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ESTIMATES FOR

THE HARDY–LITTLEWOOD MAXIMAL FUNCTION

ON THE HEISENBERG GROUP

BY

JACEK ZIENKIEWICZ (Wrocław)

Abstract. We prove the dimension free estimates of the Lp → Lp, 1 < p ≤ ∞,
norms of the Hardy–Littlewood maximal operator related to the optimal control balls on
the Heisenberg group H

n.

Introduction. Let H
n be the Heisenberg Lie algebra, i.e. R2n+1 with

the linear basis h = {ex1 , . . . , exn , ey1 , . . . , eyn , ez} and commutator struc-
ture such that [exi , eyi ] = ez and other commutators are zero. We define the
Lie group multiplication in H

n by the Campbell–Hausdorff formula. Then
in the coordinates corresponding to h, for

g1 = (x
1,y1, z1), g2 = (x

2,y2, z2), x1,y1,x2,y2 ∈ R
n, z1, z2 ∈ R,

the group product of g1 and g2 is given by the formula

g1g2 =

(
x1 + x2,y1 + y2, z1 + z2 −

1

2
S((x1,y1), (x2,y2)

)

where the symplectic form S is defined by

S((x1,y1), (x2,y2)) = 〈x1,y2〉 − 〈x2,y1〉, 〈x,y〉 =
n∑

i=1

xiyi.

Denote by X1, . . . , Xn, Y1, . . . , Yn, Z the left invariant vector fields on H
n

such that X1(0) = ex1 , . . . , Z(0) = ez. Then in coordinates we have

(0.1) Xi = ∂xi +
1

2
yi∂z, Yi = ∂yi −

1

2
xi∂z, Z = ∂z.

For t > 0 let us define the isotropic dilations on H
n by δt(exi) = texi ,

δt(eyi) = teyi , δt(ez) = t
2ez and extend these formulas by linearity to H

n.
Then the dilations δt form a one-parameter group of automorphisms of H

n.
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An absolutely continuous curve γ : [0, 1]→ H
n is called admissible if

(0.2)
d

dt
γ(t) =

∑
(ai(t)Xi(γ(t)) + bi(t)Yi(γ(t))) and γ(0) = 0.

We define the length of γ (cf. [G]) by

|γ| =

1\
0

(∑

i

(a2i (t) + b
2
i (t))
)1/2
dt

and then the optimal control norm by

d(g) = inf{|γ| : γ(1) = g and γ is admissible}.

It follows directly from the definition that d is subadditive, symmetric on
H
n and homogeneous of degree 1 with respect to δt, that is, d(δt(g)) = td(g).
It is well known that d is everywhere finite and bounded on compact subsets
of Hn. By homogeneity d is mutually Hölder continuous with respect to the
euclidean norm. We define a metric on H

n by d(g1, g2) = d(g1g
−1
2 ).

We will identify H
n with C

n × R putting zj = xj + iyj . Let U
n denote

the group of unitary matrices on C
n. In what follows we will consider U

n as
a subgroup of O2n(R). Then the natural action of Un on R

2n preserves the
symplectic form:

(0.3) S((x1,y1), (x2,y2)) = S(U(x1,y1),U(x2,y2)) for U ∈ U
n.

Consequently, the formula Ug = (U(x,y), z) for U ∈ U
n and g = (x,y, z)

defines an automorphic action of Un on H
n. See [F] for the proofs.

The Lebesgue measure dg = dxdydz is a bi-invariant measure on H
n.

Acknowledgments. The author wishes to thank Fulvio Ricci and Wal-
demar Hebisch for some discussions on the subject of the paper, Jacek Dziu-
bański for careful reading of the manuscript, and the referee for improving
the presentation of the paper.

Main theorem. Let B(r) = {g : d(g) ≤ r}. The aim of this note is to
prove the following result:

Theorem 1. Let p > 1 and

B∗f(g) = sup
r>0

1

|B(r)|

\
B(r)

|f(gy−1)| dy

where | | denotes the Lebesgue measure on H
n. Then the operator B∗ is

bounded on Lp(Hn) with the norm which is controlled independently of n.

For the classical Hardy–Littlewood maximal function on R
n the above

theorem is due to E. M. Stein (see [B], [S2] and [S3] for this and similar
results). The question considered in Theorem 1 is due to M. Cowling.
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We note that since the measure metric space (Hn, d, dg) is a space of
homogeneous type, the maximal function B∗ is bounded on Lp, p > 1, and
in fact is of weak type (1, 1) (cf. [S1]).

The idea of our proof of Theorem 1 follows [S3]. We begin with the
following standard fact:

Lemma 1. The metric d is radial : it satisfies

d(x1,y1, z) = d(x2,y2, z) for ‖x1‖2 + ‖y1‖2 = ‖x2‖2 + ‖y2‖2

where ‖ ‖ denotes the Euclidean norm in R
n.

Proof. In order to prove the lemma it suffices to observe that the unitary
matrices act transitively on the unit sphere in C

n, map admissible curves
onto admissible curves and preserve |γ|. The statements above follow easily
from the formula

d

dt
Γ (t) =

∑
Ai(t)Xi(Γ (t)) +Bi(t)Yi(Γ (t))

where for a unitary matrix U and vectors a(t) = (a1(t), . . . , an(t)), b(t) =
(b1(t), . . . , bn(t)) we have

Γ (t) = U(γ(t)), (A(t), B(t)) = U(a(t),b(t)).

Denote by π : Hn → R
2n, π(x,y, z) = (x,y), the projection onto the gener-

ating subspace of Hn. To prove the formula, we apply U to (0.2). Then by
(0.1) and (0.3),

d

dt
Γ (t) = U

(
d

dt
γ(t)

)
= U
(∑
(ai(t)Xi(γ(t)) + bi(t)Yi(γ(t)))

)

= U(a,b) + S((a,b), π(γ))ez

= U(a,b) + S(U(a,b),U(π(γ)))ez

=
∑
(Ai(t)Xi(U(γ(t))) +Bi(t)Yi(U(γ(t)))).

The lemma follows.

Lemma 2. We have

d(x,y, z) ≥ d(x,y, 0) = (‖x‖2 + ‖y‖2)1/2.

Proof. Fix g = (x,y, z) ∈ H
n and let γ be an admissible curve joining

(0, 0, 0) and g such that |γ| ≤ (1+ ε)d(x,y, z). It follows directly from (0.1)
that for every g ∈ H

n and 1 ≤ i ≤ n we have

π(Xi(g)) = ∂xi(πg), π(Yi(g)) = ∂yi(πg).

Consequently, the projection γ̃ = πγ of the curve γ on R
2n satisfies the
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equation
d

dt
γ̃(t) =

∑

j

(aj(t)π(Xj(γ)) + bj(t)π(Yj(γ)))

=
∑

j

(aj(t)∂xj (γ̃) + bj(t)∂yj (γ̃))

and γ̃(1) = (x,y, 0).

By the classical isoperimetric inequality we have

r = (‖x‖2 + ‖y‖2)1/2 ≤ |γ̃| ≤ (1 + ε)d(x,y, z)

and consequently r ≤ d(x,y, t).

Applying the above argument to g = (x,y, 0) we get

r = (‖x‖2 + ‖y‖2)1/2 ≤ d(x,y, 0).

In order to obtain the opposite inequality d(x,y, 0) ≤ r it suffices to check
that by (0.1) the line segment joining (0, 0, 0) and (x,y, 0) is an admissible
curve and then to compute its length. We omit the calculations. The lemma
follows.

The following simple fact will be crucial for our argument.

Lemma 3. Let z ∈ R and let

Γ rz = {(x,y, z) : (x,y, z) ∈ B(r)} and mr(z) = |Γ
r
z |

where | | denotes the Lebesgue measure on R
2n. Then z 7→ mr(z) is decreas-

ing for z ≥ 0 and increasing for z ≤ 0 (and in fact symmetric, but we will
not use it).

Proof. Let Γz = Γ
1
z , m(z) = m1(z). By homogeneity of d it suffices to

prove the lemma for m(z). Let z ≥ 0. For a fixed 0 < t < 1 consider the set

δt(Γz) = {(tx, ty, t
2z) : (x,y, z) ∈ Γz}.

By Lemma 2, for a fixed (x,y, z) ∈ Γz with (‖x‖
2 + ‖y‖2)1/2 = r we have

r = d(x,y, 0) ≤ d(x,y, z) ≤ 1.

Applying the estimates

(i) d(δt(x,y, z)) = td(x,y, z) ≤ t

and

(ii) d(sx, sy, 0) = sr ≤ 1− t, valid for s ∈ [0, r−1(1− t)],

we get

d((t+ s)x, (t+ s)y, t2z) = d((tx, ty, t2z)(sx, sy, 0))

≤ d(tx, ty, t2z) + d(sx, sy, 0) ≤ 1,
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hence by Lemma 1,

A = {(t(x,y) + s(x,y), t2z) : s ∈ [0, r−1(1− t)], ‖x‖2 + ‖y‖2 = r2} ⊂ Γt2z.

In order to prove the lemma it suffices to observe that the orthogonal pro-
jection of Γz onto the plane containing Γt2z is contained in A. Since A is a
ring, this easily follows from the inequalities

rt ≤ r = rt+ r(1− t) ≤ rt+ 1− t for r ≤ 1, t ≤ 1.

Since the proof for z ≤ 0 is similar, the lemma follows.

Denote by µr the uniform probability measure supported on the sphere
{(x,y, 0) : ‖x‖2 + ‖y‖2 = 1} of radius r and by Sr the spherical average

Srf(g) =
\
f(gδr(ω)) dµ1(ω) = µr ∗ f(g).

Then by [NTh], the corresponding spherical maximal operator

S∗f(g) = sup
r>0
Sr|f |(g)

is bounded on Lp for p > (2n− 1)/(2n− 2), n ≥ 2.

Let M∗ denote the one-dimensional Hardy–Littlewood maximal func-
tion along the central direction. The lemma below reduces our result to Lp

estimates for S∗.

Lemma 4. The following estimate holds:

B∗f(g) ≤M∗(S∗(f))(g),

Proof. Since B∗ is left invariant, it suffices to prove the lemma for g=0.
Observe that for the appropriate constant bn, in the polar coordinates
(x,y) = (x(ω, ̺),y(ω, ̺)) = ω̺, (ω, ̺) ∈ S

2n−1 × R
+, Lemma 1 implies

|B(r)|−1
\
B(r)

|f |(g) dg

=
\\
bn̺
2n−1

\
(x(ω,̺),y(ω,̺),z)∈Γ rz
‖x(ω,̺)‖2+‖y(ω,̺)‖2=̺2

|f |(x,y, z) dµ(ω) d̺ dz

≤
\ \
{∃ω(x(ω,̺),y(ω,̺),z)∈Γ rz ,‖x(ω,̺)‖

2+‖y(ω,̺)‖2=̺2}

bn̺
2n−1S∗|f |(0, 0, z) d̺ dz

=
\
mr(z)S

∗f(0, 0, z) dz ≤M∗(S∗(f))(0).

The last inequality follows from the Stein theorem (see [S1, II, 2.1]), owing
to Lemma 3 and the obvious fact

T
mrdz = 1 (consider the constant function

in the above calculations). The lemma follows.
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Lemma 5. Let p > 1 be fixed. Then the maximal function S∗ is bounded
on Lp(Hn), n ≥ n(p) = 1+(2p− 1)/(2p− 2); its operator norm is controlled
independently of n.

Proof. Let n ≥ n(p) and let A ∈ U
n. Denote by dm(A) the right in-

variant probability measure on U
n. Let µ̃r denote the uniform probability

measure supported on the 2n(p)−1-dimensional sphere of radius r contained
in the plane Π = {(x,y, 0) : xn(p)+1 = yn(p)+1 = · · · = xn = yn = 0} ⊂ R

2n

and centered at (0, 0, 0). Observe that the fomula

νr(E) =
\

Un

µ̃r(A(E)) dm(A)

defines an U
n-invariant probability measure on the sphere of radius r in R

2n

so νr = µr. Hence

Sr ∗ f(g) =
\

Un

µ̃r ∗A(f)(A
−1(g)) dm(A)

and
S∗f(g) ≤

\
Un

sup
r≥0
µ̃r ∗ |A(f)|(A

−1(g)) dm(A)

=
\

Un

µ̃∗|A(f)|(A−1(g)) dm(A)

where A(f)(g) = f(A(g)) is an isometry in Lp, p > 0. Consequently, since
for any Banach space X and strongly measurable X-valued function on U

n

one has ‖
T
f(A) dm(A)‖X ≤

T
‖f(A)‖X dm(A) we get

‖S∗‖Lp(Hn)→Lp(Hn) ≤ ‖µ̃
∗‖Lp(Hn)→Lp(Hn) ≤ ‖µ̃

∗‖Lp(Hn(p))→Lp(Hn(p)).

To see the last estimate we will identify H
n = H

n(p) × R
2(n−n(p)) putting

g = (g1, g2) where

g1 = (x1, . . . , xn(p), 0, . . . , y1, . . . , yn(p), 0, . . . , z) ∈ Π × R = H
n(p)

and

g2 = (0, . . . , xn(p)+1, . . . , xn, 0, . . . , yn(p)+1, . . . , yn, 0) ∈ R
2(n−n(p)).

Then by the group multiplication formula

µ̃r ∗ fg2(g1) = µ̃r ∗Hn(p) fg2(g1)

where ∗Hn(p) denotes convolution on H
n(p) and fg2(·) = f(·, g2). Conse-

quently, by Fubini’s theorem,

‖µ̃∗‖Lp(Hn)→Lp(Hn) ≤ ‖µ̃
∗‖Lp(Hn(p))→Lp(Hn(p)).

The lemma now follows from [NTh].

Proof of Theorem 1. The norm ofM∗ on Lp(Hn) is equal to the norm of
the classical Hardy–Littlewood maximal operator on Lp(R). Observe that
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then M∗ acts only on f2, which proves the statement. Applying Lemmas 4
and 5 we get a uniform bound of B∗ on Lp(Hn), n > n(p). Since B∗ is
bounded on Lp(Hn) for each n, the theorem follows.

Remark. The proof of Theorem 1 works obviously for the family of
Folland balls

Br = {(x,y, z) : (‖x‖
2 + ‖y‖2)2 + |z|2 ≤ r4}.
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[S3] E. M. Stein and J.-O. Strömberg, Behavior of maximal functions in R

n for

large n, Ark. Mat. 21 (1983), 259–269.

Institute of Mathematics
Wrocław University
Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: zenek@hera.math.uni.wroc.pl

Received 9 February 2004;

revised 3 November 2004 (4422)


