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THE GENERALIZED SCHOENFLIES THEOREM

FOR ABSOLUTE SUSPENSIONS

BY

DAVID P. BELLAMY (Newark, DE) and JANUSZ M. LYSKO (Chester, PA)

Abstract. The aim of this paper is to prove the generalized Schoenflies theorem for
the class of absolute suspensions. The question whether the finite-dimensional absolute
suspensions are homeomorphic to spheres remains open. Partial solution to this question
was obtained in [Sz] and [Mi]. Morton Brown gave in [Br] an ingenious proof of the
generalized Schoenflies theorem. Careful analysis of his proof reveals that modulo some
technical adjustments a similar argument gives an analogous result for the class of absolute
suspensions.

1. A brief history of the problem. The original question whether
finite-dimensional absolute suspensions are topological spheres was asked by
de Groot in [Gr]. It was also observed by de Groot that in order to provide
the positive answer to the above question one needs “only” prove that such
spaces are topological manifolds. Szymański proved in [Sz] that the answer to
de Groot’s question was positive for spaces of dimension not exceeding three.
Finite-dimensional absolute suspensions are homogeneous ANR’s (see e.g.
[Mi], [Sz]). We see therefore that the positive answer to de Groot’s question
would provide a partial answer to the long standing question of R. H. Bing
and K. Borsuk who asked in [BB] whether finite-dimensional, homogeneous
ANR’s are topological manifolds. The answer to the Bing–Borsuk question
is known only for homogeneous ANR’s of dimension not exceeding two. In
a very interesting paper [Ja] W. Jakobsche indicates the level of difficulty
of the Bing–Borsuk question by showing that the positive answer to their
question would provide the solution to the Poincaré conjecture.

2. Terminology, definitions and the statements of results used

in the proof. All spaces considered in this paper will be finite-dimensional
and metric. If Y is a compact space then the suspension over Y , denoted
by S(Y ), is the quotient of Y × [−1, 1] with two nondegenerate equivalence
classes: Y × {1} and Y × {−1}. The two points obtained by the identifica-
tion of these sets are called the vertices of the suspension. The quotient of
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Y × [0, 1] with the only nondegenerate equivalence class Y × {1} will be
called the cone over Y and will be denoted by C(Y ). We will always assume
that Y is a subset of S(Y ) as well as of C(Y ) and we will identify Y with the
set of points (y, t) for which t = 0. A compact space X is called an absolute

suspension (abbr. X ∈ AS) provided that for every pair of different points
p, q ∈ X there exists a space Y and a homeomorphism h : X → S(Y ) such
that h(p) and h(q) are the vertices of S(Y ). We say that the homeomor-
phism h determines the absolute suspension structure on X. It should be
noted immediately that the space Y appearing in the definition of the abso-
lute suspension is not uniquely determined. For example, R. Edwards [Ed]
has shown that the double suspension of a certain 3-dimensional homology
sphere is the topological sphere S5. Therefore there exists a space that is
not a sphere but whose suspension is a sphere.

Throughout the paper X will denote an n-dimensional absolute suspen-

sion. Every space Y ⊂ X for which X
top
= S(Y ) will be called an equator

of X. The family of all equators of the space X will be denoted by EX . Fol-
lowing M. Brown we will call a subset M of W an inverse set of a mapping
f : W → Z if M contains more than one point and there is a point z ∈ Z
for which M = f−1(z). If X is an absolute suspension then every space
homeomorphic to the cone C(Y ) over any Y ∈ EX will be called a Y -cell.
If Q is a Y -cell and h : Q → C(Y ) is a homeomorphism then the interior

Q̊ of Q is defined as h−1(C(Y ) \ Y ) and the boundary Q̇ of Q is defined
as h−1(Y ). A set M will be called Y -cellular in an n-dimensional compact

space S if there is a sequence Qn of Y -cells in S such that Qn+1 ⊂ Q̊n for
all n = 1, 2, . . . and M =

⋂

∞

n=1 Qn. The following provides a list of the most
important properties of the absolute suspensions which will be used in the
proof of our main result.

Property 2.1 ([Bo, p. 191]). Let X be an n-dimensional , homogeneous

ANR and let B be a compact subset of X cyclic in dimension n − 1 and

contractible to a point in a proper subset X ′ of X which is contractible in X.

Then the set X \ B is not connected. (A compact set B is called cyclic in

dimension k if Hk(X) 6= 0, where Hk(X) denotes the kth Vietoris homology
group of X.)

Property 2.2 ([Sz] and [Mi]). If X is an n-dimensional absolute sus-

pension, then X is a homogeneous ANR homotopy equivalent to the n-

dimensional sphere Sn. Every equator of X is also an ANR homotopy equiv-

alent to the (n − 1)-dimensional sphere Sn−1.

Property 2.3 ([Ly]). If U and V are two homeomorphic subsets of a

homogeneous finite-dimensional ANR then U is an open subset of X if and

only if V is an open subset of X.
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3. Main result. The main result of [Br] states that if h is a homeo-
morphic embedding of Sn−1 × [0, 1] into Sn then the closure of each com-
plementary domain of h(Sn−1 × {1/2}) is an n-cell. We are going to prove
the following theorem, which generalizes this result.

Theorem 3.1. Let X be an n-dimensional absolute suspension, Y ∈ EX

and let h : Y × [0, 1] → X be a homeomorphic embedding. Then the closure

of any complementary domain of h(Y × {1/2}) is homeomorphic to C(Y ).

Note that even in the case of spheres, this generalizes Brown’s result,
since as noted above, there exists a continuum Y such that Y is not a
sphere but the suspension of Y is a sphere. The proof of this theorem will
follow from a sequence of lemmas. The lemmas (except the first) and their
proofs are closely patterned after Brown’s original ones and are repeated
primarily for the reader’s convenience.

Lemma 3.2. Every equator Y ∈ EX separates X into two complemen-

tary domains. If Y is bi-collared in X (this means that there is a homeo-

morphic embedding h : Y × [0, 1] → X such that h(Y ×{1/2}) = Y ) then Y
is the common boundary of its complementary domains.

Proof. Let Y be a copy of an equator of X in X. Clearly X\Y 6= ∅. Every
proper compact subset of X is contractible to a point in a proper subset of
X that is contractible in X. Since Y has the homotopy type of Sn−1, Y is
cyclic in dimension n−1. According to Property 2.1, Y disconnects X. More
precisely, if z is an (n − 1)-dimensional cycle in Y that is not homologous
to zero in Y , then there exists a compactum A  X such that Y ⊂ A, z is
homologous to zero in A, and A is irreducible with respect to this property.
According to the proof of Theorem 16.1 in [Bo], Y separates X between
every pair of points of A \ Y and X \ A, respectively. If p is an arbitrary
point of A\Y , then p has an open neighborhood U in X such that U∩Y = ∅
and Y is contractible to a point in X \ U . Thus there exists a compactum
B ⊂ X \ U such that Y ⊂ B, z is homologous to zero in B, and B is
irreducible with respect to this property. By using Theorem 16.1 of [Bo,
p. 192] again we can claim that Y separates X between every pair of points
in B \ Y and X \ B. We claim that A ∪ B = X. If this were not true then
A∪B would contain, by the Brouwer–Phragmén theorem (see, for example,
Proposition 3.6 in [Bo, p. 40]), an n-dimensional cycle not homologous to
zero in A∪B and homologous to zero in X, which contradicts the assumption
that X is n-dimensional.

If Y is bi-collared then, by Property 2.3, h(Y × (0, 1)) is an open neigh-
borhood of Y = h(Y × {1/2}) in X. Therefore, Y is the common boundary
of both complementary domains by the first part of Lemma 3.2. It is inter-
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esting to ask whether the assumption that Y is bi-collared is essential in the
last claim.

Lemma 3.3. Let X ∈ AS, Y ∈ EX and let Q be a Y -cell. Suppose that

f : Q → X is a continuous mapping such that f has only a finite number

of inverse sets and that all these sets are in Q̊. Then f(Q) is the union of

f(Q̇) and one of the complementary domains of f(Q̇).

Proof. First notice that f(Q) * f(Q̇). Otherwise the map (f |Q̇)−1 ◦ f :

Q → Q̇ would give a retraction from Q to Q̇, which is impossible since Q is
contractible and Q̇ being homeomorphic to Y is not, by Property 2.2. Since
the inverse sets of f are in Q̊, the mapping (f |Q̇)−1 is properly defined.

Thus f(Q) intersects at least one complementary domain, say D, of f(Q̇).

The set Q̇ clearly does not separate Q, and f(Q̇) separates X. (It is obvious
that every proper, compact subset of X is contractible to a point in a subset
which is contractible in X, thus Properties 2.1 and 2.2 together imply the
second part of the above claim.) Thus f(Q) ⊂ D, since otherwise there

would be inverse sets of f intersecting Q̇. If f(Q) does not contain D then
f(Q) has infinitely many boundary points in D. But Property 2.3 guarantees
that only a finite number of points of f(Q)∩D are boundary points of f(Q).
Therefore f(Q) = D.

Lemma 3.4. Let Q = C(Y ), h : Y → Y be a homeomorphism, and A be

a compact subset of Q not intersecting the base Y of C(Y ). If d denotes a

metric on Q then for every positive ε there is a homeomorphism h′ : Q → Q
such that h′|Y = h and diam(h′(A)) < ε.

Proof. Given arbitrary ε, δ ∈ (0, 1) take a homeomorphism g : [0, 1] →
[0, 1] such that g(0) = 0, g(1) = 1 and g([δ, 1]) ⊂ [ε, 1]. Define h′ by the
formula h′(y, t) = (h(y), g(t)). It is obvious that for a suitable choice of ε
and δ the homeomorphism h′ satisfies the conditions of the lemma.

Lemma 3.5. Let Q be a Y -cell and let M be a Y -cellular subset of Q̊.

Then there exists a map f of Q onto itself such that f is the identity on Q̇
and M is the only inverse set of f .

Proof. Let Qi be a sequence of Y -cells in Q̊ such that M =
⋂

∞

i=1 Qi

and such that Qi+1 ⊂ Q̊i for all i = 1, 2, . . . . By Lemma 3.4 there is a
homeomorphism h1 : Q → Q such that h1|Q̇ = idQ̇ and diam(h1(Q1)) < 1.

By induction, using repeatedly Lemma 3.4, we can construct a homeomor-
phism hi+1 of Q onto itself such that hi+1 = hi on Q \ Q̊i and such that
diam(hi+1(Qi+1)) < 1/(i+1). From the construction it follows immediately
that the limit map f = limi→∞ hi is a properly defined transformation of Q
onto itself. Since all hi’s are the identity on Q̇ so is f . It is also obvious that
f(M) is a point and that M is the only inverse set of f .
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Lemma 3.6. Let A be a topological copy of some Y ∈ EX in X and let

D be one of the complementary domains of A. Suppose that f maps D onto

a Y -cell Q such that the only inverse set of f is a Y -cellular subset M of D.

Then D is a Y -cell.

Proof. Let Q1 be a Y -cell in D such that M ⊂ Q̊1. Then M is Y -cellular
in Q1. Therefore by Lemma 3.5 there is a map g of Q1 onto itself such that
g is the identity on Q̇1 and the only inverse set of g is M . Let g′ be the map
of D onto itself which is the identity on D−Q1 and g on Q1. Then the map
f ◦ (g′)−1 of D onto Q is a homeomorphism. Hence D is a Y -cell.

Lemma 3.7. Let Q be a Y -cell and suppose that f maps Q into X.

Suppose that M ⊂ Q̊ is the only inverse set of f . Then M is a Y -cellular

subset of Q.

Proof. From Lemma 3.3 it follows that f(Q) = f(Q̇) ∪ D where D is a

complementary domain of f(Q̇). Denote by U an open subset of Q̊ which
contains M . Then f(U) is open in D and contains the point p = f(M). If
we look at X as an absolute suspension and p as one of the vertices then we
can easily construct a homeomorphism h : X → X for which h(D) ⊂ f(U)
and which is the identity on some small open neighborhood V of the point p.
Define the map g : Q → Q by

(1) g(x) =

{

x if x ∈ M,

f−1 ◦ h ◦ f(x) otherwise.

Since f−1 ◦ h ◦ f is the identity on f−1(V ), the mapping g is a well defined
homeomorphism. Hence g(Q) is a Y -cell in U containing M in its interior.

Lemma 3.8. Let f : X → X be such that f has exactly two inverse sets

A and B. Then both A and B are Y -cellular in X for some Y ∈ EX .

Proof. Consider Y ⊂ X \ (A ∪ B) such that Y ∈ EX and such that the
closure of each complementary domain of Y in X is a Y -cell. It is easy to find
such Y using a suspension structure on X with a vertex not belonging to
A∪B. If Y happens to disconnect X between A and B then the conclusion
of the lemma follows immediately from the previous one. Therefore assume
that Q is a Y -cell in X whose boundary is Y and which contains A∪B in its
interior. Let f(A) = {a} and f(B) = {b}. It follows from Lemma 3.3 that

f(Q) = f(Q̇) ∪ D, where D is the complementary domain of f(Q̇) which
contains the points a and b. Let U be an open set in D which contains the
point a but not b. There is a homeomorphism h : X → X which carries
f(Q) into U and which is the identity on a small neighborhood V of the
point a. Consider the map g : Q → Q defined by

(2) g(x) =

{

x if x ∈ A,

f−1 ◦ h ◦ f(x) otherwise.
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Since f−1 ◦ h ◦ f is the identity on f−1(V ), the mapping g is well defined.
One sees easily that the only inverse set of g is B. Hence by Lemma 3.7,
B is Y -cellular. In a similar way one proves that A is Y -cellular.

Proof of the main theorem. Let h : Y × [0, 1] → X be a homeomor-
phic embedding. Denote by A the closure of the complementary domain of
h(Y × {1}) which does not contain h(Y × {0}) and let B be the closure of
the complementary domain of h(Y ×{0}) which does not contain h(Y ×{1})
(by Lemma 3.2, both h(Y × {1}) and h(Y × {0}) have two complementary
domains in X). Let f : X → X be the map which carries A and B to the
vertices of S(Y ) and h(Y ×{1/2}) on the equator Y and which has A and B
as the only inverse sets. Denote by DA and DB the complementary domains
of h(Y ×{1/2}) which contain A and B respectively. By Lemma 3.8, A and
B are Y -cellular in DA and DB respectively. Hence by Lemma 3.6, DA and
DB are Y -cells, which completes the proof.
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