [12], in odd characteristic, as
well as for special biserial algebras [25]. We also mention that for algebras
B of finite global dimension the stable module category miodé is equivalent
(as a triangulated category) to the derived category D°(mod B) of bounded
complexes in mod B (see [14]).

Among the algebras of finite global dimension a prominent role is played
by the tilted algebras of hereditary algebras, for which the representation
theory is rather well understood (see [3|, [7], [15], [19], [20], [21], [23], [26],
[27], [29], [30], [31], [32], [33] for some basic results and characterizations).
This made it possible to understand the representation theory of the orbit
algebras B/G of tilted algebras B (see [2], [4], [10], [16], [17], [18], [22], [35],
[36], [38], [39], [43]), called selfinjective algebras of tilted type. In particu-
lar, it has been proved that every admissible group G of automorphisms of
the repetitive category B of a tilted algebra B is an infinite cyclic group
generated by a strictly positive automorphism of B. It would be interesting
to characterize the selfinjective algebras which are socle equivalent (respec-
tively, stably equivalent) to selfinjective algebras of tilted type. In the series
of papers [36], [37], [38], [40], [41], [42] we developed the theory of selfinjective
algebras with deforming ideals and established necessary and sufficient con-
ditions for a selfinjective algebra A to be socle equivalent to an orbit algebra
B /G, for an algebra B and an infinite cyclic group G generated by a strictly
positive automorphism of B being the composition ¢rg of the Nakayama
automorphism vz of B and a positive automorphism ¢ of B. The structure
and stable equivalences of selfinjective algebras of the form B /(wvg), with

B a tilted algebra and ¢ a positive automorphism of B , were investigated in
[24], [37], [38], [40], [42]. We also refer to [5], [6] for some recent investigation
of related selfinjective algebras of finite representation type.

The aim of this paper is to establish a characterization of the class of self-
injective algebras of tilted type by the existence of a double 7-rigid module.
For an algebra A, a module M in mod A is called 74-rigid if Hom (M, 74 M)
= 0. It has been proved in [33] that the number of pairwise nonisomorphic
indecomposable direct summands of a 74-rigid module M in mod A is less
than or equal to the rank of the Grothendieck group Ky(A) of A. We also
refer to [I] for a theory of 7-rigid modules and its applications.

Let A be a selfinjective algebra. A full valued subquiver A of the Aus-
lander—Reiten quiver I'y of A is said to be a stable slice if the following
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conditions are satisfied:

(1) A is connected, acyclic, and without projective modules.

(2) For any valued arrow V NS "4 with U in A and V' nonpro-

jective, V belongs to A or to T4 A.

(3) For any valued arrow U L), Vin I'y with U in A and V nonpro-

jective, V belongs to A or to TZIA.

A stable slice A of I'4 is said to be regular if A contains neither the so-
cle factor P/soc P nor the radical rad P of an indecomposable projective
module P in mod A. Further, a stable slice A of I'4 is said to be semireg-
ular if A does not contain both the socle factor @Q/soc @ of an indecom-
posable projective module ) and the radical rad P of an indecomposable
projective module P in mod A. Moreover, a stable slice A of I'4 is said
to be double T4-rigid if Homa(X,74Y) = 0 and Hom (7, X,Y) = 0 for
all indecomposable modules X and Y from A. We note that A is then fi-
nite and hence the direct sum M = M of the indecomposable modules
from A is a 74-rigid module, and TglM is also a 74-rigid module. More-
over, if A is a stable slice in I'4, then A is a full valued subquiver of
a connected component C of I'} intersecting every 74-orbit in C exactly
once.
The following theorem is the main result of the paper.

THEOREM 1. Let A be a basic, indecomposable, finite-dimensional self-
injective algebra over a field K. The following statements are equivalent:

(i) L4 admits a semireqular double Ta-rigid stable slice.
(ii) A has one of the following forms:

(a) A isisomorphic to the orbit algebra E/(npyg), where B=End g (T)
for a hereditary algebra H and a tilting module T in mod H either
without nonzero projective direct summand or without nonzero
injective direct summand, and @ is a strictly positive automor-
phism of B. R

(b) A is socle equivalent to the orbit algebra B/(pvg), where B =
Endg(T) for a hereditary algebra H and a tilting module T in
mod H without nonzero projective or injective direct summands,
and @ is a rigid automorphism of B.

Moreover, if K is an algebraically closed field, then we may replace in (ii)(b)
“socle equivalent” by “isomorphic”.

We would like to stress that in general we cannot replace in (ii) “so-
cle equivalent” by “isomorphic” without assuming that ¢ is strictly positive
(see [39, Proposition 4]).
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It follows from the results in [2], [4], [1I0] (see also [38], [39]) that the
repetitive category Bofa tilted algebra B not of Dynkin type is isomorphic
to the repetitive category B* of a tilted algebra B* = Endg-(T"), where
H* is a hereditary algebra not of Dynkin type and T™ is a tilting module in
mod H* without nonzero projective or injective direct summands.

Then we obtain the following consequence of Theorem

THEOREM 2. Let A be a basic, indecomposable, finite-dimensional self-
imjective algebra of infinite representation type over a field K. The following
statements are equivalent:

(1) I'a admits a regular double T-rigid stable slice.
(ii) A is socle equivalent to the orbit algebra B/(pvg), where B is a tilted
algebra not of Dynkin type and @ is a positive automorphism of B.

Moreover, if K is an algebraically closed field, we may replace in (ii) “socle
equivalent” by “isomorphic”.

We will present in Section [4 examples of tilted algebras B of Dynkin type
for which every section in I’z contains either an indecomposable projective or
an indecomposable injective module, and even an indecomposable projective-
injective module. It would be interesting to describe all tilted algebras of
Dynkin type with these properties. In particular, we conclude that there are
trivial extension algebras T(B) = B/(vg) of tilted algebras B of Dynkin type
for which the Auslander-Reiten quiver I'pp) does not admit a semiregular
double 7p(p)-rigid stable slice. Moreover, we will show that there are r-fold
trivial extension algebras T(B)(" of tilted algebras B of Dynkin type, with
r > 2, for which the Auslander—Reiten quiver I’ L admits a semiregular
but nonregular double Tr( B)(T>—rigid stable slice. We also mention that all self-
injective orbit algebras A = B /G of tilted algebras B of Dynkin type and
admissible infinite cyclic automorphism groups G of B having a maximal
almost split sequence in mod A do have a regular double 74-rigid stable slice
in I'y (see |6l Theorem 5.2]).

The paper is organized as follows. In Section [1I| we recall the background
on orbit algebras of repetitive categories of algebras. Section [2]is devoted to
presenting the theory of selfinjective algebras with deforming ideals, playing
a prominent role in the proof of our main result. In Section [3| we prove
Theorem [1} In Section [4f we present some examples illustrating Theorem

For basic background on the relevant representation theory we refer to
131, 1291, 301, [43], [44].

1. Orbit algebras of repetitive categories. Let B be an algebra and
1p = e1+---+ey, a decomposition of the identity of B into a sum of pairwise
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orthogonal primitive idempotents. We associate to B a selfinjective locally
bounded K-category B, called the repetitive category of B (see [1T]). The
objects of B are em,i, m € Z,i € {1,...,n}, and the morphism spaces are
defined as follows:

ejBe;, r=m,
B(em,iaer,j) = D(eiBEj), r=m+1,
0, otherwise.

Observe that ejBe; = Homp(e; B, e;B), D(e;Be;) = e;D(B)e; and

@ E(emi, €7~7j) = ejB D D(Bej)7
(m,i)€ZX{1,...,n}
for any r € Z and j € {1,...,n}. We denote by vz the Nakayama automor-
phism of B defined by

vg(em,) = emy1,; for all (m,i) € Z x {1,...,n}.
An automorphism ¢ of the K-category B is said to be:

e positive if, for each pair (m,i) € Z x {1,...,n}, we have p(em i) = ey ;
for some p > m and some j € {1,...,n};

e rigid if, for each pair (m,i) € Z x {1,...,n}, thereexists j € {1,...,n}
such that @(emi) = em

o strictly positive if it is positive but not rigid.

The automorphisms V%, r > 1, are strictly positive automorphisms of B.

A group G of automorphisms of B is said to be admissible if G acts freely
on the set of objects of B and has finitely many orbits. Following P. Gabriel
[13], we may then consider the orbit category B /G of B with respect to G
whose objects are the G-orbits of objects in B , and the morphism spaces are
given by

(B\/G)(C% b) = {(fy,a:) € H B\(:C?y) ‘ gfy,x = fgy,gxyvgeG,(a:,y)Gaxb}

(z,y)€axb

for all objects a, b of B /G. Since B /G has finitely many objects and the mor-
phism spaces in B /G are finite-dimensional, we have the associated finite-
dimensional selfinjective K-algebra @(B/G) which is the direct sum of all
morphism spaces in B /G, called the orbit algebra of B with respect to G.
We will identify B/G with @(B/G). For example, for each positive inte-

ger r, the infinite cyclic group (V%) generated by the rth power V% of vg

is an admissible group of automorphisms of B , and we have the associated
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selfinjective orbit algebra

5, 0 0 ... 0 0 O]
fo by O ... 0 0 0
0 fs b3 ... 0 0 0
T(B)") = B/(v}) = :
0O 0 0 ... fr—1 b1 O
L0 0 0 ... 0 fi b
bla'-'vbrflerfl)"'va‘fleD(B)

called the r-fold trivial extension algebra of B. In particular, T(B)(l) =
T(B) = B x D(B) is the trivial extension algebra of B by the injective
cogenerator D(DB).

Let B be an algebra. By a finite-dimensional B-module we mean a con-
travariant functor M from B to the category of K-vector spaces such that

> weon B dimx M (z) is finite. We denote by mod B the category of all finite-

dimensional B-modules. For a module M in mod B , we denote by supp(M)
the full subcategory of B formed by all objects z with M(z) # 0, and
call it the support of M. Following [8], the category B is said to be locally
support-finite if for any object x of B the full subcategory EI of B formed
by the supports of all indecomposable modules M in mod B with M () #0
is finite. We also recall that for a group G of automorphisms of B we have
the induced action of G on mod B given by 9M = M og~"! for any module M
in mod B and element g of G. Then we denote by F) : mod B — mod E/G
the push-down functor associated to the Galois covering F' : B — E/G
(see [13]).

The following theorem is a consequence of results established in [2], [4],
[10], [16], [17].

THEOREM 1.1. Let B be a tilted algebra. Then B is locally support finite.

Then we obtain the following consequence of [8, Theorem| (or [9, Propo-
sition 2.5|) (the density part) and [13, Theorem 3.6].

THEOREM 1.2. Let B be a tilted algebra, G an admissible infinite cyclic
group of automorphisms of B and A = B/G the associated orbit algebra.

Then:

(i) The push-down functor F : mod B — mod A associated to the Ga-

lois covering F - B— E/G = A is dense and preserves indecompos-
able modules and almost split sequences.
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(ii) The Auslander-Reiten quiver I'y is the orbit quiver I'z/G with re-
spect to the induced action of G on the Auslander—Reiten quiver I'g.

2. Selfinjective algebras with deforming ideals. In this section we
present criteria for selfinjective algebras to be socle equivalent to orbit al-
gebras of the repetitive categories of algebras with respect to infinite cyclic
automorphism groups, playing a fundamental role in our proof of Theorem I}

Let A be a selfinjective algebra. For a subset X of A, we may consider
its left annihilator [4(X) = {a € A | aX = 0} and right annihilator
ra(X) = {a € A | Xa = 0}. Then by a theorem due to T. Nakayama
(see |44, Theorem IV.6.10]) the annihilator operation /4 induces a Galois
correspondence from the lattice of right ideals of A to the lattice of left ide-
als of A, and 74 is the inverse Galois correspondence to [ 4. Let I be an ideal
of A, B = A/I, and e an idempotent of A such that e 4+ I is the identity
of B. We may assume that 14 = e; + --- 4+ e, with eq,..., e, pairwise or-
thogonal primitive idempotents of A, e = e1 + --- + e, for some n < r, and
{e; | 1 < i < n} is the set of all idempotents in {e; | 1 < i < r} which are
not in /. Such an idempotent e is uniquely determined by I up to an inner
automorphism of A, and is called a residual identity of B = A/I. Observe
also that B = eAe/ele.

We have the following lemma from [41, Lemma 5.1].

LEMMA 2.1. Let A be a selfinjective algebra, I an ideal of A, and e an
idempotent of A such that la(I) = Ie or ra(I) = el. Then e is a residual
identity of A/I.

We also recall the following proposition proved in [36, Proposition 2.3].

PROPOSITION 2.2. Let A be a selfinjective algebra, I an ideal of A, B =
A/I, e a residual identity of B, and assume that Iel = 0. The following
conditions are equivalent:

(i) Ie is an injective cogenerator in mod B.
(ii) el is an injective cogenerator in mod BP.
(i) 1a(1) = Ie.
(iv) ra(l) =el.
Moreover, under these equivalent conditions, we have soc ACT and lea.(I) =

ele =repe(I).

The following theorem, proved in [38, Theorem 3.8 (sufficiency part)
and [41, Theorem 5.3| (necessity part), will be fundamental for our consid-
erations.

THEOREM 2.3. Let A be a selfinjective algebra. The following conditions
are equivalent:
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(i) A is isomorphic to the orbit algebra E/(g@ué), where B is an algebra
and ¢ is a positive automorphism of B.
(ii) There is an ideal I of A and an idempotent e of A such that
(1) ra(l) =el;
(2) the canonical algebra epimorphism eAe — eAe/ele is a retrac-
tion.

Moreover, in this case, B is isomorphic to A/I.

Let A be a selfinjective algebra, I an ideal of A, and e a residual identity
of A/I. Following [36], I is said to be a deforming ideal of A if:

(D1) leae(I) = ele =reac(l);
(D2) the valued quiver Q4,7 of A/I is acyclic.

Assume [ is a deforming ideal of A. Then we have a canonical isomorphism
of algebras eAe/ele — A/I and I can be considered as an (eAe/ele)-
(eAe/ele)-bimodule. Denote by A[I] the direct sum of K-vector spaces
(eAe/ele) @ I with the multiplication
(b,z) - (¢,y) = (be, by + xc + zy)

for b,c € ede/ele and x,y € I. Then A[I] is a K-algebra with the identity
(e + ele,14 — e), and, by identifying x € I with (0,z) € A[I], we may
consider I to be ideal of A[I]. Observe that e = (e + ele,0) is a residual
identity of A[I]/I = eAe/ele = A/I, eA[lle = (eAe/ele) @ ele, and the
canonical algebra epimorphism eA[I]le — eA[l]e/ele is a retraction.

The following properties of the algebra A[I] were established in [36, The-
orem 4.1|, [37, Theorem 3| and [42], Lemma 3.1|.

THEOREM 2.4. Let A be a selfinjective algebra and I a deforming ideal
of A. Then:

(i) A[l] is a selfinjective algebra with the same Nakayama permutation
as A and I is a deforming ideal of A[I].
(ii) A and A[I] are socle equivalent.
(iii) A and A[I] are stably equivalent.
(iv) All] is a symmetric algebra if A is a symmetric algebra.

We note that if A is a selfinjective algebra, I an ideal of A, B = A/I,
e an idempotent of A such that r4(I) = el, and the valued quiver Qp of B
is acyclic, then by Lemma [2.] and Proposition 2.2 I is a deforming ideal of
A and e is a residual identity of B.

The following theorem proved in [38, Theorem 4.1| shows the importance
of the algebras A[I].

THEOREM 2.5. Let A be a selfinjective algebra, I an ideal of A, B = A/I
and e an idempotent of A. Assume that ro(I) = el and Qp is acyclic. Then
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AlI] is isomorphic to the orbit algebra E/(g@ué) for some positive automor-
phism ¢ of B.

We point out that there are selfinjective algebras A with deforming
ideals I such that the algebras A and A[I] are not isomorphic (see [38, Ex-
ample 4.2]), and A is not isomorphic to the orbit algebra B /(¢vg), where B
is an algebra and ¢ is a positive automorphism of B (see [39, Proposition 4]).

The following result proved in [40, Proposition 3.2] describes a situation
when the algebras A and A[I] are isomorphic.

THEOREM 2.6. Let A be a selfinjective algebra with a deforming ideal I,
B = A/I, e be a residual identity of B, and v the Nakayama permutation
of A. Assume that Iel =0 and e; # e, ;) for any primitive summand e; of e.
Then the algebras A and A[I] are isomorphic. In particular, A is isomorphic
to the orbit algebra E/(gpyg) for some positive automorphism ¢ of B.

Moreover, we have the following consequence of |36, Theorem 3.2].

THEOREM 2.7. Let A be a selfinjective algebra over an algebraically closed
field K and I a deforming ideal of A. Then the algebras A and A[I] are
1somorphic.

3. Proof of Theorem [1} We first prove that (ii) implies (i).

Let B be the tilted algebra Endy(T'), where H is a hereditary alge-
bra and T is a tilting module in mod H. Recall that Ext},(T,T) = 0 and
T is a direct sum of n pairwise nonisomorphic indecomposable modules
in mod H, where n is the rank of the Grothendieck group Ky(H) of H

(see [7], [15]). Let Iy,...,I, be a complete family of pairwise nonisomor-
phic indecomposable injective modules in mod H. Then, by general theory,
the images Hompy (7T, I1),...,Hompg(T, I,,) of these modules via the functor

Hompy (T, —) : mod H — mod B form a complete section Ar of a connected
component Cr of I'p, called the connecting component of I'g determined by T,
which connects the torsion-free part Y(T') = {Y € mod B | Tor? (Y, T) = 0}
to the torsion part X(T) = {X € mod B|X ®p T = 0} of mod B (see [3],
[15]). Moreover, Ay is isomorphic to the opposite quiver Q% of Qp, and
hence Ap is a connected acyclic valued quiver. Recall also that the section
Ar is a convex subquiver of Cp intersecting every 7-orbit of Cp exactly once.
Since H is a hereditary algebra, the torsion pair (X (7'),)Y(T")) in mod B is
splitting, that is, every indecomposable module in mod B belongs to X(T")
or to Y(T).

PROPOSITION 3.1. Let A = B/( (ovg), where B = Endg(T) for a hered-
itary algebra H and a tilting module T' in mod H, and ¢ is a positive au-
tomorphism of B. Moreover, let F : mod B — mod A be the push-down
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functor associated to the Galois covering F : B — E/(goué) = A. Then:

(i) FA(Ar) is a stable slice of I'y.

(ii) F\(Ar) contains the radical rad P of an indecomposable projective
module P in mod A if and only if T admits an indecomposable pro-
jective direct summand in mod H.

(iii) Fx\(Ar) contains the socle factor @ /soc @ of an indecomposable pro-
jective module Q) in mod A if and only if T admits an indecomposable
imjective direct summand in mod H .

Proof. (i) It follows from the results in [2], [10], [16], [I7] that there exists
a connected acyclic component C of I'z such that Ar is a connected, convex,
full valued subquiver of C which intersects every T5-orbit of the stable part C*
of C exactly once. Since the push-down functor F induces an isomorphism
of translation quivers I'5/G — I'y, we conclude that F\(Ar) is a connected,
full valued subquiver of the connected component F)\(C) of I'y intersecting
every T4-orbit of the stable part F(C)® of F)(C) exactly once. In particular,
F)(Ar) is a stable slice of I'y. Moreover the valued quivers Ap and F)\(Ar)
are isomorphic, because A is the orbit algebra B /(wvg) with ¢ a positive
automorphism of B.

(ii) Observe that F)(Ar) contains the radical rad P of an indecomposable
projective module P in mod A if and only if Az contains rad P* for an
indecomposable projective module P* in mod B such that P = F)(P*).
Further, by the results in [2], [10], [16], [L7], this is equivalent to the fact that
Ar contains an injective module R from mod B which has no proper injective
predecessor on Ap (and then R = rad P* for an indecomposable projective
module P* in mod B ). Since Ar is a finite acyclic quiver, this is equivalent to
the fact that A contains an indecomposable injective module from mod B.
Finally, it follows from the connecting lemma [3, Lemma VI.4.9] (see also
[3, Proposition VI.5.8]) that, for an indecomposable injective module I in
mod H, the right B-module Homy (T, I) is injective in mod B if and only if
the indecomposable projective module Py in mod H with top Pf =soc [ is a
direct summand of T'. This completes the proof of (ii).

(iii) Observe that F\(Ar) contains the socle factor @/soc@ of an in-
decomposable projective module ) in mod A if and only if Az contains
Q* /soc Q* for an indecomposable projective module Q* in mod B such that
Q = F)\(Q*). Further, by the results of [2], [10], [16], [17], this is equivalent
to the fact that Ap contains a projective module R from mod B which has
no proper projective successor on Arp (and then R = Q*/soc Q* for an in-
decomposable projective module @Q* in mod E) Since A7 is a finite acyclic
quiver, this in turn is equivalent to the fact that Ar contains an indecompos-
able projective module from mod B. Finally, for an indecomposable injective
module I in mod H, the right B-module Homy (T, I) is projective in mod B
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if and only if I is a direct summand of T (see [3, Lemma VI.3.1]). This
completes the proof of (iii). =

PROPOSITION 3.2. Let A be an orbit algebra of one of the forms:

(a) E/(gpug), where B = Endg(T) for a hereditary algebra H and a
talting module T in mod H, and ¢ is a strictly positive automorphism
of B.

(b) E/(gpyé), where B = Endg(T) for a hereditary algebra H and a
tilting module T' in mod H without nonzero projective or injective
direct summands, and @ is a rigid automorphism of B.

Then the push-down FX\(Ar) of the section Ar of the connecting component
Cr of I'p determined by T via the push-down functor F) : mod B — mod A
associated to the Galois covering F : B — B/((pu ) = A is a double Tp-rigid
stable slice of I'y.

Proof. We abbreviate g = pvg and G = (g). Consider the canonical

Galois covering functor F : B — B /G = A and the associated push-down
functor F) : mod B — mod A. Then, applying Theorems and we
conclude that F) is a dense functor, preserves indecomposable modules and
almost split sequences, and the Auslander—Reiten quiver I’y is the orbit
quiver I's/G with respect to the induced action of G' on I'z. Moreover, for

any indecomposable modules X and Y in mod E, the functor F) induces
isomorphisms of K-vector spaces

P Homz(X,Y) = Hom(F)(X), FA(Y)),
rEZ
@D Hom ("X, Y) = Homy(Fx(X), FA(Y)).
r€Z
Let e1,..., e, be a set of pairwise orthogonal primitive idempotents of B
whose sum is the identity of B. Then B is the category with the objects e, ,
m € Z,i € {1,...,n}. We identify the algebra B with the full subcategory
of B given by the objects eg;, i € {1,...,n}. It follows from the results in

[2], [, [10], [16], [1I7] that there exists a connected acyclic component C in
I'z such that:

e Arp is a connected, convex, full valued subquiver of C and intersects
every Tz-orbit of the stable part of C* of C exactly once.

e C is a generalized standard component of I'g, that is, rad%o(X ,Y)=0
for all X and Y in C (see [32]).

° FA has a disjoint decomposition FA PVCV Q, where P and Q are
famlhes of connected components of I's such that Homg(C,P) =
Hompz(Q,C) =0, and Homz(Q,P) = 0
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We note that C = I'z, hence P and Q are empty, if B is a tilted algebra of
Dynkin type.

It follows from Proposition that the push-down functor F)\(Ar) of
Ar is a stable slice of I'y. We claim that F(Ar) is a double 74-rigid stable
slice of I'4. Denote by My the direct sum of all indecomposable modules in
mod B lying on Ap. Then F)\(My) is the direct sum of all indecomposable
modules in mod A lying on Fy(Ar). We will show that

Hom 4 (F\(Mr), AF\(Mr)) =0,  Homy (1, Fx(Mr), FA(Mr)) = 0.
We know that TAF)\(MT) = F)\(T’BSMT) and T/TlF)\(MT) = F)\(TélMT).

Moreover, since F) is a Galois covering of module categories, it induces
isomorphisms of K-vector spaces

@D Hom (9 My, 7 Mr) = Homy (Fy(Mr), Fa(r5Mr)),
re€Z
P Homp (7 Mz, 9 Mr) = Homy (Fx(75" Mr), FA(Mr)).
rEL
Observe that Homz(Mr, 75M7) = 0 and HomE(TélMT, Mr) = 0, because
A is contained in the generalized standard acyclic component C of I'z
and is a stable slice of I'3. We claim that Homg(ngT,TEMT) = 0 and
HomE(Tf_glMT, 9"M7) = 0 for any r € Z\ {0}. We have two cases to consider.

Assume first that A is of the form (a), so ¢ is a strictly positive au-
tomorphism of B. Then it follows from [2], [4], [10], [16], [I7] that for any
r € Z\{0} the supports of 9’ My and 75My (respectively, 9 My and TélMT)
have no common objects, and hence the claim follows.

Assume now that A is of the form (b). Then it follows from general
theory (see [3, Lemma VI.3.1, Proposition VI.5.8] that the section Ar of Cr
does not contain an indecomposable projective or indecomposable injective
module. Applying again the results of [2], [10], [16], [17], we conclude that
T5Mr = 75 Mr and T:lMT = TglMT, so 1My and TE:lMT have supports
contained in B. On the other hand, for g = ¢vz with ¢ a rigid automorphism
of E, the support of 9" My is the Nakayama shift V%(B) of the support B
of Mp. Then, for r € Z\ {0}, the supports of 9 Mr and TgMr = M7
(respectively, 9 Mz and TélMT = TglMT) have no common objects, and
hence the claim follows.

Summing up, we obtain the equalities Hom(F)\ (M), TAF\(M7)) = 0
and Hom (7' F\(Mr), Fx(Mr)) = 0. Therefore, F)\(Ar) is a double 74-
rigid stable slice of I'4. u

The following lemma completes the proof of the implication (ii)=-(i) in
Theorem 1.
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LEMMA 3.3. Let A and A be socle equivalent selfinjective algebras, and
assume that I'y admits a double Tx-rigid stable slice A. Then 'y admits
a double Ta-rigid stable slice A*. Moreover, if A is regular (respectively,
semiregular) then A* is reqular (respectively, semiregular).

Proof. Let ¢ : A/socA — A/soc A be an isomorphism of algebras.
Then ¢ induces an isomorphism of module categories ¢ : mod(A4/soc A) —
mod(A/soc A). Clearly, ¢ induces an isomorphism of Auslander—Reiten quiv-
ers I'j/socn = L'Ajsoc a- Let Ma be the direct sum of all indecomposable
modules in mod A lying on A. Since A contains no projective module, we
conclude that M, is a module in mod(A/soc A). Thus we may consider the
module ¢(MA) in mod(A/soc A), and hence in mod A. Observe that ¢(Ma)
is the direct sum of all indecomposable modules in mod A lying on the valued
quiver A* = ¢(A). Moreover, A* is a stable slice of Iy, because ¢ induces
an isomorphism 'y /soc 2 W /soc A Of translation quivers. In particular,

TAP(MA) = Tajsoc AP(MA) = O(Tassoc AMA) = ¢(TaMa),
Th O (Ma) = T4 ) e a®(Ma) = 0(7) o AMa) = &7 Ma).
Hence, we obtain isomorphisms of K-vector spaces

Homa(¢p(Ma), Tad(Ma)) = Hom g e A(A(MA), Ta/s0c aB(MAa))
= Homy /soc A(MA; T /soc AMA)
= Hom/(Ma, 7AMA) = 0,
Homa (7' ¢(Ma), p(Ma)) = Hom g o (T o 4S(Ma), $(Ma))
= HOmA/socA(TX/ISOCAMA, Mn)
= HomA(T/TlMA, Ma) =0.

This shows that A* = ¢(Ma) is a double T4-rigid stable slice in I'4. We
also note that for an indecomposable projective module P in mod A there is
an indecomposable projective module P* in mod A such that ¢(P/soc P) =
P*/soc P* and ¢(rad P) = rad P*. Hence, the remaining statements follow. m

We will prove now that (i) implies (ii) in Theorem 1.

Let A be a basic, indecomposable, finite-dimensional selfinjective algebra
over a field K. Assume that I'4 admits a semiregular double 74-rigid stable
slice A. Let M be the direct sum of all indecomposable modules in mod A
lying on A, I =r4(M), and B = A/I.

LEMMA 3.4. The following statements hold:

(i) Let P be an indecomposable projective module in mod A which is a
direct predecessor of a module from A in I'y. Then Hom (M, P) = 0,
and hence the socle of P is not a simple right B-module.
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(ii) Let P be an indecomposable projective module in mod A which is a
direct successor of a module from A in I'4. Then Hom4(P, M) =0,
and hence the top of P is not a simple right B-module.

Proof. (i) Suppose that Hom4 (M, P) # 0. Since A does not contain a
projective module, we infer that Hom 4 (M, rad P) # 0. On the other hand,
P/soc P is a unique direct successor of the projective module P in I'4, so
P/soc P belongs to A. But then rad P = 74(P/soc P) is a direct summand
of TAM. Therefore Hom4 (M, 74 M) # 0, contrary to assumption.

The proof of (ii) is similar. =

We have the following known facts (see [3, Lemma VIIL.5.2| and its dual).
LEMMA 3.5. The following the statements hold:

(i) 78 M s the largest right B-submodule of TAM.
(ii) TélM is the largest quotient right B-module of Tle.

Then we have following direct consequence of the double 74-rigidity of
the stable slice A.

COROLLARY 3.6. Homp(M,75M) =0 and Homp(r53' M, M) = 0.
The following lemma will be essential for further considerations.

LEMMA 3.7. Let X be an indecomposable module lying on A and Y an
indecomposable module in mod B not lying on A. Then:

(i) Every homomorphism from Y to X in mod B factors through the
module (TpM)* for some positive integer s.

(ii) Ewvery homomorphism from X to Y in mod B factors through the
module (TglM)t for some positive integer t.

Proof. (i) Let f : Y — X be a nonzero homomorphism in mod B. It
follows from Lemma [3.4i) that Y is not isomorphic to the radical of an
indecomposable projective module P in mod A with P/soc P lying on A.
Then there are a positive integer s and homomorphisms g : Y — (14M)*
and h : (TaM)® — X in mod A such that f = hg, by |3, Lemma VIIL.5.4(a)].
Then it follows from Lemma [3.5(i) that the image of g is contained in
(T M)?, and hence f factors through (75M)?*.

The proof of (ii) is similar and applies [3, Lemma VIIL.5.4(b)] and Lem-

mas E ii) and 3.5 - ). m

PROPOSITION 3.8. The following statements hold:

(i) M is a tilting module in mod B.
(i) H = EndB( ) is a hereditary algebra.
i

i)
(iii) T = D(M) is a tilting module in mod H.
(iv) B Endgy(T).
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(v) A is the section Ap of the connecting component Cr determined
by T.

Proof. Corollary [3.6| yields Homp(M, 75 M) = 0 and Homp(r5' M, M)
= 0. Since M is a faithful right B-module, applying |3l Lemma VIIL.5.1], we
conclude that pdg M < 1 and idg M < 1. Moreover, we have Exth (M, M) =
DHomp(M, M) = 0, by [3, Corollary IV.2.14].

We will now show that M is a tilting module in mod B. Let f1,..., fg be
a basis of the K-vector space Homp(B, M ). Then we have a monomorphism
f: B — M%in mod B, induced by fi,..., f4, and a short exact sequence

0-BLM SN0
in mod B, where N = Coker f and g is a canonical epimorphism.

We now give the standard arguments showing that M & N is a tilt-
ing module in mod B. Since B is a projective module in mod B, we have
EthB(N, —) = ExtQB(Md, —),and sopdg N < 1, because pdg M < 1. Hence,
pdp(M@®N) < 1. Applying Homp(—, M) to the above short exact sequence,
we obtain a short exact sequence in mod K of the form

Homp (M4, M) 2225, o (B, M) — Exth(N, M) — Exth(M?, M),
where Extl(M?, M) = 0 and Homp(f, M) is an epimorphism by the choice
of f, and so Exth (N, M) = 0. Applying now Homp(N, —), we obtain an epi-
morphism Exth(N, g) : Exth(N, M%) — ExtL(N, N), because pdg N < 1
implies Ext%(N, B) = 0, and consequently ExtL (N, N) = 0. Finally, apply-
ing Homp (M, —), we obtain an epimorphism Exth(M, g) : Exth (M, M%) —
Exth(M, N), because pdg M < 1 implies Ext%(M,B) = 0, and hence
Exth (M, N) = 0. Summing up, we have pdg(M & N) < 1 and Ext(M @ N,
M @® N) =0, and so M & N is a tilting module in mod B.

We will now show that N belongs to the additive category add M of M.
Assume to the contrary that there exists an indecomposable direct sum-
mand W of N which is not in add M, or equivalently W does not lie
on A. Clearly, Homp(M, W) # 0 because N is a quotient module of M¢?,
Hence, applying Lemma we conclude that Homp (75 M, W) # 0. Since
idg M < 1, applying [3, Corollary IV.2.14], we find that ExtL(W, M) =
DHomp(t5' M, W) # 0, which contradicts Exth(N, M) = 0. Therefore,
M is a tilting module in mod B. We also conclude that the rank of Ky (B)
coincides with the number of indecomposable modules lying on A.

(ii) Let @ be an indecomposable projective module in mod H, R an in-
decomposable right H-submodule of @), and f : R — @ the inclusion ho-
momorphism. We claim that R is a projective module. The tilting module
M induces the torsion pair (7(M), F(M)) in mod B with T(M) = {U €
mod B | ExtL(M,U) = 0} and F(M) = {W € mod B | Homp(M, W) = 0},



104 A. SKOWRONSKI AND K. YAMAGATA

and the torsion pair (X (M), Y(M)) in mod H with X(M) = {X € mod H |
X ®yg M =0} and Y(M) = {Y € mod H | Torf (Y, M) = 0}. Since Q be-
longs to V(M) and the torsion-free class V(M) is closed under submodules,
we conclude that R belongs to Y(M). Moreover, the functor Homp (M, —) :
mod B — mod H induces an equivalence of categories T (M) = Y(M).
Hence there exists a homomorphism g : V — U in mod B with V', U inde-
composable modules from T (M), U from A, such that Homp(M,V) = R,
Homp(M,U) = @, and Homp(M,g) = f.

Take now a nonzero homomorphism h : Q" — R in mod H with Q' an
indecomposable projective module. Then there exists a nonzero homomor-
phism « : V' — V in mod B such that V' is in A, Hompg (M, V') = @, and
Homp(M,u) = h. Since f is a monomorphism, we conclude that fh # 0,
and hence gu # 0. We claim that V lies on A. Suppose V is not on A. Ap-
plying Lemma [3.7] we conclude that there exist homomorphisms p: V — W
and ¢ : W — U in mod B, with W being a direct sum of modules from
TA, such that ¢ = ¢p. But then gpu = gu # 0 implies pu # 0, and
hence Homp(M,75M) # 0, contrary to Corollary [3.6 Thus V belongs
to A, and consequently R = Hompg (M, V) is a projective module in mod H.
This shows that every right H-submodule of @) is projective. Therefore,
H is a hereditary algebra whose quiver @z is the opposite quiver A°P
of A.

(iii)—(v). It follows from the Brenner—Butler tilting theorem [3, Theo-
rem VI.3.8] that 7' = D(M) is a tilting module in mod H and there is
a canonical K-algebra isomorphism B = Endy(T). In particular, B is a
tilted algebra of type A°P. Moreover, A is the section Ar of I'p given by
the images Hompy (T, I),...,Homg (T, I,) of a complete family I;,..., I,
of pairwise nonisomorphic indecomposable injective modules in mod H. In-
deed, the direct sum of these modules is isomorphic to D(H), and we have
isomorphisms of right B-modules

I‘IOHIH(ZW7 D(H)) = HOHIH(D(M), D(H)) = HOmHOP (H, M) = M,
since M is also a right H°P-module (left H-module). m
A crucial step for proving the implication (i)=-(ii) in Theorem [ is the
following theorem.

THEOREM 3.9. The ideal I is a deforming ideal of A with ra(I) = el
for an idempotent e of A.

We will prove the above theorem in several steps. Let eq, ..., e, be a set of
pairwise orthogonal primitive idempotents of A such that 14 =e;+---+e,,
and e = e; + - - - + ey, for some n < r, is a residual identity of B = A/I. We
denote by J the trace ideal of M in A, that is, the ideal of A generated by
the images of all homomorphisms from M to A, and by J’ the trace ideal of
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the left A-module D(M) in A. Observe that I = 14(D(M)). Then we have
the following lemma.

LEMMA 3.10. We have J C I and J' C I.

Proof. First we show that J C I. By definition, there exists an epi-
morphism ¢ : M?® — J for some integer s > 1. Suppose that J is not
contained in I. Then there exists a homomorphism f : A — M in mod A
such that f(J) # 0. We have in mod A a decomposition A = P’ & P & P”,
where P’ is a maximal direct summand of A such that P’/soc P’ belongs
to add M and P” is a maximal direct summand of A such that rad P” be-
longs to add M. It follows from Lemma that Hom (M, P’) = 0 and
Homuy(P",M) = 0. Then J C P @& P” and f(P”) = 0. Hence, there are
homomorphisms u : J — P and v : P — M such that vu # 0. Applying
now [3, Lemma VIIL.5.4(a)|, we conclude that there are a positive integer ¢
and homomorphisms g : P — (7aM)!, h : (taM)* — M such that v = hg.
But then hgup = vup # 0, because J = Im p, and hence guy # 0. This
implies that Homp(M, 75 M) # 0, contradicting Corollary Therefore,
JCI.

Suppose now that J’ is not contained in I. Then there is a homomor-
phism f': A — D(M) in mod A°" such that f'(J’) # 0. Moreover, we have
in mod A°P an epimorphism ¢’ : D(M)™ — J’ for some integer m > 1.
Then f'w'¢’ # 0 for w' : J' — A the inclusion homomorphism in mod A°P.
Applying the duality functor D : mod A°? — mod A we obtain homomor-
phisms

p(p(m)) 25 pray 29, pry 29, p(p(anym)
in mod A, where D(D(M)) =2 M, D(D(M)™) = M™, D(A) = A, and
D(")D(w'")D(f") = D(f'w'¢’) # 0. Then, as in the first part of the proof,
we conclude that Hom (M, 74M) # 0, a contradiction. Hence J' C 1. =

LEMMA 3.11. We have la(I) = J, ra(l) =J and I =ra(J) =1a(J).

Proof. We prove that [4(I) = J and I = r4(J). Since J is a right B-
module, we have JI = 0, and hence I C r4(J). In order to show the converse
inclusion, take a monomorphism u : M — A’ for some integer ¢ > 1, and
let u; : M — A be the composite of u with the projection of A’; on the ith
component. Then there is a monomorphism v : M — @le Imwu; induced
by u. Further, by definition of J, @1;:1 Imw; is contained in @le J. This
leads to the inclusions

¢
ra(J) = TA(@ J) Cra(M) = 1.

=1
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Therefore, I = r4(J). Moreover, applying a theorem by T. Nakayama (see
[44, Corollary IV.6.11]), we obtain l4(I) = la(ra(J)) = J.

Similar arguments yield the equalities I = l4(J") and r4(I) = ra(la(J"))
=J. n

LEMMA 3.12. We have ele = eJe. In particular, (ele)? = 0.

Proof. Since e is a residual identity of B = A/I, we have B = eAe/ele.
In particular, M is a module in mod eAe with r.4.(M) = ele. Observe also
that eJe is the trace ideal of M in eAe, generated by the images of all
homomorphisms from M to eAe in modede. It follows from Lemma [3.10
that eJe = eJ is an ideal of ede with eJe C ele C radede. Let A =
eAe/eJe. Then M is a sincere module in mod A. We will prove that M
is a faithful module in mod A. Observe that then ele/eJe = rp(M) = 0,
and consequently ele = eJe. Clerly then (ele)? = (eJe)(ele) = 0, because
JI =0.

We shall first show that id4 M < 1. Consider the exact sequence

0—>elJeSede > A—0

in mod A, where u is the inclusion homomorphism and v is the canonical
epimorphism. Applying the functor Hom, Ae(Te_AleM ,—) :modeAe — mod K
to this sequence, we get the exact sequence in mod K of the form

Hom, 4, (7';416M, eJe) > HomeAe(T;lleM, eAe)

E) HomeAe(Te_AleM, A) NN ExtiAe(Te_AleM, eJe),

where o = HomeAe(Te;lleM, u), B = HomeAe(Te;lleM, v), and 7 is the connect-
ing homomorphism. Observe that there is an epimorphism M?! — T;AleM
in mod eAe for some positive integer ¢. Indeed, we first note that T;AleM
has no indecomposable projective direct summand in mod eAe. Then a pro-
jective cover ) — Te_AleM of Te_AleM in mod eAe factors through a mod-
ule of the form M?, and the claim follows. Observe that then the image
of every homomorphism ¢ : Te_AleM — eAe in modeAe is contained in
eJe, and hence « is an isomorphism. This implies that v is a monomor-
phism. Further, applying [3l Lemma VIIL.5.4(b)|, we conclude that every
homomorphism f : M — eAe in modeAe factors through a module of
the form (Te_AleM )® for some positive integer s. Hence there is an epimor-
phism (Te_AleM)m — eJe in mod ede for some positive integer m. Then it
follows from Lemma (ii) that there is an epimorphism (75 M)™ — eJe
in mod eAe. But then Hom,ac(eJe, M) = 0, because Homp (75" M, M) = 0.
Then we obtain Extl,, (7., M, eJe) = DHomeac(eJe, M) = 0. Summing
up, we conclude that HOHIA(T/TIM, A) = HomeAe(Te_AleM, A) =0, or equiva-
lently, idg M < 1.
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Clearly, Extl (M, M) = D Hom (M, 7yM) = D Homgac (M, Teac M) =0,
because T M is the largest right B-submodule of 7, 4. M and Homp(M, 75 M)
= 0. Since the rank of Ky(A) equals the rank of Ky(B), we conclude that
M is a cotilting module in mod A, and hence D(M) is a tilting module in
mod A°P. In particular, D(M) is a faithful module in mod A°P. Then we
obtain the required fact 74 (M) = lgop (D(M)) = 0. m

We note that so far the semiregularity of A has not been used. It will be
essential in the proofs of the next results.

LEMMA 3.13. Assume that the stable slice A of I'a does mot contain
the radical of any indecomposable projective module in mod A. Let f be
a primitive idempotent in I such that fJ # fAe. Then L = fAeAf +
fJ + fAecAfAe + eAf + ele is an ideal of F = (e + f)A(e + f), and
N = fAe/fLe is a module in mod B such that Hompg(N,M) = 0 and
Hompg(M, N) # 0.

Proof. 1t follows from Lemma[3.12]that fAele C fJ. Then the fact that
L is an ideal of F is a direct consequence of fJ C fAe. Observe also that
fLe = fJ+ fAeAfAe, fLf Crad(fAf), eLe = ele, and eLf = eAf. We
have N # 0. Indeed, if fAe = fLe then, since eAf Ae C rad(eAe), we obtain
fAe = fJ + fAe(rad(eAe)), and so fAe = fJ, by the Nakayama lemma
[44, Lemma 1.3.3], which contradicts our assumption. Further, B = eAe/ele
and (fAe)(ele) = fAeJ C fJ C fLe, and hence N is a right B-module.
Moreover, N is also a left module over S = fAf/fLf and F/L is isomorphic
to the triangular matrix algebra

S N
A= ( ) .
0 B
Since the module M has no indecomposable direct summand isomorphic to
the radical of an indecomposable projective module in mod A, it follows from

definition of stable slice that TglM =T LM . Hence, for any indecomposable
module X on A we have an almost split sequence in mod B,

0-X—->Y—>272—0,

which is also an almost split sequence in mod A. Applying now [36, Lemma
5.6] (or [30, Theorem XV.1.6]) we conclude that Hom4 (N, X) = 0. Hence
Homp (N, M) = 0. Moreover, every indecomposable direct summand of N
is either generated or cogenerated by M. Therefore, Hompg(M,N) # 0. u

PROPOSITION 3.14. Assume that the stable slice A of I'4 does not con-
tain the radical of any indecomposable projective module in mod A. Then
Ie=J andel = J'.
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Proof. This follows exactly as [36, Proposition 5.9] by applying Lemmas
.

PROPOSITION 3.15. Assume that the stable slice A of ' does not contain

the socle factor of any indecomposable projective module in mod A. Then
Ie=J and el =J'.

Proof. The opposite algebra A°P is a basic, indecomposable, finite-dimen-
sional selfinjective algebra over K whose Auslander—Reiten quiver I'4op ad-
mits the double 740p-rigid stable slice D(A) which does not contain the rad-
ical of any indecomposable projective module in mod A°P. Moreover, D(M)
is the direct sum of all indecomposable modules in mod A° lying on D(A)
and 7400 (D(M)) = la(D(M)) = ra(M) = I. Then the claim follows from
Proposition .

Proof of Theorem[3.9 It follows from Lemma[3.11] and Propositions
and that 74(I) = J' = el and l4(I) = J = Ie. In particular, we have
Iel =0, because JI = 0. Then, applying Proposition [2.2] we conclude that
soc A C I and leac(I) = ele = Teae(I). Moreover, the valued quiver @ 4/ of
A/I = B is acyclic, because B is a tilted algebra. Therefore, I is a deforming
ideal of A with rq(I) =el. =

We now complete the proof of the implication (i)=-(ii) of Theorem |1} It
follows from Theorems and that the algebra A[I] associated to I is

isomorphic to the orbit algebra B/(pvg) for some positive automorphism ¢

of B. Moreover, applying Theorem 2.4} we conclude that A is socle equivalent
to A[I], and consequently A is socle equivalent to B/(pvg). Further, if ¢ is
strictly positive, we have e; # e,(; for any primitive summand e; of e, and
so the algebras A and A[I] are isomorphic, by Theorem It follows from
Proposition[3.8that B = Endy (T) for the hereditary algebra H = End (M)
and the tilting module 7" = D(M) in mod H, and the canonical section Ap of
the connecting component Cr of I'p determined by T is the double 74-rigid
stable slice A of I'y.

Let ¢ : A/soc A — A[I]|/soc A[I] be an isomorphism of algebras and
¢ : mod(A/soc A) — mod(A[I]/soc A[I]) the induced isomorphism of mod-
ule categories. Then ¢(A) is a double Ta(r-rigid stable slice of I'y(7, by
Lemma [3.3] Moreover, ¢(A) = F\(Ar) for the push-down functor F) :
mod B — mod A[I] associated to the Galois covering functor F : B —
B/ (wvg) = A[I], under the usual identification of B with the corresponding

full subcategory of B. Since Ais a semiregular stable slice of 'y, we conclude
from Lemma that ¢(A) = F\(Ar) is a semiregular stable slice of I'4(p.
Then it follows from Proposition [3.I] that the tilting module T is either with-
out nonzero projective direct summand or without nonzero injective direct
summand.
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Assume now that ¢ is a rigid automorphism of B. We claim that T has no
nonzero projective or injective direct summands. We abbreviate g = pvg.
Suppose that T admits an indecomposable projective direct summand in
mod H. Then it follows from Proposition that the stable slice Fy(Ar)
of I'y(7) contains the radical rad P of an indecomposable projective module
P in mod A[I], and consequently Az contains the radical rad P* of an inde-
composable projective module P* in mod B. Observe also that P* /soc P* =
Tél rad P*. Since ¢ is a rigid automorphism of B , we conclude that 9P* is an

indecomposable projective module in mod B whose radical rad 9P* = 9rad P*
lies on the shift 9Ar of Ap, which is the canonical section of the connecting

component YCr of the tilted algebra g(B) = vz(B), under the usual iden-

tification of B with the corresponding full subcategory of B. We also note
that top P* = soc9P*, and hence we have Homz(P*/soc P*,rad 9P*) # 0.
Thus Hom E(T;M, 9M) # 0. But this implies that Hom 4, (T;[ll] M, M) # 0,
because the push-down functor F : mod B — mod A[I], associated to the

Galois covering F : B — B/(g) = A[I], induces an isomorphism of K-vector
spaces

P Homp(r5' M, 9" M) 5 Hom gy (7, M, M).
r€Z

This contradicts the double 74p-rigidity of ¢(A). We prove similarly that
if T admits an indecomposable injective direct summand in mod H, then
Hom 415 (M, 74;pM) # 0, again contradicting the double 74;-rigidity of
¢(A). Therefore, the required claim follows. Finally, we note that if K is
algebraically closed, then A is isomorphic to A[I], by Theorem [2.7]

This finishes the proof of (i)=(ii), and hence the proof of Theorem [1]

4. Examples. In this section we present examples illustrating the main
theorem of the paper.

EXAMPLE 4.1. Let n > 2 be an integer, Q(n) be the quiver

a1 [eD) Qn—2

1 2 b n—12"n,

and B(n) = KQ(n) the path algebra of Q(n) over a field K. Hence B(n)
is a tilted algebra of Dynkin type A,. Then every orbit algebra of the form

l?(;) / (gpl/B/(;)), with ¢ a positive automorphism of B(n), is isomorphic to
a bound quiver algebra A(m,n) = K2(m)/J(m,n), where 2(m) is the
quiver
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m 2
am—l/ \052
m—1 3
Qm,—2 /a3

and J(m,n) is the ideal in the path algebra K {2(m) generated by all paths
in 2(m) of length n + 1 (see |35, (2.7)]), for some integer m > n. For
each i € {1,...,m}, we denote by P; the indecomposable projective mod-
ule in mod A whose top is the simple module S; at the vertex 7. Observe
that soc P, = S;1,, where we identify ¢ + n with its remainder modulo m.
Then rad P; = P;41/Sit14n for all i € {1,...,m}. In particular, we have
Tarad Py = rad Py for alli € {1,...,m}.

The stable Auslander—Reiten quiver I jl(m,n) of A(m,n) is isomorphic to
the translation quiver ZQ(n)/(7™). We observe that every stable slice in I'4
admits an indecomposable module of the form rad P; for some i € {1,...,m}.
On the other hand, for any i € {1,...,m}, we have

Hom 4 (rad P;, 74 rad P;) = Hom A (Pj1+1/Si4+14n,rad Piy1) # 0
if and only if m = n. Similarly, for any i € {1,...,m},
HOIDA(TZI rad P;,rad P;) = Homu(P;/Sitn,rad P;) # 0

if and only if m = n. This shows that I'4(;, ) admits a double 74y, ,,)-rigid
stable slice if and only if m > n. We note that the algebra A(n,n) is isomor-
phic to the trivial extension algebra T(B(n)) = B(n) x D(B(n)). On the
other hand, for all m > n > 2, every stable slice in I'y(y, ,) contains an inde-
composable module which is simultaneously the radical of an indecomposable
projective module and the socle factor of an indecomposable projective mod-
ule in mod A(m, n). Therefore, I'y(;, ny does not admit a semiregular stable
slice.

EXAMPLE 4.2. Let B be the matrix algebra

B [R O] _{[a O] ‘ aER}
S lc ¢l b e lbeec)
where R and C are the fields of real and complex numbers, respectively. Then
B is a 5-dimensional hereditary R-algebra whose valued Gabriel quiver @ p
is the quiver

1 (1,2) 9
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of Dynkin type By. Moreover, the Auslander—Reiten quiver I'p is of the form
7' P2 = IQ SQ

N
TB Pl—Il

where P;, I; and S;, for i € {1,2}, denote the indecomposable projective, in-
decomposable injective and simple module in mod B at the vertex i. Observe
that every section in I'p contains either a projective module or an injective
module. Consider the trivial extension algebra A = T(B) = Bx D(B). Then
the Auslander—Reiten quiver I'4 is of the form

P(2) (f)
\

| \ /

rad P(2)

VWA AN
Nt

where P(1) and P(2) are the projective covers of S; and Sy in mod A, re-
spectively (see [28], [49]).

Observe that every stable slice in I'4 contains an indecomposable module
which is either a direct predecessor or a direct successor of an indecomposable
projective module in mod A, and so I'4 does not admit a regular stable slice.
On the other hand, I'y admits four semiregular stable slices

Sl %PQ, 11 %52, SQ ﬂ)P(l)/Sl, radP(2) Sl.

Moreover, Hom 4 (P(i)/soc P(i),rad P(i)) # 0 for ¢ € {1,2}. Therefore, I'4
does not admit a stable slice which is double 74-rigid. We also note that, for
r > 2, the Auslander—Reiten quivers I T(B)™) of the r-fold trivial extension

(2.1)

algebras T(B)(") = =B / (VB) admit semiregular double 7y gy -rigid stable
slices, for example, the stable slices given by the four sections of I'p presented
above.

EXAMPLE 4.3. Let B be the matrix algebra

7= own awal =1l oo
QV2) Q(V2) b e lbeeqv)]f
where Q is the field of rational numbers and Q(+/2) is a field extension of Q
of degree 3. Then B is a 7-dimensional hereditary Q-algebra whose valued
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Gabriel quiver @p is the quiver

153
of Dynkin type Gg. Moreover, the Auslander—Reiten quiver I'p is of the form
71P2 TB P2 == Ig SQ
(1 V ‘1) (17 i /
TB P1 TB P1 = Il

where P;, I; and S;, for ¢ € {1,2}, denote the indecomposable projective,
indecomposable injective and simple module in mod B at the vertex i. Ob-
serve that there is exactly one section in I's without projective and injective
modules, namely the full valued subquiver A of I's with the vertices 75 p
and 75 1p,.

Consider the trivial extension algebra A = T(B) = B x D(B). Then the
Auslander—Reiten quiver I'4 is of the form

P(2) TPy P(2)
O\, I / |
_1 - _15 radP 3 |
/ e 0 / e gt e \l
5 S P(1)/S1 7, (P(1)/51) S
I \ /
7'2151

where P(1) and P(2) are the projective covers of S; and S in mod A, re-
spectively (see [28], [45]). Then the full subquiver A of I'4 of the form

7'5151 —>( ) TBng

is a double 74-rigid stable slice in I'4, which is moreover regular.

EXAMPLE 4.4. Let @ be the quiver

Y
o

Let J be the ideal in the path algebra K@ generated by the elements

5

//\\

Braq — o, Paan — B3z, Pzaz — Baouy,
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and B = K@Q/J be the associated bound quiver algebra. We denote by P;
and S;, i € {0,1,2,3,4,5}, the indecomposable projective and the simple
module at the vertex i. Then the Auslander—Reiten quiver I'p has a con-
nected generalized standard (in the sense of [32]) acyclic component C of the
form

7851 _151
. T>&radP5 radP5>P5>P5/SO TB P5/SO/)
<
gV
TBS4 5 S

obtained by gluing of the preinjective component of the Auslander—Reiten
quiver I'g: of the hereditary algebra B’ = KQ' given by the quiver @)’ with
the vertices 0, 1, 2, 3, 4, and the postprojective component of the Auslander—
Reiten quiver I'gr of the hereditary algebra B” = K Q" given by the quiver
Q" with the vertices 1,2, 3,4, 5.

Observe that C admits a finite number of sections. Moreover, every section
A of C contains the projective-injective module P5 and satisfies the condition
Homp(X,78Y) = 0 for all modules X and Y lying on A. Then it follows
from a criterion of Liu and Skowronski (see [3], [23], [31]) that B is a tilted
algebra of the form B = Endy(T), where H is a hereditary algebra of wild
type A°P and T is a tilting module in mod H such that C is the connecting
component Cr and A is the canonical section Ay of Cr determined by T'. We
note that 7" has both an indecomposable projective and an indecomposable
injective direct summands, because A = Ap contains a projective-injective
module.

Consider now the trivial extension algebra A = T(B) = B x D(B). We
note that A is the bound quiver algebra K(2/L, where {2 is the quiver

1
a1 B1
a2 2. B
0/”T2\5
Y*53‘53/
oy Ba
4

and L is the ideal in K (2 generated by the elements



114 A. SKOWRONSKI AND K. YAMAGATA

Braq — Baag, Paas — Bz, Bzaz — Bacy, yPraay, aryB2, a1vB3, a1y,
a2YB1, a2vBs3, axvBa, azyPi, azyfe, azyfs, asyfr, auyB, aayBs3.

We denote by P(0) and P(5) the indecomposable projective modules in
mod A with the tops Sy and S5, respectively. Then it follows from the results
of [10] that I'4 admits an acyclic connected component D of the form

TAsl TA Sl

/SXXXX s

-«»radP +TA P5/SO 9-P5 +P5/50+P /S[)%-TA P5/S()

NZANA 7

TAS4 N ls,

with 745; = 785;, TZISi = TngZ-, for i € {1,2,3,4}, containing exactly two
projective modules, namely P(0) and P(5). Then, for any section A of C,
the quiver A is a stable slice of I'4 but is not double 74-rigid. Indeed,

Hom 4 (Ps, 74P5) = Homy(P(5)/S5,rad P(5)) # 0,
Hom (7, " P5, P5) = Hom4(P(0)/Sp, rad P(0)) # 0.

On the other hand, taking a shift 7' A of such a section A of C inside D with
m > 2, we obtain a regular double 74-rigid stable slice of I'4. Similarly, for
m > 2, 7, A is also a regular double 74-rigid stable slice of I'4. Therefore,
T(B) is isomorphic to the trivial extension algebra T(B*) of a tilted algebra
B* = Endg-(T*) of a hereditary algebra H* and a tilting module 7% in
mod H* without nonzero projective or injective direct summands (see [10]
for more details).
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