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NON-SEPARATING SUBCONTINUA OF PLANAR CONTINUA

BY

D. DANIEL (Beaumont, TX), C. ISLAS (Saskatoon and México),
R. LEONEL (Saskatoon and Pachuca) and E. D. TYMCHATYN (Saskatoon)

Abstract. We revisit an old question of Knaster by demonstrating that each non-
degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate
subcontinuum which does not separate X.

1. Introduction. It is an important result of R. L. Moore [5] that each
non-degenerate continuum X contains at least two points neither of which
disconnects X. A cut continuum is a continuum which is disconnected by
each of its proper, non-degenerate subcontinua. Knaster [2] constructed a
dendroid (i.e. an arc connected, hereditarily unicoherent continuum) in eu-
clidean 3-space which is a cut continuum. Nadler and Seldomridge [7] con-
structed a similar example in response to a question of Bellamy. Earlier,
Roberts [8] constructed a plane cut continuum in answer to a question of
Knaster [2]. Roberts’ example contains simple closed curves, so it is not
hereditarily unicoherent.

In this note we prove there is no hereditarily unicoherent, planar, cut
continuum.

Both the Knaster and Roberts examples are Suslinian, i.e. they do not
contain uncountable collections of pairwise disjoint non-degenerate subcon-
tinua. We show that all metric cut continua are Suslinian.

2. Preliminaries. A continuum is a non-degenerate, compact, con-
nected, metric space. If X is a continuum and S is a subcontinuum of
X then S is said to be non-separating if X − S is connected. Otherwise,
S separates X. As a special case, if X is a continuum then p ∈ X is a cut
point or separating point of X if X − {p} is not connected.

A continuumM is irreducible if there is a two-element subset ofM that is
a subset of no proper subcontinuum ofM . A point p is a point of irreducibility
of a continuum M if there exists a point q ∈ M such that M is irreducible
between p and q. A continuum is hereditarily unicoherent if the intersection

2010 Mathematics Subject Classification: Primary 54F15; Secondary 54D05, 54B05.
Key words and phrases: cut point, non-separating subcontinuum, plane continuum.

DOI: 10.4064/cm141-1-12 [143] c© Instytut Matematyczny PAN, 2015



144 D. DANIEL ET AL.

of each pair of its subcontinua is connected. A point x of a plane continuum
X is accessible from a component U of R2−X if there is an arc A ⊂ U ∪{x}
with A ∩X = {x}.

For other notions, the reader is referred to a standard reference such as
Kuratowski [3] or Whyburn [9].

3. Main results. We will show that there is no hereditarily unicoherent
cut continuum in the plane. We do so by a sequence of results. In Theorems
3.1, 3.2 and 3.3, X will denote a cut continuum.

Theorem 3.1. X is Suslinian.

Proof. Assume that X contains an uncountable family C of pairwise dis-
joint non-degenerate subcontinua. Then C is a non-separated collection in
the sense of [9, p. 45]. By [9, III.2.2], there is C in C which separates X
into exactly two complementary components AC and BC . Then C ∪AC is a
continuum and it does not separate X, a contradiction.

It follows by [3, p. 212] that X contains no indecomposable continuum.

Theorem 3.2. If K is either a cut point of X or a proper non-degenerate
subcontinuum of X then no component of X−K is open in X. In particular,
X −K has infinitely many components.

Proof. If a component C of X−K were open in X then X−C would be
a proper non-degenerate subcontinuum of X with connected complement.

Theorem 3.3. The set of points at which X is locally connected has
empty interior.

Proof. Suppose that X is locally connected at each point of a non-empty
open subset U of X. Let K be a non-degenerate proper subcontinuum of X
such that K ⊆ U , and let L be a component of X −K. Of course L ∩ U is
open. Let W be an open subset of X such that K ⊆ W ⊆ Cl(W ) ⊆ U . Its
boundary Cl(W ) −W may be covered by finitely many connected sets not
intersecting K. Therefore, there are only finitely many components of X−K
intersecting X−Cl(W ). Hence, each point of L−Cl(W ) has a neighborhood
contained in L. It follows that L is open, a contradiction to Theorem 3.2.

Lemma 3.4. Let X be a hereditarily unicoherent cut continuum in R2

such that X ∩ (R × {0}) = [0, 1] × {0}. Then there exists b ∈ (1/2, 1) and
irreducible continua Zi ⊂ X such that φ 6= Zi ∩ (R × {0}) ⊂ [0, 1/2] × {0},
(b, 0) ∈ limZi, and either Zi ⊂ R× [0,∞) or Zi ⊂ R× (−∞, 0]. If infinitely
many Zi are in R × [0,∞) and A is a continuum in X ∩ (R × [0,∞)) such
that φ 6= A ∩ (R× {0}) ⊂ (1/2, b)× {0} then A ⊂ [0, 1]× {0}. Moreover, it
is not possible that infinitely many Zi lie in the closed upper half-plane, and
that infinitely many others lie in the closed lower half-plane.
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Proof. Let A1 = [0, 1/2] × {0} and A2 = (1/2, 1] × {0}. Let D1 = A1 ∪⋃
{D : D is a component of X−([0, 1]×{0}) such that Cl(D∪A1) ⊂ A1∪D}.

Let D2 = A2 ∪
⋃
{D : D is a component of X − ([0, 1] × {0}) such that

Cl(D) meets A2}. Note that X = D1 ∪D2, a disjoint union, and that Di is
connected for each of i = 1, 2. Also, note that D1 is not closed since X is a
cut continuum and X − D1 = D2 is connected. Let z ∈ Cl(D1) − D1. Let
y = (b, 0) ∈ A2 be such that the irreducible continuum yz from z to A1 ∪A2

contains y. Let {zj : j = 1, 2, . . . } be a sequence inD1 converging to z. Let Zj

be the irreducible continuum inX from zj to A1. We may suppose Zi is in the
closed upper half-plane. By compactness of the hyperspace of subcontinua
ofX we may assume by passing to a subsequence if necessary that limZi = Z
is a continuum from A1 to z. By hereditary unicoherence, Z contains the
irreducible continuum in X from A1 to z. Hence, [1/2, b]× {0} ⊂ Z.

Now suppose A is a continuum in X ∩ (R × [0,∞)) with A ∩ (R × {0})
non-empty and contained in (1/2, b) × {0}. By hereditary unicoherence A
misses Zi. Moreover, z /∈ A. Let ziz be the line segment from zi to z. For
large i,A is contained in the topological hull of Zi∪yz∪([0, 1]×{0})∪ziz = Yi.
Since the limit of the boundaries of the Yi is Z ∪ [0, 1]× {0}, which is in X,
and no subcontinuum of X separates the plane, we have A ⊂ Z.

If A meets the open upper half-plane, let B be a non-degenerate sub-
continuum of A contained in the open upper half-plane. Since X is a cut
continuum, X − B = Y1 ∪ Y2 where Y1 and Y2 are separated sets. With-
out loss of generality [0, 1] × {0} ⊂ Y1. Hence, Zi ⊂ Y1 for each i, and
Z −B ⊂ Y1. Now, Y2 ∪B ⊂ Y2 ∪A and Y2 ∪A is a continuum contained in
Z as in the preceding paragraph. So Y1 ⊃ Y2 = ∅. This is a contradiction, so
A ⊂ [0, 1]× {0}.

If there were infinitely many of the Zi in the closed upper half-plane
and infinitely many of them in the closed lower half-plane then the interval[
3
8 +

1
4b,

1
8 +

3
4b
]
×{0} would be a non-degenerate subcontinuum of X which

does not separate X.

Proposition 3.5. A monotone non-degenerate continuous image of a
cut continuum is a cut continuum.

Proof. Let f : X → Y be a monotone continuous mapping of a cut con-
tinuum X onto a non-degenerate continuum Y . Let A be a non-degenerate
proper subcontinuum of Y . Then f−1(A) is a non-degenerate proper sub-
continuum of X. Since X is a cut continuum, X − f−1(A) = U ∪ V with U
and V non-empty disjoint open sets in X. Since f is monotone, it follows
that f(U) and f(V ) are disjoint. Since f−1(A)∪ V is closed in X, its image
under f is compact and closed, and f(U) = Y − f(f−1(A) ∪ V ) is therefore
open.
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Lemma 3.6. Let M be a Suslinian hereditarily unicoherent continuum in
the closed lower half-plane such that M ∩ (R × {0}) = [0, 1] × {0}. If no
non-degenerate subset of [1/2, b] × {0}, where 1/2 < b < 1, is contained in
a convergence continuum of M , then there exists a dense set of points of
[1/2, b]× {0} each of which is accessible from ∞ in the lower half-plane.

Proof. For w ∈M − ([0, 1]× {0}) let Kw be the unique irreducible con-
tinuum from w to [0, 1]×{0}. Let S = {x ∈ [1/2, b] : (x, 0) ∈ Kw for some w}.
Let w ∈ M − ([0, 1]× {0}). Since M is Suslinian, it is hereditarily decom-
posable, so Kw is a continuum of type λ; see [3, p. 197]. There is a finest
monotone decomposition of Kw into layers (often called tranches in the liter-
ature) which are continua. The end-layer Ew ofKw which does not contain w
is a continuum of convergence, so by hypothesis it can meet [1/2, b]×{0} in at
most one point. Hence,Kw meets [1/2, b]×{0} in at most a single point. Since
M is Suslinian, S is at most countable. If x ∈ [1/2, b)−S then by hereditary
unicoherence, and by the fact that [1/2, b]×{0} contains no non-degenerate
subset of a continuum of convergence,M−{(x, 0)} is the union of the follow-
ing two disjoint open sets: ([0, x)×{0})∪{Kw : Kw∩ ([0, x)×{0}) 6= ∅} and
((x, 1]×{0})∪{Kw : Kw∩((x, 1]×{0}) 6= ∅}. By hereditary normality of the
plane, a bounded closed set L ⊂ R2− (M −{(x, 0)}) separates M −{(x, 0)}
in the plane. Since the plane is locally connected, we may assume by [3,
49.V.3] that L is an irreducible separator. Since the plane is unicoherent,
L is connected. We can fatten L to a continuum K consisting of (x, 0) to-
gether with a locally finite null family of closed disks each of which meets L
but misses M . Since K is locally connected at all but one point, it is locally
connected because a continuum cannot fail to be locally connected only on a
0-dimensional set. Hence, K contains a simple closed curve which separates
M − {(x, 0)}.

Theorem 3.7. If X is a hereditarily unicoherent continuum in the plane
then X is not a cut continuum.

Proof. Assume by way of contradiction that X is a cut continuum. Let
a, b be points of X that are accessible from ∞ in R2. Without loss of gener-
ality, a = (0, 0), b = (1, 0), and X ⊆ R2− (((−∞, 0)×{0})∪ ((1,∞)×{0}))
(since all arcs in the 2-sphere are tame [3, 61.V.1]).

Let ab denote the unique continuum in X that is irreducible between a
and b. As in Lemma 3.6, ab is a continuum of type λ. Let π : R2 → π(R2) be
the quotient mapping that collapses non-degenerate layers in ab to points (see
[3, 48.VII.3]). The above decomposition is upper semi-continuous into non-
separating subcontinua of R2, so π(R2) is homeomorphic to R2 by Moore’s
Plane Decomposition Theorem. By Proposition 3.5, π(X) is a cut continuum.
By abuse of notation we suppose π(X) = X. We also suppose that all of
the conditions and notation of Lemma 3.4 hold, and that each Zi is in the
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upper half-plane, so that [0, 1]×{0} ⊆ X and X ⊆ R2− (((−∞, 0)×{0})∪
((1,∞)× {0})).

For each w ∈ X ∩ (R × (−∞, 0)) let Kw be the irreducible continuum
in X from w to [0, 1] × {0}. Suppose that for some such w, we have L =
Kw ∩ ([0, 1] × {0}) ⊂ (1/2, b) × {0}. Then L is contained in an end-layer
of Kw, so L is a connected set [a, c]× {0} by hereditary unicoherence of X.
Just suppose a 6= c. Then there exist pairwise disjoint continua Xi in Kw

such that limXi ⊃ [a, c]× {0}.
Let C =

[
3
4a + 1

4c,
1
4a + 3

4c
]
. Then (0, 0) and (b, 0) are in the same

component of X − C, so [0, 1] × {0} − C is contained in one component of
X−C, and no component of X−C lies entirely in the open upper half-plane
by Lemma 3.4. If A is a subcontinuum of X with A ⊂ R× (−∞, 0], ∅ 6= A∩
(R×0) ⊂ (a, c)×{0}, then A ⊂ Kw and in fact A ⊂ (a, c)×{0} by the same
proof as in Lemma 3.4. Thus C does not disconnect X. This contradiction
implies a = c. A similar argument shows that, in fact, Kw∩([0, 1]×{0}) does
not contain a non-degenerate subinterval of [1/2, b]×{0}. By the argument in
Lemma 3.4, [1/2, b]×{0} contains no non-degenerate subset of a continuum
of convergence of X ∩ (R× (−∞, 0]).

Let 1/2 < d < e < b be such that neither d nor e is in any Kw. This is
possible becauseX is Suslinian and because eachKw meets [1/2, b]×{0} in at
most one point. By Lemma 3.6 each of (d, 0) and (e, 0) is accessible from∞ in
the lower half-plane. Thus, P = ([d, e]×{0})∪

⋃
{Kw : Kw∩([d, e]×{0}) 6= ∅}

is a continuum which does not disconnect X since, clearly, the points (0, 0)
and (b, 0) lie in the same component of X−P . This contradiction completes
the proof of the theorem.

Corollary 3.8. No plane dendroid is a cut continuum.
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