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ORLICZ BOUNDS FOR

OPERATORS OF RESTRICTED WEAK TYPE

BY

PAUL ALTON HAGELSTEIN (Waco, TX)

Abstract. It is shown that if T is a sublinear translation invariant operator of re-
stricted weak type (1, 1) acting on L1(T), then T maps simple functions in L log L(T)
boundedly into L1(T).

Let T denote the unit circle. An operator T acting on L1(T) is said to
be of restricted weak type (1, 1) if for some constant C the inequality

|{x ∈ T : |TχE(x)| > α}| ≤
C

α
‖χE‖L1(T)

holds for every measurable set E ⊂ T and α > 0. Examples of restricted weak
type (1, 1) operators include the Hardy–Littlewood maximal operator and
the Hilbert transform. Now, it is well known [4] that the Hardy–Littlewood
maximal operator as well as the Hilbert transform map L log L(T) boundedly
into L1(T). As both of these operators are also translation invariant, it
is natural to consider whether or not every sublinear translation invariant
restricted weak type (1, 1) operator maps L log L(T) boundedly into L1(T).

The purpose of this paper is to show that all sublinear translation in-
variant restricted weak type (1, 1) operators acting on L1(T) do indeed map
L log L(T) boundedly into L1(T) and, moreover, that operators of this type
are bounded on Lp(T) for 1 < p < 2. We remark that our methods of proof
here have been strongly influenced by the work of E. M. Stein on limits of
sequences of operators [5] as well as by the suggestive results of L. Colzani
in his paper on translation invariant operators acting on Lorentz spaces [1].

Theorem 1. Let T be a translation invariant sublinear operator acting

on L1(T). Also suppose that for any measurable set E in T and α > 0 we

have

|{x ∈ T : |TχE(x)| > α}| ≤
|E|

α
.
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If f is a simple function supported on T, then

‖T (f)‖L1(T) ≤ C‖f‖L log L(T),

where C is a universal constant.

Proof. We begin by gathering some lemmas that will be of use to us.
The first is a Borel–Cantelli type lemma devised by E. M. Stein in his work
on limits of sequences of operators.

Lemma 1 ([5]). Let E1, E2, . . . be a collection of sets in T such that
∑

|Ej | = ∞. Then there exist sets F1, F2, . . . in T such that each Fj is a

translate of Ej in T and almost every point of T belongs to infinitely many

of the sets Fj.

The second lemma involves a well known property of Rademacher func-
tions.

Definition 1. Let rn(t) denote the Rademacher functions on R, de-
fined by

rn(t) = r0(2
nt),

where r0(t) = 1 if 0 ≤ t ≤ 1/2, r0(t) = −1 if 1/2 < t < 1, and r0(t + 1) =
r0(t).

Lemma 2 ([6, 10]). Let
∑

∞

n=0 |an|
2 < ∞, and let F (t) =

∑N
n=0 anrn(t)

be a Rademacher series. Let 0 < p < ∞. Then there exist finite, positive

constants A(p), B(p) such that

A(p)‖F‖Lp([0,1]) ≤
(

N
∑

n=0

|an|
2
)1/2

≤ B(p)‖F‖Lp([0,1]).

The third lemma we shall use follows from the work of F. Soria on
extrapolation theorems of Carleson–Sjölin type.

Lemma 3 ([3]). Let T be a sublinear operator acting on L1(T). Suppose

that , for any measurable subset E of T and α > 0,

|{x ∈ T : |TχE(x)| > α}| ≤
|E|

α
.

If f is a simple function supported on T and α > 0, then

|{x ∈ T : |Tf(x)| > α}| ≤ C
‖f‖L log L(T)

α
,

where C is a universal constant.

We will now use these three lemmas to prove the following.
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Lemma 4. Let T be a translation invariant sublinear operator acting on

L1(T). Suppose also that , for any measurable set E in T and α > 0,

|{x ∈ T : |TχE(x)| > α}| ≤
|E|

α
.

If f is a simple function supported on T and α > 0, then

(1) |{x ∈ T : |Tf(x)| > α}| ≤ C

(

‖f‖L2(T)

α

)2

,

where C is a universal constant.

Proof. By contradiction. Suppose (1) were false. Then there would exist
a sequence {fn} of simple functions and a sequence {En} of sets such that

|Tfn(x)| > 1 for x ∈ En

and
|En| > n‖fn‖

2
L2(T).

By taking subcollections of the original collections of {fn}, {En}, with pos-
sible repetitions, we may obtain another set of collections, again denoted
by {fn}, {En}, such that |Tfn(x)| > 1 if x ∈ En,

∑

|En| = ∞, and
∑

‖fn‖
2
2 < ∞.

As
∑

‖fn‖
2
2 converges, we may find a sequence {Rn} of positive numbers

such that Rn → ∞, but
∑

‖Rnfn‖
2
2 = D < ∞.

Now, for each g ∈ T, we let τg denote the translation operator defined by

τgf(x) = f(−g + x).

As
∑

|En| = ∞, by Lemma 1 we see that there exists a sequence {Fn} of
sets in T such that each Fj is a translate of Ej in T and almost every point
of T belongs to an infinite number of the sets Fn. We associate to each Fj

an element gj ∈ T such that

χFj
= τgj

χEj
.

Let M be a positive integer. There exists a positive integer N and a
subset S ⊂ T of measure greater than 1/2 such that for all x in S, there
exists an integer jx such that 1 ≤ jx ≤ N and

M < |RjxT (τgjx
fjx)(x)|.

Now, define the function h(x, t) on T × [0, 1] by

h(x, t) =

N
∑

j=1

Rjτgj
fj(x)rj(t).

If g(x, t) is a measurable function on T × [0, 1], we define Tg(x, t) by

Tg(x, t) = Tgt(x),

where gt(x) = g(x, t).
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Now, let x0 ∈ S. For some j with 1 ≤ j ≤ N we have |RjT (τgj
fj)(x0)|

> M . We assume without loss of generality that j = 1.
Now, if 0 < t < 1 and t is not of the form k · 2j for some integers j, k,

the sublinearity of T implies that

M < |T (R1τg1
f1)(x0)| ≤

1

2

[∣

∣

∣
T

(

R1τg1
f1(x) +

N
∑

j=2

Rjτgj
fj(x)rj(t)

)

(x0)
∣

∣

∣

+
∣

∣

∣
T

(

R1τg1
f1(x) +

N
∑

j=2

Rjτgj
fj(x)rj(1 − t)

)

(x0)
∣

∣

∣

]

.

So |{t ∈ [0, 1] : |Th(x0, t)| > M}| ≥ 1/4. As |S| > 1/2, we then have

(2) |{(x, t) ∈ T × [0, 1] : |Th(x, t)| > M}| ≥ 1/8.

Note that Lemma 2 implies

‖h‖2
L2(T×[0,1]) =

\
T

1\
0

(

N
∑

j=1

Rjτgj
fj(x)rj(t)

)2
dt dx

≤ (A(2))−2
\
T

N
∑

j=1

|Rjτgj
fj(x)|2 dx

= (A(2))−2
N

∑

j=1

‖Rjτgj
fj‖

2
L2(T) = (A(2))−2

N
∑

j=1

‖Rjfj‖
2
L2(T)

≤ (A(2))−1 · D < ∞.

For our notational convenience, if LΦ is a normed space on [0, 1] and LΨ

is a normed space on T, we define the mixed norm ‖ · ‖LΦ
t (LΨ )x

on functions

on [0, 1] × T by

‖f(x, t)‖LΦ
t (LΨ )x

=
∥

∥‖f(·, t)‖LΨ (T)

∥

∥

LΦ([0,1])
.

Now note that

‖h(x, t)‖L1

t (L log L)x
≤ 10‖h(x, t)‖L1

t (L
2)x

≤ 100‖h(x, t)‖L2

t (L
2)x

= 100‖h(x, t)‖L2(T×[0,1])

≤ 100 · ((A(2))−1 · D)1/2 = C ′ < ∞.

By Lemma 3 we then see that

|{(x, t) : |Th(x, t)| > α}| ≤

1\
0

C‖h(·, t)‖L log L(T)

α
dt ≤

C · C ′

α
.

This however is in contradiction to (2), which holds for arbitrarily large
values of M .
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We now see that T is of restricted weak type (1, 1) and of restricted weak
type (2, 2). By the extension of the Marcinkiewicz theorem to the case of
restricted-weak endpoints (see [7] for details) we have, for 1 < p < 3/2 and
for all simple functions f ,

‖Tf‖Lp(T) .
1

p − 1
‖f‖Lp(T).

Applying the Yano extrapolation theorem [9], we then deduce that

‖Tf‖L1(T) . ‖f‖L log L(T)

for all simple functions f supported on T, as desired.

We emphasize that the following corollary arises from the proof above.

Corollary 1. Suppose T is a sublinear translation invariant operator

acting on L1(T) which is of restricted weak type (1, 1). If f is a simple

function supported on T, then

‖Tf‖Lp(T) ≤ Cp‖f‖Lp(T), 1 < p < 2,

where Cp ∼ 1/(p − 1) + 1/(2 − p).

A natural question for subsequent investigation is whether or not this
corollary can be extended to encompass values of p greater than or equal
to 2.
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