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ON THE BROCARD–RAMANUJAN PROBLEM AND
GENERALIZATIONS

BY

ANDRZEJ DĄBROWSKI (Szczecin)

Abstract. Let pi denote the ith prime. We conjecture that there are precisely 28
solutions to the equation n2 − 1 = pα1

1 · · · pαk
k in positive integers n and α1,. . . ,αk. This

conjecture implies an explicit description of the set of solutions to the Brocard–Ramanujan
equation. We also propose another variant of the Brocard–Ramanujan problem: describe
the set of solutions in non-negative integers of the equation n!+A = x2

1+x2
2+x2

3 (A fixed).

1. Introduction. Finding all the positive integer solutions of the equation

(1) n! + 1 = y2

is a famously unsolved problem [6] (the Brocard–Ramanujan problem). It is
expected that the only solutions are (y, n) = (5, 4), (11, 5), (71, 7). Recent
computations by Berndt and Galway [2] showed that there are no other
solutions in the range n < 109. Overholt [12] showed that a weak form of
the ABC conjecture implies that (1) has only finitely many solutions.

Dąbrowski [5] showed that if A is a fixed non-zero integer, then the dio-
phantine equation n! +A = y2 has only finitely many solutions if A is not a
square, and a weak form of the ABC conjecture implies that it has finitely
many solutions if A is a square. Berndt and Galway [2] looked for solutions of

(2) n! +B2 = y2

for 2 ≤ B ≤ 50, up to n ≤ 105, and found either zero or one solution in each
case. Ulas [14] found 27 values of B for which (2) has at least two solutions.
Luca [8] considered a general diophantine equation P (y) = n!, where P (y)
is a polynomial of degree ≥ 2 with integer coefficients.

The article by Berend and Harmse [1] contains several related problems,
results and bibliography on more general equations of the type P (x) = Hn,
where P (x) is any polynomial of degree ≥ 2 with integer coefficients, and
(Hn) is a ‘highly divisible sequence’. Examples of highly divisible sequences
include Hn = n! and Hn = p1 · · · pn, where p1 < p2 < · · · is the sequence of
all primes.
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We propose two generalizations of the Brocard–Ramanujan problem. We
conjecture that there are exactly 28 positive integers n such that the set of
prime divisors of n2−1 equals {p1, . . . , pk}, where pm denotes the mth prime
number. This implies, in particular, a conjectural description of all solutions
to (2). Another interesting problem is to describe, for fixed positive integer A,
the set of solutions of the equation n! + A = x2 + y2 + z2 in non-negative
integers n, x, y, z; the same for the equation n! +A = x2 + y2.

2. The conjecture

2.1. Formulation of the conjecture. Let pn denote the nth prime
number. E. Lucas [10] has proved, in particular, that the equation xk ± 1 =
p1 · · · pn (k ≥ 2) has no integer solutions. We propose the following

Conjecture 1. The diophantine equation
(3) y2 − 1 = pα1

1 · · · p
αk
k

has exactly 28 solutions (y;α1, . . . , αk) in positive integers:
(a) (3; 3),
(b) (5; 3, 1), (7; 4, 1), (17; 5, 2),
(c) (11; 3, 1, 1), (19; 3, 2, 1), (31; 6, 1, 1), (49; 5, 1, 2), (161; 6, 4, 1),
(d) (29; 3, 1, 1, 1), (41; 4, 1, 1, 1), (71; 4, 2, 1, 1), (251; 3, 2, 3, 1),

(449; 7, 2, 2, 1), (4801; 7, 1, 2, 4), (8749; 3, 7, 4, 1),
(e) (769; 9, 1, 1, 1, 1), (881; 5, 2, 1, 2, 1), (1079; 4, 3, 1, 2, 1),

(6049; 6, 3, 2, 1, 2), (19601; 5, 4, 2, 2, 2),
(f) (3431; 4, 1, 1, 3, 1, 1), (4159; 7, 3, 1, 1, 1, 1), (246401; 8, 6, 2, 1, 1, 2),
(g) (1429; 3, 1, 1, 1, 1, 1, 1), (24751; 5, 2, 3, 1, 1, 1, 1),

(388961; 6, 4, 1, 4, 1, 1, 1),
(h) (1267111; 4, 3, 1, 1, 3, 1, 1, 2).
Remark. (i) The conjecture concerns the diophantine equation y2 − 1

= Hn, where the sequence (Hn) is not highly divisible.
(ii) We do not know whether the ABC conjecture implies that (3) has

only finitely many solutions in positive integers.
(iii) The conjecture seems unattackable at present.
Elementary considerations combined with the results of Bugeaud, Mi-

gnotte and Siksek [4] allowed us to check that the 21 solutions listed in (a)–(e)
cover all the solutions to (3) satisfying k ≤ 5. The idea was to consider multi-
parameter families of diophantine equations qα1

1 · · · qαss − q
αs+1

s+1 · · · q
αt
t = 1,

where q1, . . . , qt are fixed primes, and use Theorems 1–3 from [4].
For example, y2−1 = 2α3β5γ implies 2α−2−3β5γ =±1 or 3β−2α−25γ =±1

or 5γ − 2α−23β = ±1. Reducing the equation 2α−2 − 3β5γ = −1 modulo 3
and modulo 5 implies that it has no solution. On the other hand, reducing
the equation 2α−2 − 3β5γ = 1 modulo 3 and modulo 5 implies that α = 2t,
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hence (α, β, γ) = (6, 1, 1) and y = 31. If γ = 1 or 2, then the equation
3β − 2α−25γ = ±1 has two solutions: 34 − 24 · 5 = 1, and 32 − 2 · 5 = −1.
For γ ≥ 3 we can consider the equation 3βxn − 2α−2yn = ±1 and use
[4, Theorem 1]. Similarly, the remaining case leads to the solutions 52−23 ·3
= 1 and 5− 2 · 3 = −1.

The cases k = 4 and 5 are basically treated in the same way. The actual
calculations however are much longer and (in some cases) complicated. Let
us give some details.

The case k = 4 leads to considering the following seven equations:

(i) 2α−2 − 3β5γ7δ = ±1,
(ii) 3β − 2α−25γ7δ = ±1,
(iii) 5γ − 2α−23β7δ = ±1,
(iv) 7δ − 2α−23β5γ = ±1,
(v) 2α−23β − 5γ7δ = ±1,
(vi) 2α−25γ − 3β7δ = ±1,
(vii) 2α−27δ − 3β5γ = ±1.

In cases (iii), (iv) and (v) we can use [4] immediately. In the remaining
cases we are led to considering additional equations, and then use [4]. For
instance, the equation 2α−2−3β5γ7δ = −1 has no solution (reduce modulo 3
and modulo 5). On the other hand, the equation 2α−2 − 3β5γ7δ = 1 reduces
to considering the following six equations (note that α has to be even):
2m − 3β = ±1, 2m − 5γ = ±1, . . . ,2m − 5γ7δ = ±1.

The case k = 5 leads to considering the following 15 equations: 2α−2 −
3β5γ7δ11ε = ±1, . . . , 7δ11ε − 2α−23β5γ ± 1. Let us illustrate the method for
the first equation (one of the easiest). The equation 2α−2 − 3β5γ7δ11ε = −1
has no solution. The equation 2α−2− 3β5γ7δ11ε = 1 leads to considering the
following 14 equations: 2t−3β = ±1, . . . , 2t−7δ11ε = ±1, 2t−3β5γ7δ = ±1,
2t − 3β5γ11ε = ±1, 2t − 3β7δ11ε = ±1, 2t − 5γ7δ11ε = ±1. For the first ten
equations we can use [4]. Each of the remaining four equations leads to
considering six equations, for which we can apply [4].

We can also use the MWRANK program and the MAGMA system. Let
me illustrate the method for the equation 5c − 2a3b7d11e = −1. Note that
necessarily a = 1. Reducing modulo 3 we obtain c odd, reducing modulo 7
we obtain c = 6m+ 3, and reducing modulo 5 we obtain b+ d odd. We may
therefore consider four diophantine equations:

(i) x3−2 ·7y2 = −1. Using MAGMA we conclude that the model Y 2 =
X3 + 143 has the following integral points: (−7,±49), (70,±588),
(−14, 0).

(ii) x3 − 2 · 7 · 11y2 = −1. Using MAGMA we conclude that the model
Y 2 = X3 + 113 · 143 has the following integral points: (330,±6292),
(−7,±1911), (−154, 0).
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(iii) x3 − 2 · 3y2 = −1. Using MWRANK we conclude that the rank of
Y 2 = X3 + 63 is zero, hence it has only one integral point (−6, 0).

(iv) x3−2 ·3 ·11y2 = −1. Using MWRANK we conclude that the rank of
Y 2 = X3 +663 is zero, hence it has only one integral point (−66, 0).

Collecting all this information we conclude that 5c− 2a3b7d11e = −1 has no
solution in positive integers a, b, c, d, e.

M. Wieczorek searched numerically for solutions of (3) up to y ≤ 108 and
found additional seven solutions, listed in (f)–(h) above.

F. Luca and F. Najman [9] have computed all the solutions to the in-
equality P (x2− 1) < 100, where P (n) is the largest prime factor of n. Their
calculations confirm our conjecture for k ≤ 25.

2.2. Some applications. We give two applications of the conjecture.

(i) Exact description of the set of solutions to (2). Conjecture 1 gives the
exact description of the set of solutions to (2). For example:

B = 1: (y, n) = (5, 4), (11, 5), (71, 7);
B = 2: no solution;
B = 3: (y, n) = (27, 6);
B = 4: no solution.

As a consequence, for 2 ≤ B ≤ 50, we should obtain at most one solution.
This is in agreement with the calculations by Berndt and Galway mentioned
in the Introduction.

Remark. Such a description also follows from (a weak) effective version
of the ABC conjecture formulated by Browkin [3].

(ii) Application to ternary diophantine equations. Consider the equation
axp + byp = czp, where p ≥ 5 is a prime number, and a, b, c are pairwise
coprime integers. Assume that the integers a+b, a−b and b−a do not belong
to cZ2. Ivorra and Kraus [7] conjecture that in this case there exists a con-
stant f(a, b, c) such that for p > f(a, b, c) the above equation has no primitive
solutions (x, y, z) ((x, y, z) is primitive means xyz 6= 0 and gcd(x, y, z) = 1).
Let pr denote the rth prime number. Assume that pα1

1 · · · pαrr (with positive
integers α1,. . . ,αr) do not belong to the set of 28 numbers described by Con-
jecture 1. Combining the conjecture formulated by Ivorra and Kraus and our
Conjecture 1, we obtain the following

Conjecture 2. There exists a positive constant f = f(p1, . . . , pr;
α1, . . . , αr) such that for any prime p > f the diophantine equation

xp + pα1
1 · · · p

αr
r y

p = z2

has no primitive solutions.
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2.3. Generalizations. We give two variants of Conjecture 1.

(i) Variant for primitive polynomials P (y) ∈ Z[y]. One can formulate a
variant of Conjecture 1 for a general primitive polynomial P (y) of degree ≥ 2
with integer coefficients, different from (x + a)n. Of course, there are poly-
nomials for which such a conjecture can easily be verified: take, for instance,
P (y) = y2m + 1. As an application, one can give an explicit description of
the set of solutions to the diophantine equation P (y) = n! studied in [8].

(ii) Variant for the Fibonacci sequence. Let (Fn)n≥1 be the Fibonacci se-
quence. Marques [11] proved the Fibonacci version of the Brocard–Ramanu-
jan problem: the diophantine equation F1F2 · · ·Fn+1 = F 2

m has no solution
in positive integers n, m.

Question. Describe the set of solutions (m;α1, . . . , αk) in positive in-
tegers of the diophantine equation F 2

m − 1 = Fpα1
1
· · ·Fpαkk .

3. Sums of squares in the sequence n! + A. It is well known (La-
grange’s theorem) that every non-negative integer is representable as a sum
of four squares of integers. We propose the following variants of the Brocard–
Ramanujan problem.

3.1. Sums of three squares. Let us recall the following result from
elementary theory of numbers (see, for instance, [13, Chapter 11,4]): A nat-
ural number n is the sum of three squares of integers if and only if it is
not of the form 4l(8k + 7), where k, l are non-negative integers. Using this
criterion, we immediately see that n! + 1 is a sum of three squares for any
n 6= 3. In particular, the set of non-negative integer solutions of the equation
n! + 1 = x2 + y2 + z2 is infinite. More generally, we obtain

Theorem.

(a) Assume 4 - A and n ≥ 4. Then n! + A is a sum of three squares if
and only if A ≡ 1, 2 mod 4 or A ≡ 3 mod 8.

(b) Assume A = 8k+4 and n ≥ 8. Then n!+A is a sum of three squares
if and only if k 6= 4m+ 3.

(c) Assume A = 8k and v2(n!) ≥ 3 + v2(A). Then n! + A is a sum of
three squares if and only if k 6= 22l−3(8m+ 7).

Question. Describe the set of non-negative integer solutions of the equa-
tion n! +A = x2 + y2 + z2 (A fixed).

3.2. Sums of two squares. Here we have the following criterion [13]:
A natural number n is a sum of two squares of integers if and only if all prime
factors of n of the form 4m+3 have even exponent in the prime factorization
of n. Using this criterion, we find that n! +A is not a sum of two squares if
n ≥ 4 and A ≡ 3, 6, 7 mod 8. The remaining cases are more difficult to deal
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with. Let us consider the sequence n!+1, and write down all n ≤ 50 such that
n! + 1 is a sum of two squares: 1, 4, 5, 7, 8, 11, 12, 17, 25, 26, 27, 28, 29, 37, 38,
41, 48.

Question. Is the set of integer solutions of the equation n!+1 = x2+y2

infinite?
Question. Describe the set of non-negative integer solutions of the equa-

tion n! +A = x2 + y2 (A fixed).
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