COLLOQUIUM MATHEMATICUM

ON WINGS OF THE AUSLANDER-REITEN QUIVERS OF SELFINJECTIVE ALGEBRAS

BY

MARTA KWIECIEŃ and ANDRZEJ SKOWROŃSKI (Toruń)

Abstract

We give necessary and sufficient conditions for a wing of an AuslanderReiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length ≥ 3 is obtained.

Introduction and the main results. Throughout the paper, by an algebra we mean a finite-dimensional associative K-algebra with an identity over a fixed (commutative) field K. For an algebra A, we denote by $\bmod A$ the category of finite-dimensional (over K) right A-modules, by D the standard duality $\operatorname{Hom}_{K}(-, K)$ on $\bmod A$, by Γ_{A} the Auslander-Reiten quiver of A, and by τ_{A} and τ_{A}^{-}the Auslander-Reiten translations $D \operatorname{Tr}$ and $\operatorname{Tr} D$, respectively. We identify an indecomposable module from $\bmod A$ with the corresponding vertex of Γ_{A}. For a module M in $\bmod A$, we denote by $P_{A}(M)$ the projective cover of M and by $I_{A}(M)$ the injective envelope of M.

An algebra A is called selfinjective if $A \cong D(A)$ in $\bmod A$, that is, the projective A-modules are injective. Further, A is called symmetric if A and $D(A)$ are isomorphic as A - A-bimodules. The classical examples of selfinjective algebras are provided by the group algebras $K G$ of finite groups G, or more generally finite-dimensional Hopf algebras. An important class of selfinjective algebras is formed by the orbit algebras \widehat{B} / G where \widehat{B} is the repetitive algebra (locally finite-dimensional, without identity)

$$
\widehat{B}=\bigoplus_{m \in \mathbb{Z}}\left(B_{m} \oplus D(B)_{m}\right)
$$

of an algebra B, where $B_{m}=B$ and $D(B)_{m}=D(B)$ for all $m \in \mathbb{Z}$, and the multiplication in \widehat{B} is defined by

$$
\left(a_{m}, f_{m}\right)_{m} \cdot\left(b_{m}, g_{m}\right)_{m}=\left(a_{m} b_{m}, a_{m} g_{m}+f_{m} b_{m-1}\right)_{m}
$$

[^0]for $a_{m}, b_{m} \in B_{m}, f_{m}, g_{m} \in D(B)_{m}$, and G is an admissible group of automorphisms of \widehat{B}. In particular, for the infinite cyclic group $\left(\nu_{\widehat{B}}\right)$ generated by the Nakayama automorphisms $\nu_{\widehat{B}}$ of $\widehat{B}, T(B)=\widehat{B} /\left(\nu_{\widehat{B}}\right)$ is the trivial extension algebra $B \ltimes D(B)$ of B by the injective cogenerator $D(B)$ of B (see [5], [7], [9], [10], [12], [17] for a theory of orbit algebras of repetitive algebras).

The Auslander-Reiten quiver is an important combinatorial and homological invariant of selfinjective algebras. We are concerned with the distribution of indecomposable projective modules in the Auslander-Reiten quivers of selfinjective algebras. By general theory, for any indecomposable projective module P over a selfinjective algebra A, there is a canonical Auslander-Reiten sequence in $\bmod A$ of the form

$$
0 \rightarrow \operatorname{rad} P \rightarrow(\mathrm{rad} P / \operatorname{soc} P) \oplus P \rightarrow P / \operatorname{soc} P \rightarrow 0
$$

(see $[3,(\mathrm{~V} .5 .5)]$), and $H(P)=\operatorname{rad} P / \operatorname{soc} P$ is called the heart of P.
A full translation subquiver $W(M)$ of an Auslander-Reiten quiver Γ_{A} of the form

with $n \geq 1$ is said to be a wing (of length $n+1$) induced by an indecomposable A-module $M[11,(2.3)]$. We note that a wing $W(M)$ of length $n+1$ is isomorphic to the Auslander-Reiten quiver of the path algebra of the equioriented quiver $1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow n+1$ of type \mathbb{A}_{n+1}.

A module X over an algebra A is called uniserial if the set of submodules of X is linearly ordered by inclusion. An algebra A is said to be a Nakayama algebra if both the indecomposable projective and indecomposable injective A-modules are uniserial.

The following theorems are the main results of the paper.

Theorem A. Let A be a selfinjective algebra and $W(M)$ a wing of length $n+1 \geq 2$ in Γ_{A} induced by an indecomposable A-module M. The following statements are equivalent:
(i) M is the radical of an indecomposable projective A-module P.
(ii) $M_{1,1}, \ldots, M_{n, n}$ are simple modules and $P_{A}\left(M_{1,1}\right), \ldots, P_{A}\left(M_{n, n}\right)$ are of Loewy length $n+2$.
(iii) $M_{1,1}, \ldots, M_{n, n}$ are simple modules and $I_{A}\left(M_{1,1}\right), \ldots, I_{A}\left(M_{n, n}\right)$ are of Loewy length $n+2$.
(iv) $M_{1, n}$ is a uniserial module and $P_{A}\left(M_{1,1}\right), \ldots, P_{A}\left(M_{n, n}\right)$ are uniserial modules of length $n+2$.
(v) $M_{1, n}$ is a uniserial module and $I_{A}\left(M_{1,1}\right), \ldots, I_{A}\left(M_{n, n}\right)$ are uniserial modules of length $n+2$.
Moreover, if one of the above statements holds, then the wing $W\left(M_{1, n}\right)$ induced by $M_{1, n}$ consists of uniserial modules.

Theorem B. Let A be an indecomposable selfinjective algebra and $m \geq 3$ a natural number. The following statements are equivalent:
(i) A is a Nakayama algebra of Loewy length m.
(ii) Γ_{A} admits a wing $W(M)$ of length $m-1$ induced by the radical M of an indecomposable projective A-module P such that the module $M_{0,0}$ is simple.
As a direct consequence of Theorems A and B we obtain the following fact.

Corollary C. Let A be an indecomposable selfinjective algebra and $W(M)$ a wing of length $n+1 \geq 2$ in Γ_{A} induced by the radical M of an indecomposable projective A-module P. Moreover, assume that A is not a Nakayama algebra. Then $M_{1,1}, \ldots, M_{n, n}$ are pairwise nonisomorphic simple modules, and $\tau_{A} M_{1,1}, \tau_{A}^{-} M_{n, n}$ are not simple.

The paper is organized as follows. In Section 1 we present preliminary results applied in the proofs of Theorems A and B. Sections 2 and 3 are devoted to the proofs of Theorems A and B, respectively. In the final Section 4 we present examples illustrating both theorems.

For basic background in the representation theory applied here we refer to [2], [3] and [18].

1. Preliminary results. Let A be a selfinjective algebra. We denote by $\underline{\bmod } A$ the stable category of $\bmod A$. Recall that the objects of $\underline{\bmod } A$ are the objects of $\bmod A$ without nonzero projective direct summands, and for any two objects M and N of $\bmod A$ the space of morphisms from M to N in $\underline{\bmod } A$ is the quotient $\underline{\operatorname{Hom}}_{A}(M, N)=\operatorname{Hom}_{A}(M, N) / P(M, N)$, where $P(M, N)$ is the subspace of $\operatorname{Hom}_{A}(M, N)$ consisting of all morphisms which
factor through projective A-modules. Then the Auslander-Reiten translations induce two mutually inverse functors

$$
\tau_{A}, \tau_{A}^{-}: \underline{\bmod } A \rightarrow \underline{\bmod } A
$$

We also have two mutually inverse Heller's syzygy functors [3, (IV.3.5)]

$$
\Omega_{A}, \Omega_{A}^{-}: \underline{\bmod } A \rightarrow \underline{\bmod } A,
$$

which assign to any object M of $\underline{\bmod } A$ respectively the kernel $\Omega_{A}(M)$ of the projective cover $P_{A}(M) \rightarrow M$ and the cokernel $\Omega_{A}^{-}(M)$ of the injective envelope $M \rightarrow I_{A}(M)$. Consider also two mutually inverse Nakayama functors

$$
\nu_{A}, \nu_{A}^{-}: \bmod A \rightarrow \bmod A
$$

defined as the compositions of functors $\nu_{A}=D \operatorname{Hom}_{A}(-, A)$ and $\nu_{A}^{-}=$ $\operatorname{Hom}_{A^{\text {op }}}(-, A) D$. We note that for any simple A-module T, the modules $\nu_{A}(T)$ and $\nu_{A}^{-}(T)$ are simple, and $\nu_{A}\left(P_{A}(T)\right) \cong I_{A}(T) \cong P_{A}\left(\nu_{A}(T)\right), \nu_{A}^{-} I_{A}(T)$ $\cong P_{A}(T) \cong I_{A}\left(\nu_{A}^{-}(T)\right)$.

Proposition 1.1. Let A be a selfinjective algebra. Then
(i) The functors $\tau_{A}, \Omega_{A}^{2} \nu_{A}, \nu_{A} \Omega_{A}^{2}: \underline{\bmod } A \rightarrow \underline{\bmod A} A$ are isomorphic.
(ii) The functors $\tau_{A}^{-}, \Omega_{A}^{-2} \nu_{A}^{-}, \nu_{A}^{-} \Omega_{A}^{-2}: \underline{\bmod } A \rightarrow \underline{\bmod } A$ are isomorphic. Proof. See [3, (IV.3.7)].
For a selfinjective algebra A, we denote by Γ_{A}^{s} the stable AuslanderReiten quiver of A, obtained from Γ_{A} by removing the projective vertices and the arrows attached to them.

Proposition 1.2. Let A be an indecomposable nonsimple selfinjective algebra. Then the syzygy functors Ω_{A} and Ω_{A}^{-}induce two mutually inverse automorphisms of the stable Auslander-Reiten quiver Γ_{A}^{S}.

Proof. See [3, (X.1.10)].
Let A be an algebra and M a module in $\bmod A$. We denote by $\ell(M)$ the length of M (the number of simple composition factors of M) and by $\ell \ell(M)$ the Loewy length of M (the length of the radical series of M). We note that a module M is uniserial if and only if the radical series of M is the unique composition series of M [3, (IV.2.1)].

An important role in the proof of our main theorems will be played by the following known lemma.

Lemma 1.3. Let A be an algebra and

$$
0 \longrightarrow X \xrightarrow{\binom{\alpha}{\beta}} Y \oplus Z \xrightarrow{(\gamma, \delta)} U \longrightarrow 0
$$

be an Auslander-Reiten sequence in $\bmod A$. Then the following statements hold.
(i) If the irreducible morphism $\gamma: Y \rightarrow U$ is a monomorphism then the irreducible morphism $\beta: X \rightarrow Z$ is a monomorphism and Coker $\gamma \cong$ Coker β.
(ii) If the irreducible morphism $\delta: Z \rightarrow U$ is an epimorphism then the irreducible morphism $\alpha: X \rightarrow Y$ is an epimorphism and $\operatorname{Ker} \delta \cong$ $\operatorname{Ker} \alpha$.

Proof. For the convenience of the reader we present the proof of (i). The proof of (ii) is dual.

Assume $\gamma: Y \rightarrow U$ is a monomorphism. Since $\beta: X \rightarrow Z$ is an irreducible morphism, it follows from $[3,(\mathrm{~V} .5 .1)]$ that β is either a monomorphism or an epimorphism. Then $\ell(X)+\ell(U)=\ell(Y)+\ell(Z)$ and $\ell(Y)<\ell(U)$ force $\ell(X)<\ell(Z)$, and consequently β is a monomorphism. Moreover, we have the commutative diagram with exact rows

where $\xi: Z \rightarrow Z / \beta(X)=\operatorname{Coker} \beta$ and $\eta: U \rightarrow U / \gamma(Y)=$ Coker γ are the canonical epimorphisms. Further, $U=\gamma(Y)+\delta(Z)$ implies $U+\gamma(Y)$ $=\delta(Z)+\gamma(Y)$, and hence f is an epimorphism. Finally, $\ell(\operatorname{Coker} \beta)=$ $\ell(Z)-\ell(X)=\ell(U)-\ell(Y)=\ell($ Coker $\gamma)$ implies that f is an isomorphism.

Recall that a path of irreducible morphisms

$$
X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{f_{2}} \cdots \rightarrow X_{r-1} \xrightarrow{f_{r-1}} X_{r} \xrightarrow{f_{r}} X_{r+1}
$$

between indecomposable modules in $\bmod A$ is called sectional if $\tau_{A} X_{i+2}$ $\not \neq X_{i}$ for $i \in\{1, \ldots, r-1\}$. Then we have the following useful fact.

Lemma 1.4. Let A be an algebra and

$$
X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{f_{2}} \cdots \rightarrow X_{r-1} \xrightarrow{f_{r-1}} X_{r} \xrightarrow{f_{r}} X_{r+1}
$$

be a sectional path of irreducible morphisms in $\bmod A$. Then the composition $f_{r} \ldots f_{2} f_{1}$ is nonzero.

Proof. See [4] or [3, (VII.2.4)].
We also need the following characterization of indecomposable Nakayama algebras.

Proposition 1.5. Let A be an indecomposable algebra. Then A is a Nakayama algebra if and only if Γ_{A} contains a τ_{A}-orbit consisting entirely of simple A-modules.

Proof. See [3, (IV.2)].
2. Proof of Theorem A. Let A be a selfinjective algebra and $W(M)$ a wing of length $n \geq 2$ in the Auslander-Reiten quiver Γ_{A} of A, induced by an indecomposable module M from $\bmod A$. Without loss of generality we may assume that A is indecomposable. Then A is of Loewy length at least 3 , because Γ_{A} admits the wing $W(M)$ of length at least 2 (see [3, (X.1.8)]).

Observe first that the equivalences (ii) \Leftrightarrow (iii) and (iv) \Leftrightarrow (v) follow from the fact that the Nakayama functors ν_{A} and ν_{A}^{-}are mutually inverse autoequivalences of the category $\bmod A$ and $\nu_{A} P_{A}(T) \cong I_{A}(T) \cong P_{A}\left(\nu_{A}(T)\right)$ for any simple A-module T.

We prove now that (i) implies (iii) and (v). Assume that M is the radical of an indecomposable projective A-module P. Denote by S the top of P. Then we have an Auslander-Reiten sequence

$$
0 \rightarrow \operatorname{rad} P \rightarrow H(P) \oplus P \rightarrow P / \nu_{A}^{-}(S) \rightarrow 0
$$

Observe that the modules $M_{i, j}, 0 \leq i \leq j \leq n$, occurring in the wing $W(M)$ are neither projective nor injective, because A is selfinjective, and $W(M)$ is a full translation subquiver of $\Gamma_{A}, M_{1, n}$ is a direct summand of $H(P)$, and the irreducible monomorphism $H(P) \rightarrow P / \nu_{A}^{-}(S)$ is not splittable. Moreover, invoking Lemma 1.3 and the fact that $W(M)$ is a full translation subquiver of Γ_{A}, we conclude that all irreducible morphisms $M_{i, j} \rightarrow M_{i, j+1}$ (respectively, $\left.M_{i, j} \rightarrow M_{i+1, j}\right)$ in $\bmod A$ are monomorphisms (respectively, epimorphisms). Applying the functor Ω_{A}^{-}to $W(M)$ we obtain, by Proposition 1.2, a wing $W(S)$ in the stable Auslander-Reiten quiver Γ_{A}^{s} of A

where $X_{i, j}=\Omega_{A}^{-}\left(M_{i, j}\right), 0 \leq i \leq j \leq n$. Moreover, we have in $\bmod A$ the Auslander-Reiten sequences

$$
0 \rightarrow X_{i, j} \rightarrow X_{i+1, j} \oplus X_{i, j+1} \rightarrow X_{i+1, j+1} \rightarrow 0
$$

for all $0 \leq i<j \leq n-1$. Indeed, if $X_{i+1, j+1} \cong P_{A}(T) / \nu_{A}^{-}(T)$ for some indecomposable projective A-module $P_{A}(T)$ and $0 \leq i<j \leq n-1$, then $M_{i+1, j+1}$ is a simple module isomorphic to $\nu_{A}^{-}(T)$. On the other hand, we have in $\bmod A$ a proper monomorphism $M_{i+1, i+1} \rightarrow M_{i+1, j+1}$ which is a composition of irreducible monomorphisms corresponding to the arrows

$$
M_{i+1, i+1} \rightarrow M_{i+1, i+2} \rightarrow \cdots \rightarrow M_{i+1, j+1}
$$

in $W(M)$, a contradiction.
We prove now that there exist simple A-modules T_{1}, \ldots, T_{n} such that the indecomposable projective A-modules

$$
P_{1}=P_{A}\left(T_{1}\right), P_{2}=P_{A}\left(T_{2}\right), \ldots, P_{n}=P_{A}\left(T_{n}\right)
$$

are uniserial and $X_{i-1, i-1}=\operatorname{rad} P_{i}, X_{i, i}=P_{i} / \operatorname{soc} P_{i}$ for $1 \leq i \leq n$. We modify arguments from [8, Section 1], applied there for the symmetric algebras. Choose irreducible morphisms $\alpha_{i, j}: X_{i, j} \rightarrow X_{i+1, j}$ and $\beta_{i, j}: X_{i, j} \rightarrow X_{i, j+1}$ in $\bmod A$ corresponding to the arrows of the wing $W(S)$. Observe that $\alpha_{0, n}$: $X_{0, n} \rightarrow X_{1, n}$ is a monomorphism, because S is simple. Applying Lemma 1.3, we infer that there is an irreducible monomorphism $X_{0,1} \rightarrow X_{1,1}$, and consequently there is an indecomposable projective module P_{1} with $X_{0,0}=\operatorname{rad} P_{1}$ and $X_{1,1}=P_{1} / \operatorname{soc} P_{1}$. Let T_{1} be a simple A-module with $P_{1}=P_{A}\left(T_{1}\right)$. Then $\operatorname{soc} P_{1}=\nu_{A}^{-}\left(T_{1}\right)$ and $X_{0,1}=\operatorname{rad} P_{1} / \nu_{A}^{-}\left(T_{1}\right)$. Observe that, for $n=1$, $P_{1}=P_{A}\left(T_{1}\right)$ is a uniserial module of length 3 , and so $I_{A}\left(\nu_{A}^{-}\left(T_{1}\right)\right)=P_{A}\left(T_{1}\right)$ is a uniserial module of length 3 . Moreover, $M_{1,1}=\Omega_{A}\left(X_{1,1}\right)=\nu_{A}^{-}\left(T_{1}\right)$ is simple. Thus (iii) and (v) hold.

Assume $n \geq 2$. Invoking Lemma 1.3 again, we conclude that Coker $\alpha_{0, n}$ is isomorphic to the cokernel Coker $\alpha_{0,1}=T_{1}$ of the canonical irreducible monomorphism $\alpha_{0,1}: \operatorname{rad} P_{1} / \operatorname{soc} P_{1} \rightarrow P_{1} / \operatorname{soc} P_{1}$. Dually, the irreducible morphism $\beta_{0, n-1}: X_{0, n-1} \rightarrow X_{0, n}=S$ is an epimorphism, and then it follows from Lemma 1.3 that we have an irreducible epimorphism $X_{n-1, n-1} \rightarrow$ $X_{n-1, n}$. Hence, there exists an indcomposable projective A-module P_{n} such that $X_{n-1, n-1}=\operatorname{rad} P_{n}$ and $X_{n, n}=P_{n} / \operatorname{soc} P_{n}$. Let T_{n} be a simple A-module with $P_{n}=P_{A}\left(T_{n}\right)$. Thus

$$
\operatorname{soc} P_{n}=\nu_{A}^{-}\left(T_{n}\right) \quad \text { and } \quad X_{n-1, n}=\operatorname{rad} P_{n} / \nu_{A}^{-}\left(T_{n}\right)
$$

Moreover $\operatorname{Ker} \beta_{0, n-1}$ is isomorphic to the kernel $\operatorname{Ker} \beta_{n-1, n-1}=\nu_{A}^{-}\left(T_{n}\right)$ of the canonical epimorphism $\beta_{n-1, n-1}: \operatorname{rad} P_{n} \rightarrow \operatorname{rad} P_{n} / \nu_{A}^{-}\left(T_{n}\right)$. Therefore, $X_{0, n-1}$ and $X_{1, n}$ are uniserial modules of length 2 with the simple composition factors

$$
X_{0, n-1}=\binom{S}{\nu_{A}^{-}\left(T_{n}\right)} \quad \text { and } \quad X_{1, n}=\binom{T_{1}}{S}
$$

Moreover, $\alpha_{0, n-1}: X_{0, n-1} \rightarrow X_{1, n-1}$ is an irreducible monomorphism with Coker $\alpha_{0, n-1} \cong$ Coker $\alpha_{0,1}=T_{1}$, and so $X_{1, n-1}$ is a uniserial module of length 3 with the simple composition factors

$$
X_{1, n-1}=\left(\begin{array}{c}
T_{1} \\
S \\
\nu_{A}^{-}\left(T_{n}\right)
\end{array}\right)
$$

Assume now that, for some i with $1 \leq i \leq n-1$, there exist indecomposable projective A-modules $P_{1}=P_{A}\left(T_{1}\right), \ldots, P_{i}=P_{A}\left(T_{i}\right)$, with T_{1}, \ldots, T_{i} simple modules, such that the following statements hold:
(a) $X_{j-1, j-1}=\operatorname{rad} P_{j}$ and $X_{j, j}=P_{j} / \operatorname{soc} P_{j}$ for $1 \leq j \leq i$;
(b) $X_{j, n-1}$ and $X_{j, n}, 1 \leq j \leq i$, are uniserial modules with the simple composition factors

$$
X_{j, n-1}=\left(\begin{array}{c}
T_{j} \\
\vdots \\
T_{1} \\
S \\
\nu_{A}^{-}\left(T_{n}\right)
\end{array}\right) \quad \text { and } \quad X_{j, n}=\left(\begin{array}{c}
T_{j} \\
T_{j-1} \\
\vdots \\
T_{1} \\
S
\end{array}\right) .
$$

We claim now that the irreducible morphism $\alpha_{i, n}: X_{i, n} \rightarrow X_{i+1, n}$ is also a monomorphism. Suppose it is not the case. Then $\alpha_{i, n}$ is an irreducible epimorphism, and consequently $\operatorname{Ker} \alpha_{i, n}$ contains the simple socle of $X_{i, n}$, which is the image of $\alpha_{i-1, n} \cdots \alpha_{0, n}$. On the other hand, by Lemma 1.4, the composition $\alpha_{i, n} \alpha_{i-1, n} \cdots \alpha_{0, n}: S \rightarrow X_{i+1, n}$ of irreducible morphisms corresponding to the sectional path

$$
S=X_{0, n} \rightarrow X_{1, n} \rightarrow \cdots \rightarrow X_{i-1, n} \rightarrow X_{i, n} \rightarrow X_{i+1, n}
$$

of Γ_{A} is nonzero, a contradiction. Thus $\alpha_{i, n}$ is indeed a monomorphism. Applying Lemma 1.3 we deduce that $\alpha_{i, i+1}: X_{i, i+1} \rightarrow X_{i+1, i+1}$ is an irreducible monomorphism, and hence there exists an indecomposable projective module $P_{i+1}=P_{A}\left(T_{i+1}\right)$ such that $X_{i, i}=\operatorname{rad} P_{i+1}$ and $X_{i+1, i+1}=P_{i+1} / \operatorname{soc} P_{i+1}$. Moreover, Coker $\alpha_{i, n} \cong$ Coker $\alpha_{i, i+1}=T_{i+1}$. Further, $\alpha_{i, n-1}: X_{i, n-1} \rightarrow$ $X_{i+1, n-1}$ is also an irreducible monomorphism with Coker $\alpha_{i, n-1} \cong$ Coker $\alpha_{i, i+1}=T_{i+1}$. In particular, $X_{i+1, n-1}$ and $X_{i+1, n}$ are indecomposable modules with simple top isomorphic to T_{i+1}, and hence are factor modules of $P_{i+1}=P_{A}\left(T_{i+1}\right)$. As a consequence, $\operatorname{rad} X_{i+1, n-1}$ is a unique maximal submodule of $X_{i+1, n-1}$ and $\operatorname{rad} X_{i+1, n}$ is a unique maximal submodule of $X_{i+1, n}$. Therefore, $X_{i+1, n-1}$ and $X_{i+1, n}$ are uniserial modules with the simple composition factors

$$
X_{i+1, n-1}=\left(\begin{array}{c}
T_{i+1} \\
T_{i} \\
\vdots \\
T_{1} \\
S \\
\nu_{A}^{-}\left(T_{n}\right)
\end{array}\right) \quad \text { and } \quad X_{i+1, n}=\left(\begin{array}{c}
T_{i+1} \\
T_{i} \\
\vdots \\
T_{1} \\
S
\end{array}\right)
$$

Therefore, it follows by induction that there exist simple modules T_{1}, \ldots, T_{n} such that

$$
X_{i-1, i-1}=\operatorname{rad} P\left(T_{i}\right)
$$

and

$$
X_{i, i}=P_{A}\left(T_{i}\right) / \nu_{A}^{-}\left(T_{i}\right)
$$

for all $i \in\{1, \ldots, n\}$, and additionally $X_{n, n}$ is a uniserial module with the simple composition factors

$$
X_{n, n}=\left(\begin{array}{c}
T_{n} \\
T_{n-1} \\
\vdots \\
T_{1} \\
S
\end{array}\right)
$$

Then we conclude that $P_{1}=P_{A}\left(T_{1}\right), \ldots, P_{n}=P_{A}\left(T_{n}\right)$ are uniserial modules with the Loewy series as follows:

$$
P_{1}=\left(\begin{array}{c}
T_{1} \\
S \\
\nu_{A}^{-}\left(T_{n}\right) \\
\nu_{A}^{-}\left(T_{n-1}\right) \\
\vdots \\
\nu_{A}^{-}\left(T_{2}\right) \\
\nu_{A}^{-}\left(T_{1}\right)
\end{array}\right), \quad P_{2}=\left(\begin{array}{c}
T_{2} \\
T_{1} \\
S \\
\nu_{A}^{-}\left(T_{n}\right) \\
\nu_{A}^{-}\left(T_{n-1}\right) \\
\vdots \\
\nu_{A}^{-}\left(T_{3}\right) \\
\nu_{A}^{-}\left(T_{2}\right)
\end{array}\right), \quad \ldots,
$$

$$
P_{i}=\left(\begin{array}{c}
T_{i} \\
T_{i-1} \\
\vdots \\
T_{1} \\
S \\
\nu_{A}^{-}\left(T_{n}\right) \\
\nu_{A}^{-}\left(T_{n-1}\right) \\
\vdots \\
\nu_{A}^{-}\left(T_{i+1}\right) \\
\nu_{A}^{-}\left(T_{i}\right)
\end{array}\right), \quad \ldots, \quad P_{n}=\left(\begin{array}{c}
\\
T_{n} \\
T_{n-1} \\
\vdots \\
\vdots \\
T_{2} \\
T_{1} \\
S \\
\nu_{A}^{-}\left(T_{n}\right)
\end{array}\right) .
$$

In particular, we find that

$$
M_{i, i}=\Omega_{A}\left(P_{A}\left(T_{i}\right) / \nu_{A}^{-}\left(T_{i}\right)\right)=\nu_{A}^{-}\left(T_{i}\right), \quad 1 \leq i \leq n
$$

are simple modules. Further, we conclude that the injective envelopes

$$
I_{A}\left(M_{i, i}\right)=I_{A}\left(\nu_{A}^{-}\left(T_{i}\right)\right)=P_{A}\left(T_{i}\right)=P_{i}, \quad 1 \leq i \leq n
$$

of the modules $M_{1,1}, \ldots, M_{n, n}$ are uniserial modules of length $n+2$, and so also of Loewy length $n+2$. Finally, observe that we have in $\bmod A$ a sequence of irreducible monomorphisms

$$
\nu_{A}^{-}\left(T_{1}\right)=M_{1,1} \xrightarrow{f_{1}} M_{1,2} \xrightarrow{f_{2}} M_{1,3} \rightarrow \cdots \rightarrow M_{1, n-1} \xrightarrow{f_{n-1}} M_{1, n}
$$

with Coker $f_{i} \cong \nu_{A}^{-}\left(T_{i+1}\right)$ for $i \in\{1, \ldots, n-1\}$ and hence $M_{1, n}$ has a simple socle, isomorphic to $M_{1,1}$. Then $I_{A}\left(M_{1, n}\right) \cong I_{A}\left(M_{1,1}\right)$, and consequently $M_{1, n}$ is a uniserial module of length n with the simple composition factors

$$
M_{1, n}=\left(\begin{array}{c}
\nu_{A}^{-}\left(T_{n}\right) \\
\nu_{A}^{-}\left(T_{n-1}\right) \\
\vdots \\
\nu_{A}^{-}\left(T_{2}\right) \\
\nu_{A}^{-}\left(T_{1}\right)
\end{array}\right)
$$

This finishes the proof of the implications $(\mathrm{i}) \Rightarrow$ (iii) and (i) \Rightarrow (v).
We prove now that (v) implies (iii). Assume that $M_{1, n}$ is a uniserial module and $I_{A}\left(M_{1,1}\right), \ldots, I_{A}\left(M_{n, n}\right)$ are uniserial modules of length $n+2$. Obviously then $I_{A}\left(M_{1,1}\right), \ldots, I_{A}\left(M_{n, n}\right)$ are of Loewy length $n+2$. We claim that the modules $M_{1,1}, \ldots, M_{n, n}$ are simple. Since $W(M)$ is a full translation subquiver of Γ_{A}, we know that all irreducible morphisms $M_{i, j} \rightarrow M_{i, j+1}$ (respectively, $M_{i, j} \rightarrow M_{i+1, j}$) in $\bmod A$ are irreducible monomorphisms (respectively, irreducible epimorphisms). We also note that if $U \rightarrow V$ is
an irreducible morphism between two uniserial modules in $\bmod A$ then $|\ell(U)-\ell(V)|=1$. In particular, we have in $\bmod A$ a chain of irreducible monomorphisms

$$
M_{1,1} \rightarrow M_{1,2} \rightarrow M_{1,3} \rightarrow \cdots \rightarrow M_{1, n-1} \rightarrow M_{1, n}
$$

and $M_{1,1}, M_{1,2}, \ldots, M_{1, n-1}, M_{1, n}$ are uniserial modules with

$$
\ell\left(M_{1,2}\right)-\ell\left(M_{1,1}\right)=1, \quad \ldots, \quad \ell\left(M_{1, n}\right)-\ell\left(M_{1, n-1}\right)=1
$$

because $M_{1, n}$ is uniserial. We claim that in fact $M_{1,1}$ is a simple module, and consequently $M_{1, n}$ is of length n. Suppose $M_{1,1}$ is not simple. Then we have a nonsplittable epimorphism $h: M_{1,1} \rightarrow M_{1,1} / \mathrm{rad} M_{1,1}$ from $M_{1,1}$ onto its simple top $M_{1,1} / \operatorname{rad} M_{1,1}$. On the other hand, we have in $\bmod A$ an Auslander-Reiten sequence of the form

$$
0 \rightarrow M_{1,1} \xrightarrow{f} M_{1,2} \rightarrow M_{2,2} \rightarrow 0
$$

and hence $h=g f$ for some $g: M_{1,2} \rightarrow M_{1,1} / \operatorname{rad} M_{1,1}$. But this is a contradiction since $f\left(M_{1,1}\right)=\operatorname{rad} M_{1,2}$. Therefore, for each $i \in\{1, \ldots, n\}, M_{1, i}$ is a uniserial module of length i. Finally, for each $i \in\{2, \ldots, n\}$, we have in $\bmod A$ a chain of irreducible epimorphisms $M_{1, i} \rightarrow M_{2, i} \rightarrow \cdots \rightarrow M_{i-1, i}$ $\rightarrow M_{i, i}$, and consequently $M_{i, i}$ is a simple module. Observe also that the wing $W\left(M_{1, n}\right)$ consists entirely of uniserial modules.

We prove now that (iii) implies (i). Assume that $M_{1,1}, \ldots, M_{1, n}$ are simple modules and $I_{A}\left(M_{1,1}\right), \ldots, I_{A}\left(M_{n, n}\right)$ are of Loewy length $n+2$. Applying Ω_{A}^{-}to $W(M)$ we obtain a full translation subquiver of Γ_{A} of the form

where $X_{i, j}=\Omega_{A}^{-}\left(M_{i, j}\right), 0 \leq i \leq j \leq n$. Further, we have $X_{i-1, i-1}=$ $\operatorname{rad} I_{A}\left(M_{i, i}\right)$ and $X_{i, i}=I_{A}\left(M_{i, i}\right) / \operatorname{soc} I_{A}\left(M_{i, i}\right)$ for $i \in\{1, \ldots, n\}$. Choose irreducible morphisms $\alpha_{i, j}: X_{i, j} \rightarrow X_{i+1, j}, \beta_{i, j}: X_{i, j} \rightarrow X_{i, j+1}$ and $\gamma_{i-1}:$ $X_{i-1, i-1} \rightarrow I_{A}\left(M_{i, i}\right), \delta_{i}: I_{A}\left(M_{i, i}\right) \rightarrow X_{i, i}$ in $\bmod A$, corresponding to the arrows of the above translation subquiver of Γ_{A}. Since γ_{i-1} are monomorphisms and δ_{i} are epimorphisms, applying Lemma 1.3, we conclude that all $\alpha_{i, j}$ are monomorphisms and all $\beta_{i, j}$ are epimorphisms. Consider the chain of irreducible monomorphisms

$$
\begin{aligned}
X_{0, n-1} \xrightarrow{\alpha_{0}} X_{1, n-1} \xrightarrow{\alpha_{1}} X_{2, n-1} & \xrightarrow{\alpha_{2}} \cdots \\
& \xrightarrow{\alpha_{n-3}} X_{n-2, n-1} \xrightarrow{\alpha_{n-2}} X_{n-1, n-1} \xrightarrow{\gamma_{n-1}} I_{A}\left(M_{n, n}\right)
\end{aligned}
$$

where $\alpha_{i}=\alpha_{i, n-1}, 0 \leq i \leq n-2$. Fix $i \in\{0,1, \ldots, n-2\}$. Applying Lemma 1.3, we have Coker $\alpha_{i} \cong \operatorname{Coker} \gamma_{i} \cong M_{i+1, i+1}$, and hence $\alpha_{i}\left(X_{i, n-1}\right)$ is a maximal submodule of $X_{i+1, n-1}$. Moreover, we have the epimorphism $\beta_{i+1, n-2} \cdots \beta_{i+1, i+1} \delta_{i+1}: I_{A}\left(M_{i+1, i+1}\right) \rightarrow X_{i+1, n-1}$, and consequently $\operatorname{rad} X_{i+1, n-1}$ is a unique maximal submodule of $X_{i+1, n-1}$. Hence $\alpha_{i}\left(X_{i, n-1}\right)$ $=\operatorname{rad} X_{i+1, n-1}$. Obviously, $\gamma_{n-1}\left(X_{n-1, n-1}\right)=\operatorname{rad} I_{A}\left(M_{n, n}\right)$. Therefore, we conclude that $X_{i, n-1} \cong \operatorname{rad}^{n-i} I_{A}\left(M_{n, n}\right)$ for $i \in\{0, \ldots, n-1\}$. In particular, we have $X_{0, n-1} \cong \operatorname{rad}^{n} I_{A}\left(M_{n, n}\right)$. Further, since $I_{A}\left(M_{n, n}\right)$ is of Loewy length $n+2$, we also obtain

$$
\operatorname{rad} X_{0, n-1}=\operatorname{soc} X_{0, n-1} \cong \operatorname{soc} I_{A}\left(M_{n, n}\right)=\operatorname{rad}^{n+1} I_{A}\left(M_{n, n}\right)
$$

Finally, $\beta_{0, n-1}: X_{0, n-1} \rightarrow X_{0, n}$ is an irreducible epimorphism with simple kernel $\operatorname{Ker} \beta_{0, n-1} \cong \operatorname{Ker} \delta_{n} \cong \operatorname{soc} I_{A}\left(M_{n, n}\right)=M_{n, n}$. Hence $X_{0, n} \cong$ $X_{0, n-1} / \operatorname{rad} X_{0, n-1}$. Therefore, $X_{0, n}$ is a simple module S, because $X_{0, n}$ is semisimple and indecomposable. Therefore, $M \cong \Omega_{A} \Omega_{A}^{-}(M)=\Omega_{A}(S)=$ $\operatorname{rad} P(S)$ is the radical of an indecomposable projective A-module, as required in (i). This finishes the proof of Theorem A.
3. Proof of Theorem B. Let A be an indecomposable selfinjective algebra and $m \geq 3$ a natural number.
$(\mathrm{i}) \Rightarrow($ ii $)$. Assume A is a Nakayama algebra of Loewy length m. Then all indecomposable A-modules are uniserial of length at most m, and the indecomposable modules of length m are the indecomposable projective A modules (see [3, (IV.2)]). Take a simple A-module T and its injective envelope $I(T)=P(S)$, where $S=\nu_{A}(T)$. Then we have in $\bmod A$ a chain of irreducible monomorphisms

$$
T=M_{0,0} \rightarrow M_{0,1} \rightarrow \cdots \rightarrow M_{0, m-2} \rightarrow M_{0, m-1}=P(S)
$$

where $M_{0, m-1-i}=\operatorname{rad}^{i} P(S)$ for $i \in\{1, \ldots, m-1\}$. Further, it follows from [3, (IV.2.6)] that, for each $i \in\{0, \ldots, m-2\}$, the τ_{A}-orbit of $M_{0, i}$ consists
entirely of uniserial modules of length $i=\ell\left(M_{0, i}\right)$. Therefore, Γ_{A} contains (as a full translation subquiver) a wing $W(M)$ of length $m-1$

induced by the radical $M=M_{0, m-2}$ of the indecomposable projective A module $P(S)$, and with $M_{0,0}=T$ simple.
$($ ii $) \Rightarrow\left(\right.$ i). Assume Γ_{A} admits a wing $W(M)$ of length $m-1$ induced by the radical M of an indecomposable projective A-module P and with $M_{0,0}$ simple. Then it follows from Theorem A that $M_{1,1}, \ldots, M_{m-2, m-2}$ are simple modules and their injective envelopes $I_{A}\left(M_{1,1}\right)=P_{A}\left(\nu_{A}\left(M_{1,1}\right)\right), \ldots$, $I_{A}\left(M_{m-2, m-2}\right)=P_{A}\left(\nu_{A}\left(M_{m-2, m-2}\right)\right)$ are uniserial modules of length m. Let $S=\nu_{A}\left(M_{0,0}\right)$. Then $M_{0,0}=\operatorname{soc} M$ and $M=\operatorname{rad} P_{A}(S)$. Further, since $M_{0,0}=\tau_{A} M_{1,1}$, we also see that $P_{A}(S) / \operatorname{soc} P_{A}(S)=P_{A}\left(\nu_{A}\left(M_{0,0}\right)\right) / M_{0,0}$ $\cong \operatorname{rad} P_{A}\left(\nu_{A}\left(M_{1,1}\right)\right)$, and consequently $P_{A}(S)$ is a uniserial module of length m. We claim that $\tau_{A} S=M_{m-2, m-2}$. Since $M_{1,1}, \ldots, M_{m-2, m-2}$ are simple, we have in $\bmod A$ irreducible epimorphisms $M_{i-1, i} \rightarrow M_{i, i}, 1 \leq i \leq m-2$. Applying now Lemma 1.3, we conclude that there is in $\bmod A$ a chain of irreducible epimorphisms

$$
\tau_{A}^{-} M_{0, m-2} \rightarrow \tau_{A}^{-} M_{1, m-2} \rightarrow \cdots \rightarrow \tau_{A}^{-} M_{m-3, m-2} \rightarrow \tau_{A}^{-} M_{m-2, m-2}
$$

Further, $\tau_{A}^{-} M_{0, m-2}=\tau_{A}^{-} M=P_{A}(S) / \operatorname{soc} P_{A}(S)$. Since $P_{A}(S)$ is uniserial of length m, we infer that $\tau_{A}^{-}\left(M_{i, m-2}\right) \cong P_{A}(S) / \operatorname{rad}^{m-i-1} P_{A}(S)$ for any $i \in\{0, \ldots, m-2\}$. In particular, $\tau_{A}^{-}\left(M_{m-2, m-2}\right) \cong P_{A}(S) / \operatorname{rad} P_{A}(S) \cong S$, and so $M_{m-2, m-2}=\tau_{A}(S)$. We also know that ν_{A} is an autoequivalence of the category $\bmod A$. Summing up, we conclude that Γ_{A} contains a $\tau_{A^{-}}$ orbit consisting entirely of the simple modules of the form $\nu_{A}^{r}\left(M_{i, i}\right), r \in \mathbb{Z}$, $i \in\{0,1, \ldots, m-2\}$. Therefore, applying Proposition 1.5, we infer that A is a Nakayama algebra of Loewy length m.
4. Examples. The aim of this section is to present some examples illustrating Theorems A and B. We refer to [6, Section 1] for the description of the Auslander-Reiten sequences over special biserial selfinjective algebras.

The first example shows that our assumptions on the (Loewy) length of the projective covers and injective envelopes of the simple modules lying on the top part of a wing are necessary for the validity of Theorem A.

Example 4.1. Let $n \geq 1$ be a natural number and A the bound quiver algebra $K Q / I$, where Q is the quiver

and I is the ideal in the path algebra $K Q$ of Q generated by the elements $\beta \sigma, \sigma \beta, \gamma \alpha_{n+1}, \alpha_{1} \gamma, \alpha_{n+1} \ldots \alpha_{2} \alpha_{1} \beta-\sigma \gamma, \beta \alpha_{n+1} \ldots \alpha_{2} \alpha_{1}-\gamma \sigma$ and $\alpha_{i} \ldots \alpha_{1} \beta \alpha_{n+1} \ldots \alpha_{i}$ for $i \in\{1, \ldots, n\}$. Then A is a special biserial algebra (in the sense of [16]) isomorphic to the trivial extension algebra $T(H)=H \ltimes D(H)$ of the hereditary algebra $H=K \Delta$ of Euclidean type $\widetilde{\mathbb{A}}_{n+1}$, given by the quiver Δ obtained from Q by removing the arrows β and γ, by the minimal injective cogenerator $\operatorname{Hom}_{K}(H, K)$. The AuslanderReiten quiver Γ_{H} of H admits a unique large stable tube \mathcal{T} of rank $n+1$ containing a wing $W(M)$ of the form

of length $n+1$, where $M_{i, i}=S_{i}$ is the simple H-module at the vertex i, $1 \leq i \leq n, M_{0,0}$ is the unique uniserial H-module of dimension 2 having as socle the simple module S_{0} at the vertex 0 and as top the simple module S_{ω} at the vertex ω, and $M_{0, n}=M$ is a uniserial H-module with the simple composition factors

$$
M=\left(\begin{array}{c}
S_{n} \\
S_{n-1} \\
\vdots \\
S_{2} \\
S_{1} \\
S_{\omega} \\
S_{0}
\end{array}\right)
$$

Further, the stable tube \mathcal{T} of Γ_{H} is a stable tube of the Auslander-Reiten quiver Γ_{A} of A (see [15, Corollary 1.2]), and hence $W(M)$ is a wing of Γ_{A}. Since A is a symmetric algebra, the Nakayama functor ν_{A} is the identity functor of $\bmod A$, and consequently $I_{A}\left(S_{i}\right)=P_{A}\left(S_{i}\right)$ for any $i \in\{1, \ldots, n\}$. In fact, for any $i \in\{1, \ldots, n\}, P_{A}\left(S_{i}\right)$ is a uniserial module of length $n+3$ with the simple composition factors

$$
P_{A}\left(S_{i}\right)=\left(\begin{array}{c}
S_{i} \\
\vdots \\
S_{1} \\
S_{0} \\
S_{\omega} \\
S_{n} \\
\vdots \\
S_{i+1} \\
S_{i}
\end{array}\right) .
$$

Finally, note that M is not the radical of an indecomposable projective A-module, because M lies in the stable tube \mathcal{T} of Γ_{A}.

The second example shows that there are selfinjective algebras with arbitrarily large finite order of the Nakayama functor and the Auslander-Reiten quivers having wings described by Theorem A.

Example 4.2. Let $m, n \geq 1$ be natural numbers. Denote by $Q=$ $Q(m, n)$ the quiver of the form

and by $I=I(m, n)$ the ideal in the path algebra $K Q(m, n)$ of $Q(m, n)$ generated by the elements of the form

$$
\begin{aligned}
& \alpha_{1, j} \eta_{j}, \xi_{j} \alpha_{n+1, j+1}, \sigma_{j} \beta_{j+1}, \eta_{j} \gamma_{j+1}, \beta_{j} \sigma_{j}, \gamma_{j} \xi_{j} \\
& \alpha_{i, j} \alpha_{i-1, j} \ldots \alpha_{1, j} \alpha_{n+1, j+1} \ldots \alpha_{i+1, j+1} \alpha_{i, j+1} \\
& \alpha_{n+1, j} \alpha_{n, j} \ldots \alpha_{2, j} \alpha_{1, j}-\eta_{j-1} \beta_{j} \xi_{j}, \beta_{j} \xi_{j} \eta_{j}-\gamma_{j} \sigma_{j}, \xi_{j} \eta_{j} \beta_{j}-\sigma_{j} \gamma_{j+1}
\end{aligned}
$$

for $i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}$, where $\alpha_{n+1, m+1}=\alpha_{n+1,1}, \beta_{m+1}=\beta_{1}$, $\gamma_{m+1}=\gamma_{1}, \eta_{0}=\eta_{m}$. Let $A=A(m, n)$ be the associated bound quiver algebra $K Q(m, n) / I(m, n)$. Consider also the bound quiver algebra $B=$ $K \Delta_{n} / J_{n}$ given by the quiver Δ_{n} of the form

and the ideal J_{n} in the path algebra $K \Delta_{n}$ of Δ_{n} generated by $\alpha_{1} \eta$. Then B_{n} is a tilted algebra of Euclidean type $\widetilde{\mathbb{A}}_{n+2}$ which is a tubular extension of the hereditary algebra H of Euclidean type $\widetilde{\mathbb{A}}_{2}$ (given by the vertices $0, \omega$, $n+1$) using the simple (regular) module at the vertex $n+1[11,(4.9)]$. Then
$A=A(m, n)$ is the m-fold trivial extension algebra $\widehat{B}_{n} /\left(\nu_{\widehat{B}_{n}}^{m}\right)$, where \widehat{B}_{n} is the repetitive algebra of B_{n} and $\nu_{\widehat{B}_{n}}$ is the Nakayama automorphism of \widehat{B}_{n} (see [1], [12]). In particular, the Nakayama automorphism ν_{A} of $\bmod A$ has order m. Observe also that A is a special biserial algebra. For each vertex a of Q, denote by S_{a} the simple A-module at a. Then, for each $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$, the indecomposable projective A-module $P_{A}\left(S_{i_{j}}\right)$ is uniserial of length $n+2$ with the simple composition factors

$$
P_{A}\left(S_{i_{j}}\right)=\left(\begin{array}{c}
S_{i_{j}} \\
S_{(i-1)_{j}} \\
\vdots \\
S_{1_{j}} \\
S_{(n+1)_{j+1}} \\
S_{n_{j+1}} \\
\vdots \\
S_{(i+1)_{j+1}} \\
S_{i_{j+1}}
\end{array}\right)
$$

Hence $I_{A}\left(S_{i_{j+1}}\right)=P_{A}\left(S_{i_{j}}\right)$, and consequently $\nu_{A}\left(S_{i_{j+1}}\right)=S_{i_{j}}$. Invoking now the rules for the Auslander-Reiten sequences over special biserial selfinjective algebras (see $[6$, Section 1$]$) we conclude that, for each $j \in\{1, \ldots, m\}$, the Auslander-Reiten quiver Γ_{A} admits a full translation subquiver of the form

where

$$
\begin{aligned}
& P_{j}=P_{A}\left(S_{(n+1)_{j-1}}\right), \quad M_{j}=\operatorname{rad} P_{j} \\
& N_{j}=P_{j} / S_{(n+1)_{j}}, \quad M_{j} / S_{(n+1)_{j}}=U_{j} \oplus V_{j}
\end{aligned}
$$

Observe that P_{j} has the simple composition factors

$$
P_{j}=\left(\begin{array}{ccc}
& S_{(n+1) j-1} & \\
& & S_{n_{j}} \\
& & S_{(n-1)_{j}} \\
S_{0_{j}} & & \\
& & \\
S_{\omega_{j}} & & S_{2_{j}} \\
& & S_{1_{j}} \\
& S_{(n+1)_{j}} & \\
& &
\end{array}\right)
$$

Therefore, we have in Γ_{A} the wings $W\left(M_{1}\right), W\left(M_{2}\right), \ldots, W\left(M_{m}\right)$ of length $n+1$ induced by the radicals of the indecomposable projective A-modules $P_{A}\left(S_{(n+1)_{m}}\right), P_{A}\left(S_{(n+1)_{1}}\right), \ldots, P_{A}\left(S_{(n+1)_{m-1}}\right)$, respectively. Observe also that

$$
\nu_{A}\left(W\left(M_{j+1}\right)\right)=W\left(M_{j}\right) \quad \text { for any } j \in\{1, \ldots, m\}
$$

Our final example shows that every finite-dimensional module over an arbitrary algebra can be a subfactor of the radical of an indecomposable projective module over a selfinjective algebra, determining the wing described in Theorem A.

Example 4.3. Let Λ be a finite-dimensional algebra over a field K and X a finite-dimensional right Λ-module. Consider the faithful Λ-module $Y=$ $\Lambda \oplus X$ and the matrix algebra B of the form

$$
B=\left[\begin{array}{ccc}
K & Y & K \\
0 & \Lambda & D(Y) \\
0 & 0 & K
\end{array}\right]
$$

where the multiplication is given by the K - Λ-bimodule structure of Y, the Λ - K-bimodule structure of $D(Y)=\operatorname{Hom}_{K}(Y, K)$, the canonical $K-K$ bimodule structure of K, and the K-linear map $\varphi: Y \otimes_{K} D(Y) \rightarrow K$ given by $\varphi(y \otimes f)=f(y)$ for $y \in Y, f \in D(Y)$. Observe that B admits a unique indecomposable projective-injective faithful module Q whose heart $\operatorname{rad} Q / \operatorname{soc} Q$ is isomorphic to Y. Next consider the generalized canonical
algebra (see [14], [15])

$$
C=\left[\begin{array}{ccc}
K & Y & K^{2} \\
0 & \Lambda & D(Y) \\
0 & 0 & K
\end{array}\right]
$$

where the multiplication is given by the algebra structure of B, with

$$
\varphi: Y \otimes_{K} D(Y) \rightarrow K=K \times 0
$$

and the canonical K - K-bimodule structure of K^{2}. Then it follows from [14, Theorem 2.1] that Γ_{C} admits a stable tube \mathcal{T} of rank 1 whose module R lying on the mouth has simple injective top, simple projective socle, and the heart $\operatorname{rad} R / \operatorname{soc} R$ isomorphic to Y. Moreover, \mathcal{T} is a faithful generalized standard stable tube (in the sense of [13]). Further, take a positive integer n and consider the $(n+2) \times(n+2)$ matrix algebra

$$
E=\left[\begin{array}{ccccccc}
K & R & K & K & \ldots & K & K \\
0 & C & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & K & K & \ldots & K & K \\
0 & 0 & 0 & K & \ldots & K & K \\
& & & & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & & K & K \\
0 & 0 & 0 & 0 & & 0 & K
\end{array}\right]
$$

where the multiplication is given by the algebra structure of C, the $K-C$ bimodule structure of R, and the canonical K - K-bimodule structure of K. Then E is the tubular extension of C (in the sense of $[11,(4.7)])$ using the simple regular module R and the linear branch

$$
n+1 \rightarrow n \rightarrow n-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1
$$

with the extension vertex $n+1$. Finally, consider the trivial extension algebra

$$
F=T(E)=E \ltimes D(E)
$$

Then F is a symmetric algebra and, applying [1, Section 3], we conclude that the Auslander-Reiten quiver Γ_{F} admits a quasi-tube \mathcal{C} whose upper part contains a subquiver of the form

where M is the radical of the indecomposable projective-injective F-module P with top and socle isomorphic to the simple module $S(n+1)$ at the vertex $n+1$, and $M_{1,1}=S(1), \ldots, M_{n, n}=S(n)$ are the simple modules at the vertices $1, \ldots, n$, respectively. Observe also that $M / \operatorname{soc} M \cong R \oplus M_{1, n}$ and $\operatorname{rad} R / \operatorname{soc} R \cong Y=\Lambda \oplus X$. Therefore, X is a subfactor of M.

REFERENCES

[1] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72.
[2] I. Assem, D. Simson and A. Skowroński, Elements of Representation Theory of Associative Algebras I: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2005, in press.
[3] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
[4] K. Bongartz, On a result of Bautista and Smalø on cycles, Comm. Algebra 11 (1983), 2123-2124.
[5] K. Erdmann, O. Kerner and A. Skowroński, Selfinjective algebras of wild tilted type, J. Pure Appl. Algebra 149 (2000), 127-176.
[6] K. Erdmann and A. Skowroński, On Auslander-Reiten components of blocks and selfinjective biserial algebras, Trans. Amer. Math. Soc. 330 (1992), 165-189.
[7] D. Hughes and J. Waschbüsch, Trivial extensions of algebras, Proc. London Math. Soc. 46 (1983), 347-364.
[8] S. Kawata, On Auslander-Reiten components and simple modules for finite group algebras, Osaka J. Math. 34 (1997), 681-688.
[9] H. Lenzing and A. Skowroński, Selfinjective algebras of wild canonical type, Colloq. Math. 96 (2003), 245-275.
[10] Y. Ohnuki, K. Takeda and K. Yamagata, Automorphisms of repetitive algebras, J. Algebra 232 (2000), 708-724.
[11] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[12] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199.
[13] -, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517-543.
[14] - , Generalized canonical algebras and standard stable tubes, Colloq. Math. 90 (2001), 77-93.
[15] -, A construction of complex syzygy periodic modules over symmetric algebras, Colloq. Math. 103 (2005), 61-69.
[16] A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172-181.
[17] A. Skowroński and K. Yamagata, Positive Galois coverings of selfinjective algebras, Adv. Math. (2005), in press.
[18] K. Yamagata, Frobenius algebras, in: Handbook of Algebra, Vol. 1, Elsevier, 1996, 841-887.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: marsz@mat.uni.torun.pl
skowron@mat.uni.torun.pl
revised 21 April 2005

[^0]: 2000 Mathematics Subject Classification: 16D50, 16G10, 16G70.
 Key words and phrases: selfinjective algebra, Auslander-Reiten quiver, wing.
 The research of the second named author has been supported by the Polish Scientific Grant KBN No. 1 P03A 01827.

