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REGULAR SETS AND CONDITIONAL DENSITY:

AN EXTENSION OF BENFORD’S LAW

BY

RITA GIULIANO ANTONINI (Pisa) and GEORGES GREKOS (St. Étienne)

Abstract. We give an extension of Benford’s law (first digit problem) by using the
concept of conditional density, introduced by Fuchs and Letta. The main tool is the notion
of regular subset of integers.

1. Introduction. The authors of [3] introduced the notion of condi-
tional density with respect to a subset H of N

∗ (here and in what follows,
the symbol N∗ denotes the set of strictly positive integers). This notion had
been previously used, though not explicitly stated, in the paper [9], where
the so-called Benford’s law is discussed and extended. In terms of conditional
density, Benford’s law can be stated as follows. Let H be a subset of integers,
and Aq the set of integers whose first digit is q. We say that H obeys Ben-

ford’s law if the conditional logarithmic density of Aq, given H, is equal to
its (non-conditional) logarithmic density, i.e. to the number log

(
q+1
q

)
(see

[9] and [11] for a historical discussion on this topic). It is a known result
that the set P of prime numbers obeys Benford’s law (see [12]). In [3] it
is shown that, for a large class of subsets A of N

∗, to which Aq belongs,
the upper and lower arithmetic and logarithmic densities coincide with the
corresponding conditional densities with respect to the set P (this result has
been generalized by the first named author in [6], in connection also with
her previous works on the comparison of densities [4], [5]). Such results show
that P satisfies an “extended” Benford’s law, inasmuch as it can be stated
not only for Aq, but also for other sets A.
On the other hand, in [9] it is shown that Benford’s law holds for some

sets H other than P; hence [9] extends Benford’s law in another sense.
In the present paper we propose an extension in both directions, i.e. we

allow A to belong to a rather large class of sets and show that, in condition-
ing, P can be replaced by any regular set H. This is the object of our main
Theorems (2.10) and (2.12), which we state in Section 2.
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The proof is split into two steps, described in Sections 3 and 6, which
contain some results that are also relevant in themselves. Our theorems can
be applied to a large variety of situations, as we show in Section 9.

The authors wish to thank Prof. K. Nagasaka for helpful suggestions.

2. Definitions and main results. Let H be an infinite subset of N
∗,

which will be fixed throughout. The counting function H of H is defined for
x ≥ 1 as

H(x) = card(H ∩ [1, x]) =
∑

n∈H

n≤x

1.

Recall the following

(2.1) Definition. A strictly positive function L (not necessarily mono-
tone), defined on the half line (a,∞), is said to be slowly varying as x→∞
if, for every t > 0, it satisfies the condition

lim
x→∞

L(tx)

L(x)
= 1

(see [1, p. 276]).

(2.2) Remark. Since the property of slow variation depends only on the
behaviour at infinity, we can (and shall) assume that L is defined on [1,∞)
at least.

Following [10, p. 86], we give another

(2.3) Definition. Let λ be a number, with 0 < λ ≤ 1. The set H is said to
be regular with exponent λ if the function L defined as

L(x) =
H(x)

xλ
, x ≥ 1,

is slowly varying as x→∞ (i.e., according to the terminology in [1], H is a
regularly varying function with exponent λ).

(2.4) Remark. If H is regular, its exponent of regularity is obviously unique.

(2.5) Remark. If H is regular with exponent λ, its counting function H
satisfies the relation

(2.6) lim
x→∞

H(tx)

H(x)
= tλ

for every t > 0.

Let now H be any subset of N
∗, neither finite nor cofinite. Then H can

be uniquely represented in the form

H = N
∗ ∩
⋃

n≥1

[rn, sn[,
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where (rn)n and (sn)n are two sequences of integers with 1 ≤ rn < sn < rn+1
for every n. Every set of the form N

∗∩ [rn, sn[ (resp. N∗∩ [sn, rn+1[) is called
a connected component (resp. a gap) of H.

Intuitively, the regularity assumption on H means that H cannot have
“too large” both connected components and gaps. Indeed, consider for in-
stance the set

H = N
∗ ∩
⋃

n≥1

[32n, 32n+1[.

It is not difficult to see that the counting function of this set is given by

H(x) =

{
⌊x⌋+ 14 · 32k + k + 34 if 32k ≤ x ≤ 32k+1,
13
4 · 32k + k + 34 if 32k+1 < x < 32k+2.

In particular, if xk = 3
2k+1 (k ∈ N) and t is fixed with 1 < t < 3, we have

txk = t · 32k+1 < 32k+2, so that

H(txk)

H(xk)
= 1,

thus (2.6) does not hold, since t > 1.

(2.7) Remark. The regularity assumption on H does not imply that H has
an arithmetic density. In order to see this, we shall build in the Appendix
a bounded slowly varying function M which has no limit as x→∞, and a
set H such that

L(x) =
H(x)

x
∼M(x)

as x→∞.
Let now (µ(n)) be a sequence of non-negative real numbers such that∑
n∈N∗

µ(n) =∞; consider the measure µ (concentrated on N
∗) defined by

the formula

µ =
∑

n∈N∗

µ(n)εn,

where εn denotes the measure of mass 1 concentrated at the integer n; in
particular, if H is a subset of N

∗ and µ(n) = 0 for n /∈ H, we obtain a
measure concentrated on H.

Put Fµ(1) = 0 and, for every n ≥ 2,

Fµ(n) = µ([1, n[) =

n−1∑

k=1

µ(k).

Let f be a non-negative bounded function, defined on N
∗. The lower µ-

asymptotic density of f (or simply lower µ-density), denoted by δµ(f), is



176 R. GIULIANO ANTONINI AND G. GREKOS

defined as

δµ(f) = lim inf
n→∞

∑n−1
k=1 µ(k)f(k)

Fµ(n)
.

The upper µ-density of f , denoted by δµ(f), is defined analogously.
When µ(n) = 1 (resp. µ(n) = 1/n) for all n, the corresponding density

will be called the arithmetic (resp. logarithmic) density, and will be denoted
by d (resp. ∂) (i.e. we shall not use the generic symbol δµ).
If A is a subset of N∗, we denote by δµ(A) the lower µ-density of 1A; it

is immediate that

δµ(A) = lim inf
n→∞

µ(A ∩ [1, n[)
Fµ(n)

;

the upper µ-density of 1A, which will be denoted by δµ(A), satisfies

δµ(A) = lim sup
n→∞

µ(A ∩ [1, n[)
Fµ(n)

.

It is intended that d and d (resp. ∂ and ∂) are the symbols for the lower and
upper arithmetic (resp. logarithmic) densities.

(2.8) Remark. In the particular case of a measure µ concentrated on a sub-
set H of N∗, the associated (lower and upper) densities are called conditional
densities in [3].

Let A be a subset of N
∗, neither finite nor cofinite, so that it can be

uniquely represented as

(2.9) A = N
∗ ∩
⋃

n≥1

[pn, qn[,

where (pn)n and (qn)n are two sequences of integers, with 1 ≤ pn < qn <
pn+1. We are now ready to state our main results.

(2.10) Theorem. Let H be a regular set with exponent λ, and A a subset
of N

∗ of the form (2.9). Assume moreover that the sequences (pn) and (qn)
of (2.9) satisfy the relation

(2.11) qn ∼ σpn
(as n→∞) for a suitable number σ > 1. Let β be a fixed real number , with
0 ≤ β < λ, and consider the measure defined as

ν =
∑

n∈H

1

nβ
εn.

Then the lower (resp. upper) ν-density of A (i.e. δν(A) (resp. δν(A))) is
equal to the lower (resp. upper) arithmetic density of A. In other words,

δν(A) = d(A), δν(A) = d(A).
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(2.12) Theorem. Let H be a regular set with exponent λ and assume that
the counting function H of H is of the form

(2.13) H(x) = xλK(log x),

where K is slowly varying and such that there exists a non-increasing func-
tion M with

K(x) ∼M(x) as x→∞.
Consider the measure defined as

ν =
∑

n∈H

1

nλ
εn.

Let A be a subset of N
∗ satisfying (2.11) and assume that A has logarithmic

density ∂(A) (resp. ν-density δν(A)). Then A has ν-density δν(A) (resp.
logarithmic density ∂(A)) and

∂(A) = δν(A).

(2.14) Remark.

(i) Let Aq be the subset of integers whose first digit is q. Then

Aq = N
∗ ∩
⋃

n≥1

[q · 10n, (q + 1) · 10n[,

hence Aq safisfies (2.11) with σ = 1 + 1/q.
(ii) ForAq we have ∂(Aq) = log(1+1/q); hence the above Theorem (2.12)
extends Theorem (4.1) of [9] to “any” regular set H (in Theorem
(4.1) of [9] only the set P of primes is considered; from our result it
follows that any regular set obeys Benford’s law (in the sense of the
ν-density)).

In order to apply the above result to practical situations, we give in
Proposition (6.8) a condition which ensures that a slowly varying function
x 7→ L(x) can be put into the form x 7→ K(log x) (with K slowly varying).
The proofs of the above Theorems (2.10) and (2.12) result by combining

part 1 (Sect. 3) and part 2 (Sect. 6) below.
The rest of the paper is organized as follows: Sections 3 and 6 give the

statements of part 1 and part 2 respectively; Section 5 contains the proofs
for part 1, Section 8 contains the proofs for part 2. Some preliminary results
are given in Sections 4 and 7. In Section 9 we present some applications,
while in the Appendix we construct a counterexample for Remark (2.7).

3. Part 1: results on conditional densities. In connection with con-
ditional densities we are going to prove the following results:

(3.1) Theorem. Let H be an infinite regular subset of N
∗, with counting

function H and regularity exponent λ. Put as usual L(x) = H(x)x−λ. Let
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β be a fixed real number , with 0 ≤ β < λ, and consider the two measures
defined as

µ =
∑

n∈N∗

H(n)

nβ+1
εn =

∑

n∈N∗

L(n)

n1−(λ−β)
εn, ν =

∑

n∈H

1

nβ
εn.

Then:

(i)

∞\
1

L(t)

t1−(λ−β)
dt =∞.

(ii)
∑

n∈N∗

L(n)

n1−(λ−β)
=∞.

(iii)
∑

n∈H

1

nβ
=∞.

(iv) Moreover, let A be a subset of N∗ of the form (2.9), and assume that
the sequences (pn) and (qn) of (2.9) satisfy (2.11). Then

δµ(A) = δν(A), δµ(A) = δν(A).

(3.2) Remark.

(i) For β = 0, the above theorem says that the statement holds for any
regular set H (i.e. for any λ ≤ 1).

(ii) The first application in [6] is a particular case of Theorem (3.1),
obtained for β = 0, λ = 1.

Theorem (3.1), though rather general, does not say anything for β = λ.
It turns out that in order to manage this case, more restrictive assumptions
are needed. We have in fact the following result:

(3.3) Theorem. Let H be as in Theorem (3.1). Assume in addition that
there exists a positive decreasing function M , defined on [1,∞), such that

M(x) ∼ L(x) as x→∞,(3.4)
∞\
1

M(t)

t
dt =∞.(3.5)

Then statements (i)–(iv) of Theorem (3.1) hold true for β = λ.

(3.6)Remark. The second application in [6] is obtained from Theorem (3.3)
for β = λ = 1, M(t) = 1/log t.

In Section 4 we give some preliminary results; Section 5 contains the
proofs of both Theorems (3.1) and (3.3).

4. Preliminary results. In connection with µ-densities, the following
result (see [2, Th. 8.2]) holds:
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(4.1) Proposition. Let A be a subset of N
∗, neither finite nor cofinite, of

the form (2.9). Then

δµ(A) = lim inf
n→∞

∑n
k=1(Fµ(qk)− Fµ(pk))

Fµ(pn+1)
,(4.2)

δµ(A) = lim sup
n→∞

∑n
k=1(Fµ(qk)− Fµ(pk))

Fµ(qn)
.(4.3)

Formulas (4.2) and (4.3) easily yield the following comparison result (see
[6, Th. 1.1]), which we shall use subsequently:

(4.4) Theorem. Let µ, ν be two measures on N
∗, both having infinite total

mass. Let A be a subset of N
∗ of the form (2.9); assume that

(a) Fµ(pn) ∼ αFν(pn),
(b) Fµ(qn)− Fµ(pn) ∼ α(Fν(qn)− Fν(pn)) as n→∞

for a constant α > 0. Then

δµ(A) = δν(A), δµ(A) = δν(A).

We now give some lemmas concerning slowly varying functions. The first
one is proved in [1, p. 282].

(4.5) Lemma. A function L varies slowly as x → ∞ iff it can be put into
the form

L(x) = ψ(x) exp

( x\
1

φ(t)

t
dt

)
,

where

(4.6) lim
x→∞

ψ(x) = c with 0 < c <∞, lim
x→∞

φ(x) = 0.

Lemma (4.5) yields easily

(4.7) Lemma. Let L be a slowly varying function. For every fixed δ > 0,
there exists x0 such that

x−δ < L(x) < xδ for x > x0.

The next lemma relates the behaviour of L(x) to the behaviour of the
truncated moments

Tx
1
tpL(t) dt.

(4.8) Lemma. Let L be a slowly varying function. Then:

(i) for every p ≥ −1 we have

lim
x→∞

xp+1L(x)Tx
1
tpL(t) dt

= p+ 1;



180 R. GIULIANO ANTONINI AND G. GREKOS

(ii) for every p > −1 we have

lim
x→∞

xp+1L(x)
∑⌊x⌋
k=1 k

pL(k)
= p+ 1;

hence

(iii) for every p > −1 we have
x\
1

tpL(t) dt ∼
⌊x⌋∑

k=1

kpL(k).

Proof. Part (i) is proved in [1, Th. 1, p. 281, (b)]. We prove part (ii).
Fix ε, 0 < ε < c. By Lemma (4.5), we can find an integer n0 such that, for
k > n0, t > n0, we have both

c− ε ≤ ψ(k) ≤ c+ ε, −ε ≤ φ(t) ≤ ε,

where ψ, φ, c are as in Lemma (4.5). For ⌊x⌋ ≥ n0 + 1 we can write

(4.9)

∑⌊x⌋
k=1 k

pL(k)

xp+1L(x)
=

∑n0
k=1 k

pL(k)

xp+1L(x)
+

∑⌊x⌋
k=n0+1

kpL(k)

xp+1L(x)
.

Fix δ with 0 < δ < p+ 1. By Lemma (4.7) for x large enough we have

xp+1L(x) > xp+1−δ;

hence the first term of the sum in (4.9) tends to 0 as x→∞.
By Lemma (4.5) the second term can be written as

∑⌊x⌋
k=n0+1

kp(ψ(k)/ψ(x)) exp(
Tk
x
(φ(t)/t) dt)

xp+1
.

The fraction ψ(k)/ψ(x) is between (c − ε)/(c + ε) and (c + ε)/(c − ε). As
to the remaining term, since limx→∞ φ(x) = 0, for every ε > 0 and x large
enough we have
∑⌊x⌋
k=n0+1

kp+ε

xp+1+ε
≤
∑⌊x⌋
k=n0+1

kp exp(
Tk
x
(φ(t)/t) dt)

xp+1
≤
∑⌊x⌋
k=n0+1

kp−ε

xp+1−ε
.

Choose ε < p+ 1. Then, by the equivalence

⌊x⌋∑

k=n0+1

kr ∼ xr+1

r + 1

(as x → ∞, r > −1), the left-hand side of the above inequality tends to
(1 + p+ ε)−1, while the right-hand side tends to (1 + p− ε)−1, proving the
statement since ε is arbitrary.
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(4.10) Lemma. Let L be a slowly varying function, a, b two fixed numbers
with 0 < a ≤ b, and E the set defined as

E = {(t, x) ∈ R
2 : t > 0, x > 0, a ≤ t/x ≤ b}.

Then

lim
t,x→∞
(t,x)∈E

L(t)

L(x)
= 1.

Proof. Without loss of generality, we can assume that a = 1, so that
t ≥ x. By Lemma (4.5) we can write

(4.11)
L(t)

L(x)
=
ψ(t)

ψ(x)
exp

(t\
x

φ(u)

u
du

)
.

Fix ε > 0 and let r0 be large enough in order that the following relations
hold for t ≥ u ≥ x > r0:

c− ε ≤ ψ(t) ≤ c+ ε, c− ε ≤ ψ(x) ≤ c+ ε, −ε ≤ φ(u) ≤ ε.
By (4.11) we get (for (t, x) ∈ E, t ≥ x > r0)

c− ε
c+ ε

1

bε
≤ c− ε
c+ ε

exp

(
−ε
t\
x

1

u
du

)
≤ L(t)

L(x)

≤ c+ ε

c− ε exp
(
ε

t\
x

1

u
du

)
≤ c+ ε

c− ε b
ε.

Hence we can conclude the proof by going to the limit in t and x, since ε is
arbitrary.

(4.12) Lemma. Let L be a slowly varying function, m 6= 1 a fixed number.
Then, for every p > −1:

lim
x,y→∞
y/x→m

xp+1L(x)Ty
x
tpL(t) dt

=
p+ 1

mp+1 − 1 ;(i)

lim
x,y→∞
y/x→m

xp+1L(x)∑y
k=⌊x⌋ k

pL(k)
=

p+ 1

mp+1 − 1 ;(ii)

hence

(iii) lim
x,y→∞
y/x→m

Ty
x
tpL(t) dt∑y

k=⌊x⌋ k
pL(k)

= 1.

Proof. Without loss of generality we can assume m > 1. The ratio y/x
is ultimately bounded from above by a constant C, so that for x ≤ t ≤ y we
get
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1 ≤ t

x
≤ y

x
≤ C;

hence (i) follows by applying Lemmas (4.8) and (4.10).

The same technique as in (i) and the relation

lim
x,y→∞
y/x→m

Ty
x
tp dt∑y

k=⌊x⌋ k
p
= 1

give statement (ii).

We state the last lemma (whose proof is similar to the previous ones):

(4.13) Lemma. Let L be slowly varying , m 6= 1. Then

lim
x,y→∞
y/x→m

Ty
x
(L(t)/t) dt

L(x)
= lim
x,y→∞
y/x→m

Ty
x
(L(t)/t) dt

L(y)
= logm.

5. Proofs of Theorems (3.1) and (3.3). We begin with the proof of
Theorem (3.1). For every n ∈ N

∗ put

Fµ(n) = µ([1, n[) =

n−1∑

k=1

L(k)

k1−(λ−β)
, Fν(n) = ν([1, n[) =

n−1∑

k=1
k∈H

1

kβ
.

It is easy to see that

(5.1)

∞\
1

L(t)

t1−(λ−β)
dt =∞

(simply apply Lemma (4.7) with δ < λ− β).
The relation (5.1) also yields

∑

n∈N∗

L(n)

n1−(λ−β)
=∞,

by Lemma (4.8)(iii).

Statement (iii) of Theorem (3.1) will follow if we prove that

(5.2) Fν(n) ∼ λFµ(n)
as n→∞. By the Abel summation formula, we have

Fν(n) =
n−1∑

k=1

H(k)−H(k − 1)
kβ

=
H(n− 1)
(n− 1)β + β

n−1\
1

H(t)

tβ+1
dt

= (n− 1)λ−βL(n− 1) + β
n−1\
1

L(t)

t1−(λ−β)
dt
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∼ (λ− β)
n−1\
1

L(t)

t1−(λ−β)
dt+ β

n−1\
1

L(t)

t1−(λ−β)
dt

= λ

n−1\
1

L(t)

t1−(λ−β)
dt ∼ λFµ(n),

where the first equivalence follows from Lemma (4.8)(i) and the second one
from (4.8)(iii), with p = λ− β − 1 > −1.
Let now A be a subset of N∗ satisfying (2.11). Since (5.2) yields Fν(pn) ∼

λFµ(pn), the last statement of Theorem (3.1) will follow from Theorem (4.4)
if we prove that

(5.3) Fν(qn)− Fν(pn) ∼ λ(Fµ(qn)− Fµ(pn)).
Again by integration by parts, we have

(5.4) Fν(qn)− Fν(pn)

= (qn − 1)λ−βL(qn − 1)− (pn − 1)λ−βL(pn − 1) + β
qn−1\
pn−1

L(t)

t1−(λ−β)
dt.

From Lemma (4.12)(iii) (with p = λ− β − 1) we get

(5.5)

qn−1\
pn−1

L(t)

t1−(λ−β)
dt ∼

qn−1∑

k=pn

L(k)

k1−(λ−β)
.

Moreover

(5.6) (qn − 1)λ−βL(qn − 1)− (pn − 1)λ−βL(pn − 1)

∼ (σλ−β − 1)pλ−βn L(pn) ∼ (λ− β)
qn−1∑

k=pn

L(k)

k1−(λ−β)
,

where the first equivalence follows from Lemma (4.10) and the second one
from Lemma (4.12)(ii) (with m = σ).

Relations (5.4)–(5.6) now yield (5.3) easily, and this concludes the proof
of Theorem (3.1).

We now pass to the proof of Theorem (3.3). Relation (3.4) easily yields

(5.7)

x\
1

M(t)

t
dt ∼

x\
1

L(t)

t
dt,

hence, by (3.5), we get
∞\
1

L(t)

t
dt =∞.
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Put again

Fµ(n) = µ([1, n[) =

n−1∑

k=1

L(k)

k
,

Fν(n) = ν([1, n[) =

n−1∑

k=1
k∈H

1

kλ
= L(n− 1) + λ

n−1\
1

L(t)

t
dt

(integration by parts). Since L is slowly varying, Lemma (4.8)(i) (with
p = −1) yields

(5.8) lim
n→∞

L(n− 1)Tn−1
1

L(t)
t dt

= 0.

Since M is decreasing, by using assumptions (3.4), (3.5) and Cesàro’s theo-
rem we get

(5.9)

n−1\
1

M(t)

t
dt ∼

n−1∑

k=1

M(k)

k
∼
n−1∑

k=1

L(k)

k
.

Relations (5.7)–(5.9) allow us to conclude that

(5.10) Fν(n) ∼ λ
n−1\
1

L(t)

t
dt ∼ λFµ(n).

The above relation yields the first two statements of Theorem (3.3). We now
pass to the last one.

By arguing as in the proof of (3.1), by (5.10) it will be enough to prove
that, for A = N

∗ ∩⋃n[pn, qn[ satisfying (2.11), we have
(5.11) Fν(qn)− Fν(pn) ∼ λ(Fµ(qn)− Fµ(pn)).
From the equivalence L ∼M we easily get

(5.12) Fµ(qn)− Fµ(pn) ∼
qn−1∑

k=pn

M(k)

k

as n→∞. Now

Fν(qn)− Fν(pn) = L(qn − 1)− L(pn − 1) + λ
qn−1\
pn−1

L(t)

t
dt.

By (5.12), the equivalence (5.11) will be proved if we show that

(5.13)

qn−1\
pn−1

L(t)

t
dt ∼

qn−1\
pn−1

M(t)

t
dt ∼

qn−1∑

k=pn

M(k)

k
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and

(5.14) lim
n→∞

L(qn − 1)− L(pn − 1)Tqn−1
pn−1

M(t)
t dt

= 0.

Since M is decreasing, for x ≥ 1 we have
M(2⌊x⌋) ≤M(x) ≤M(⌊x⌋).

Since M is slowly varying, we see from the above relation that M(x) ∼
M(⌊x⌋) as x→∞, hence

qn−1\
pn−1

M(t)

t
dt ∼

qn−1\
pn−1

M(⌊t⌋)
⌊t⌋ dt =

qn−1∑

k=pn−1

M(k)

k
∼
qn−1∑

k=pn

M(k)

k
,

where the last equivalence holds true since M(n)/n → 0 as n → ∞. This
gives the second relation in (5.13). The first one is again easily implied by
the equivalence L ∼M .
We now pass to the proof of (5.14). Fix ε > 0. For n large enough we

have

M(qn − 1)−M(pn − 1)− 2εM(qn − 1) ≤ L(qn − 1)− L(pn − 1)
≤M(qn − 1)−M(pn − 1) + 2εM(pn − 1).

The equality (5.14) now follows from Lemma (4.13), since ε is arbitrary.

6. Part 2: a theorem of comparison. Preliminaries and main
result. We begin by giving a definition. Let µ, ν be two measures on N

∗,
and consider the associated asymptotic densities.

(6.1) Definition. We shall say that the ν-density is an extension of the
µ-density if, for every positive bounded function f , the relation

lim
n→∞

∑n
k=1 µ(k)f(k)

µ([1, n])
= l

yields the analogous relation for ν:

lim
n→∞

∑n
k=1 ν(k)f(k)

ν([1, n])
= l.

We shall say that the µ-density and the ν-density are equivalent if the con-
verse also holds.

In [5] and [2, pp. 268–271] the following theorem is proved:

(6.2) Theorem. Let µ be a positive measure on N
∗, having infinite total

mass. For n ∈ N
∗ put

G(n) = µ([1, n]).
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Let h : R+ → R
+ be an increasing function such that h(x) ↑ ∞ as x → ∞;

denote by ν the positive measure on N
∗ defined by

ν([1, n]) = h(G(n)), n ∈ N
∗.

Assume that , for every increasing sequence (xn)n of positive numbers such
that xn ∼ G(n) (with xn+1 = xn ⇔ G(n+ 1) = G(n)), one has

h(xn) ∼ h(G(n)),
h(xn+1)− h(xn)

xn+1 − xn
∼ h(G(n+ 1))− h(G(n))

G(n+ 1)−G(n) .

Then the ν-density is an extension of the µ-density.

The above theorem has the following obvious

(6.3) Corollary. Let µ and h be as in Theorems (6.2) and (6.3). Assume
in addition that , for every increasing sequence (yn)n of positive numbers
such that yn ∼ h(G(n)) (with yn+1 = yn ⇔ h(G(n + 1)) = h(G(n))), one
has

h−1(yn) ∼ G(n),
h−1(yn+1)− h−1(yn)

yn+1 − yn
∼ G(n+ 1)−G(n)
h(G(n+ 1))− h(G(n)) .

Then the µ-density and the ν-density are equivalent.

A particular case of the above situation is obtained by taking a measure
µ such that G(n+ 1) ∼ G(n) as n→∞ (where, as usual, we define G(n) =
µ([1, n])) and, for p > −1 fixed, h(x) = xp+1. Then the measure ν is given
by

(6.4) ν(n) = Gp+1(n+ 1)−Gp+1(n) ∼ (p+ 1)(G(n+ 1)−G(n))Gp(n).
By a known result on densities (see for instance [2, Th. 3.2, p. 258], we get
the following

(6.5) Corollary. Let µ and G be as above, and , for p > −1 fixed , let ν be
defined by

ν(n) = (G(n+ 1)−G(n))Gp(n).
Then the µ-density and the ν-density are equivalent.

In this section we are concerned with the following extension of the above
corollary:

(6.6) Theorem. Let µ and G be as above. Assume moreover that there
exists a sequence (rn)n of integers such that

(6.7) lim
n→∞

G(rn)

G(n)
= 0.

Let M be a regularly varying function with exponent λ, and put

B(n) =M(G(n)), n ∈ N
∗.
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For p > −1− λ fixed , consider the measure ν defined by
ν(n) = (G(n+ 1)−G(n))Gp(n)B(n).

Then:

(i) ν has infinite total mass, i.e.
∑

n

(G(n+ 1)−G(n))Gp(n)B(n) =∞;

(ii) the µ-density and the ν-density are equivalent.

In the particular case of the logarithmic density (i.e. G(n) ∼ logn) we
have the following result (which enables us to use the above theorem in
practical situations):

(6.8) Proposition. Let L be slowly varying , and let φ be the function of
Lemma (4.5). Assume that φ is positive and

lim
t→∞

φ(t) log t = λ, λ ∈ R
+.

Then there exists M regularly varying with exponent λ such that

L(n) =M(logn).

The proof is an easy consequence of Lemma (4.5) and is omitted.
Despite its being evident, we stress the following particular case, since it

concerns logarithmic density:

(6.9) Corollary. Let L be slowly varying , and let φ be the function of
Lemma (4.5). Assume that φ is positive and

lim
t→∞

φ(t) log t = λ, λ ∈ R
+.

Then, for every p > −1− λ, the density defined by

ν(n) =
1

n
(logn)pL(n)

is equivalent to the logarithmic density.

7. Preliminary results. We begin by stating and proving some addi-
tional results concerning slowly varying functions.
Recall the characterization of slowly varying functions given in Lem-

ma (4.5). By using that lemma, it is easy to prove that

(7.1) Lemma. Let L be a slowly varying function defined on [1,∞), and
p > −1 a fixed number. Then

np+1L(n) ∼
n∑

k=1

kpL(k) ∼
( n∑

k=1

kp
)
L(n).

The proof of Lemma (7.1) is quite similar to that of Lemma (4.8)(ii).
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Lemma (4.5) also yields

(7.2) Lemma. Assume G(x) = x, and let L, p be as in Lemma (7.1); assume
that (rn)n is a sequence of integers such that (6.7) holds (for G(x) = x).
Then:

(i) lim
n→∞

∑rn
k=1 k

pL(k)∑n
k=1 k

pL(k)
= 0;

(ii) there exists c > 0 such that , for every ε > 0 and n large enough
(depending on ε), we have

c− ε
c+ ε

(
k

n

)ε
≤ L(k)

L(n)
≤ c+ ε

c− ε

(
n

k

)ε

for every k with rn ≤ k ≤ n.
Proof. (i) Fix ε with 0 < ε < p + 1. By Lemma (4.5), there exists n0

such that, for n0 ≤ k ≤ rn, we have
L(k)

L(n)
≤ 2 exp

(
ε

n\
k

1

u
du

)
= 2

(
n

k

)ε
;

hence, by Lemma (4.5) we get

0 ≤
∑rn
k=n0

kpL(k)
∑n
k=1 k

pL(k)
∼
∑rn
k=n0

kpL(k)/L(n)
∑n
k=1 k

p

≤ 2
∑rn
k=n0

kp−ε

(
∑n
k=1 k

p)n−ε
∼ const ·

(
rn
n

)p+1−ε
→ 0.

Therefore (i) will follow if we prove that for p > −1 we have

(7.3) lim
n→∞

n∑

k=1

kpL(k) =∞.

Now, by a well known formula (see [8]), the Dirichlet series
∑
n n
pL(n) has

abscissa of convergence given by the formula

lim sup
n→∞

log(
∑n
k=1 L(k))

logn

and, by Lemmas (4.5) and (4.7), we have

log(
∑n
k=1 L(k))

logn
∼ lognL(n)
logn

= 1 +
logL(n)

logn
∼ 1.

(ii) follows again from the characterization of slowly varying functions
(Lemma (4.5)).

8. Proof of Theorem (6.6). We prove Theorem (6.6) for the case
G(x) = x (i.e. µ(n) = 1 for each n ∈ N

∗) and λ = 0. (The case of a generic
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G needs only the relation G(n+ 1) ∼ G(n) and the existence of a sequence
(rn)n satisfying (6.7)).
(i) has already been proved (see the proof of (3.1)).
(ii) Let f be a bounded positive function defined on N

∗. Without loss
of generality we can assume that 0 ≤ f ≤ 1. Let (rn)n be a sequence of
integers such that (6.7) holds. Then we have

∑n
k=1 k

pL(k)f(k)∑n
k=1 k

pL(k)
=

∑rn
k=1 k

pL(k)f(k)∑n
k=1 k

pL(k)
+

∑n
k=rn+1

kpL(k)f(k)
∑n
k=1 k

pL(k)
.

The first term on the right hand side is positive and bounded by
∑rn
k=1 k

pL(k)∑n
k=1 k

pL(k)
,

which goes to 0 as n → ∞ by Lemma (7.2)(i). As to the second term, by
Lemma (7.1) it is equivalent to

∑n
k=rn+1

kp(L(k)/L(n))f(k)
∑n
k=1 k

p
= An,

and, by Lemma (7.2)(ii), for every ε with 0 < ε < p+1 and sufficiently large
n, we have

(8.1)
c− ε
c+ ε

·
∑n
k=rn+1

f(k)kp+ε

(
∑n
k=1 k

p)nε
≤ An ≤

c+ ε

c− ε ·
∑n
k=rn+1

f(k)kp−ε

(
∑n
k=1 k

p)n−ε
.

By the relation
( n∑

k=1

kp
)
nβ ∼

n∑

k=1

kp+β

(valid for every β with p + β > −1) and by Lemma (7.2)(i) (applied for
L ≡ 1), the theorem is proved (go to the limit as n → ∞ in (8.1) and
conclude by the arbitrariness of ε).

9. Applications

(9.1) Example. Let r ≥ 1 be a fixed integer and
H = {nr : n ∈ N

∗}.
It is easy to see that H(x) = ⌊x1/r⌋, hence

L(x) =
H(x)

x1/r
∼ 1.

This means that H is regular with exponent λ = 1/r, so the conclusion of
Theorem (2.10) holds.
Observe that in this case also Theorem (2.12) applies, since L(x) ∼ 1

(a non-increasing function).
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(9.2) Example. Let H be the set of all powers. Once again both Theorems
(2.10) and (2.12) apply because of the following

(9.3) Lemma. H(x) ∼ √x.
Proof. We have

H =
⋃

k≥2

{1k, 2k, 3k, . . .}.

First, for all x ≥ 1, we have H(x) ≥ ⌊√x⌋ because H contains the squares.
Let us prove that, for all x ≥ 4,

(9.4) H(x) ≤
√
x+ 3
√
x
log x

log 2
.

Let 2k0 be the greatest power of 2 not exceeding x: 2k0 ≤ x < 2k0 + 1. This
yields

2 ≤ k0 =
⌊
log x

log 2

⌋
≤ log x
log 2

.

For each k, 2 ≤ k ≤ k0, there are ⌊ k
√
x⌋ kth powers that are less than or

equal to x. Consequently,

H(x) ≤ ⌊
√
x⌋+ ⌊ 3

√
x⌋+ ⌊ 4

√
x⌋+ · · ·+ ⌊ k0

√
x⌋ ≤

√
x+ (k0 − 2) 3

√
x,

and (9.4) follows.

(9.5) Remark. Observe that the sets in Example (9.1) with r > 1 and in
Example (9.2) have zero arithmetic density.

(9.6) Example. Let r > 1 be a fixed integer and

H = {rn : n ∈ N
∗}.

It is easy to see that, for h = 0, 1, . . . , r − 1, we have

H(x) =
⌊x− h⌋

r
, rn+ h ≤ x < rn+ h+ 1.

Hence
H(x)

x
∼ 1
r
,

and both Theorems (2.10) and (2.12) apply.

(9.7) Remark. Observe that in Example (9.6), H has arithmetic density
equal to 1/r (in particular, strictly positive).

Appendix. We are going to construct the function H and the set H of
Remark (2.7). We start by building the function M announced in (2.7) by
means of the characterization (4.5). Take ψ ≡ 1 and define φ : [1,∞[→ R

+

as

φ(y) =
(−1)n+1
2n+ 1

for 2n
2 ≤ y < 2(n+1)2 .
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We observe that limy→∞ φ(y) = 0. Moreover

2n
2\
1

φ(y)

y
dy =

n−1∑

k=0

2(k+1)
2\

2k
2

φ(y)

y
dy =

n−1∑

k=0

(−1)k+1
2k + 1

2(k+1)
2\

2k
2

1

y
dy

=
n−1∑

k=0

(−1)k+1
2k + 1

log 2(k+1)
2−k2 = log 2

n−1∑

k=0

(−1)k+1;

hence, for 2n
2 ≤ x < 2(n+1)2 , we have

M(x) = exp

( x\
1

φ(y)

y
dy

)

= exp

(
log 2

( n−1∑

k=0

(−1)k+1 + (−1)n+1 log2 x− n
2

2n+ 1

))
.

It is now easy to prove that M is bounded by 1 but has no limit as x→∞.
In fact, we have

M(2n
2

) =

{
1/2 for n = 2r + 1,

1 for n = 2r.

Put now

H̃(x) =

x\
1

M(t) dt (∼ xM(x)).

By [7, Lemma 4, p. 182] it is possible to construct a set H with counting

function H such that H(x) ∼ H̃(x). Hence

L(x) ≡ H(x)

x
(∼M(x))

has no limit.
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