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ON BLOW-UP FOR THE HARTREE EQUATION

BY

JIQIANG ZHENG (Beijing)

Abstract. We study the blow-up of solutions to the focusing Hartree equation iut +
∆u+(|x|−γ ∗ |u|2)u = 0. We use the strategy derived from the almost finite speed of prop-
agation ideas devised by Bourgain (1999) and virial analysis to deduce that the solution
with negative energy (E(u0) < 0) blows up in either finite or infinite time. We also show a
result similar to one of Holmer and Roudenko (2010) for the Schrödinger equations using
techniques from scattering theory.

1. Introduction. We study the blow-up of solutions to the Hartree
equation {

iut +∆u+ f(u) = 0,
u(0, x) = u0(x),

(1.1)

where u(t, x) is a complex-valued function on space-time Rt × Rd
x, ∆ is the

Laplacian in Rd, f(u) is a nonlinearity of Hartree type, f(u) = λ(V ∗ |u|2)u
for some fixed constant λ ∈ R and 0 < γ < d, where ∗ denotes spatial
convolution in Rd and V is a real valued radial function defined in Rd. The
case V (x) = |x|−γ and λ = 1 is known as the focusing case.

If the solution u of (1.1) has sufficient decay at infinity and smoothness,
it conserves mass, energy, and momentum:

M(u) =
�

Rd
|u(t, x)|2 dx = M(u0),

E(u) =
1
2

�

Rd
|∇u|2 dx− 1

4

� �

Rd×Rd

|u(t, x)|2|u(t, y)|2

|x− y|γ
dx dy = E(u0),(1.2)

P (u) = Im
�

Rd
ū(t, x)∇u(t, x) dx = P (u0).

As explained in [4], the above quantities are also conserved for the energy
solutions u ∈ C0

t (R, H1(Rd)).
The equation (1.1) has the scaling invariance property:

(1.3) uλ(x, t) = λd/2−scu(λx, λ2t), sc = γ/2− 1,
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in the sense that both the equation and the Ḣsc-norm are invariant under
the scaling transformation:

‖uλ‖Ḣsc = ‖u‖Ḣsc .

The Hartree equation (1.1) is called energy-subcritical when γ <
min{d, 4}, which corresponds to sc < 1; mass-critical when γ = 2, cor-
responding to sc = 0; energy-critical when d ≥ 5 and γ = 4, corresponding
to sc = 1; and energy-supercritical when 4 < γ < d, corresponding to sc > 1.

Numerous papers deal with the Cauchy problem for the Hartree equa-
tion. We refer to [4, 11]. A natural question is whether local solutions exist
globally.

Now we recall the related results about the focusing Schrödinger equation

(1.4) i∂tu+∆u+ |u|p−1u = 0, u(0, x) = u0(x).

By the scaling analysis, (1.4) is called mass-subcritical when p < 1 + 4/d,
corresponding to sc = d/2− 2/(p− 1) < 0; mass-critical when p = 1 + 4/d,
corresponding to sc = 0; energy-subcritical when p < 1 + 4/(d− 2), which
corresponds to sc < 1; energy-critical when p = 1+4/(d− 2), corresponding
to sc = 1; and energy-supercritical when p > 1 + 4/(d− 2), corresponding
to sc > 1.

It follows from the Gagliardo–Nirenberg inequality that the solution u
of (1.4) exists globally in the mass-subcritical case. In the energy-subcritical
case, Glassey [5] proved that the solution u of (1.4) blows up in finite time
if the initial data satisfies xu0 ∈ L2(Rd) with negative energy. After this re-
sult, many attempts have been made to relax the finite variance assumption.
In other words, one wants to know whether any solution corresponding to
smooth initial data with negative energy blows up in finite time. In partic-
ular, in the energy-critical case, Ogawa and Tsutsumi [14] proved that any
solution with initial data u0 ∈ H1(Rd) radial and E(u0) < 0 must blow up
in finite time. The radial or finite variance condition was relaxed to some
non-isotropic ones by Martel [10], and was completely removed by Ogawa
and Tsutsumi [15] in the mass-critical case in one dimension.

Besides finite time blow-up, there is also another interesting topic. In the
mass-critical case, Nawa [13] showed that if the initial data u0 ∈ H1(Rd)
has negative energy, then the solution u of (1.4) blows up in finite or infinite
time in the sense that
(1.5) sup

t∈(−Tmin,Tmax)
‖u(t)‖H1(Rd) = +∞,

where (−Tmin, Tmax) is the maximal lifespan of the solution with initial
data u0. In the energy-subcritical case, a similar result was established
by Holmer and Roudenko [6], by using the concentration-compactness ar-
gument developed by Kenig and Merle [7]. By the strategy derived from
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the finite speed of propagation devised by Bourgain [1] and virial analy-
sis, Du, Wu and Zhang [3] gave a similar result for the energy-critical and
energy-supercritical cases. Their method can also be applied to the energy-
subcritical case, and this gives another simplified proof for part of the results
in [6].

For the Hartree equation (1.1), using the refined Gagliardo–Nirenberg
inequality of convolution type and profile decomposition, C. Miao, G. Xu and
L. Zhao [12] characterized the dynamics of the finite time blow-up solutions
with minimal mass for the mass-critical case with H1(R4) data and L2(R4)
data. In this paper, we develop a complete blow-up theory for the Hartree
equation with initial data of negative energy.

Now, we state our results:

Theorem 1.1. (1) In the energy subcritical case: Assume d ≥ 3, 2 ≤ γ
< min{d, 4} and u0 ∈ H1(Rd) with E(u0) < 0. Let u be a solution of (1.1)
on the maximal interval (−Tmin, Tmax).

• If Tmax < +∞, then limt→Tmax ‖u(t)‖H1 = +∞.
• If Tmax = +∞, then there exists a sequence tn → +∞ such that

lim
n→+∞

‖u(tn)‖H1 = +∞.

A similar statement holds for negative time.
(2) In the energy-critical and energy-supercritical cases: Let 4 ≤ γ < d,

s > sc = γ/2 − 1 and u0 ∈ Hs(Rd) with E(u0) < 0. Let u be a solution
of (1.1) on the maximal interval (−Tmin, Tmax).

• If Tmax < +∞, then limt→Tmax ‖u(t)‖Hs = +∞.
• If Tmax = +∞, then there exists a sequence tn → +∞ such that

lim
n→+∞

‖u(tn)‖Hs = +∞.

A similar statement holds for negative time.

Remark 1.1. Roughly speaking, Case 1 refers to finite time blow-up,
Case 2 refers to infinite time blow-up. At this stage, it is not clear whether
Case 2 can be ruled out, or could indeed happen.

Due to the Galilean transformation, we may relax the negative energy
condition to the following

Corollary 1.1. The conclusion of Theorem 1.1 still holds true when
the condition E(u0) < 0 is relaxed to

E(u0) <
P (u0)2

M(u0)
.
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Next we give another restriction similar to one in [6] to show a blow-up
result. Let Q be a ground state which satisfies the elliptic equation

(1.6) −∆ϕ+ ϕ = (|x|−γ ∗ |ϕ|2)ϕ.

We refer the reader to [9] where a ground state has been constructed as a
radial, rapidly decaying function.

Theorem 1.2. Assume d ≥ 3, 2 ≤ γ < min{d, 4}, and u0 ∈ H1(Rd)
with {

M(u0)1−scE(u0)sc < M(Q)1−scE(Q)sc ,
‖u0‖1−sc2 ‖∇u0‖sc2 > ‖Q‖1−sc2 ‖∇Q‖sc2 .

(1.7)

Let u be a solution of (1.1) on the maximal interval (−Tmin, Tmax).

• If Tmax < +∞, then limt→Tmax ‖u(t)‖H1 = +∞.
• If Tmax = +∞, then there exists a sequence tn → +∞ such that

lim
n→+∞

‖u(tn)‖H1 = +∞.

A similar statement holds for negative time.

We will adopt the ideas of Glassey [5] and Du et al. [3] to prove the main
theorems. Since in our case, the initial data may not have finite variance,
we calculate the second order derivative of the local virial identity. We will
apply the strategy of [3] derived from the almost finite speed of propagation
ideas devised by Bourgain [1] to obtain Theorem 1.1. And we will borrow
some techniques from scattering theory to show Theorem 1.2.

The paper is organized as follows. In Section 2, by using the almost finite
speed of propagation and local virial analysis, we prove Theorem 1.1. Section
3 provides the proof of Theorem 1.2 by a technique from scattering theory.
We follow the argument of M. Weinstein [16] to show the best constant in
the Hardy–Littlewood–Sobolev type inequality in the Appendix.

We conclude the introduction by giving some notation which will be used
throughout this paper. For any r, 1 ≤ r ≤ ∞, we denote by ‖ · ‖r the norm
in Lr = Lr(Rd) and by r′ the conjugate exponent defined by 1/r+ 1/r′ = 1.
For any s ∈ R, we denote by Hs(Rd) the usual Sobolev space. If X,Y are
nonnegative quantities, we sometimes use X . Y to denote the estimate
X ≤ CY for some C.

2. Proof of Theorem 1.1. We only need to prove the part on infinite
blow-up, since the proof of the finite blow-up part is standard (see [2]).

Assume the contrary; then

(2.1) sup
t∈R+

‖u(t)‖Hs(Rd) ≤ C0 < +∞,

where s = 1 in the energy-subcritical case and s > sc in the energy-critical
and energy-supercritical cases.
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Let

(2.2) Va(t) =
�

Rd
a(x)|u(t, x)|2 dx.

For a solution u satisfying

i∂tu+∆u = N ,

a further computation establishes that

V ′a(t) = 2 Im
�

Rd
∇a(x) · ∇u(t, x)ū(t, x) dx,

and

V ′′a (t) = 4 Re
∑

1≤j,k≤d

�

Rd
∂jka(x)ūj(t, x)uk(t, x) dx(2.3)

+
�

Rd
(−∆∆)a(x)|u(t, x)|2 dx+ 2

�

Rd
{N , u}p(t, x)∇a(x) dx,

where {f, g} is the momentum bracket defined as Re(f∇ḡ − g∇f̄).
Now, plugging N = −(|x|−γ ∗ |u|2)u, we have

Lemma 2.1. For any a(·) ∈ C4(Rd), we have

V ′a(t) = 2 Im
�

Rd
∇a(x) · ∇u(t, x)ū(t, x) dx,

V ′′a (t) = 4 Re
∑

1≤j,k≤d

�

Rd
∂jka(x)ūj(t, x)uk(t, x) dx−

�

Rd
∆2a(x)|u(t, x)|2 dx

− 2γ
� �

Rd×Rd
(x− y) · ∇a(x)

|u(t, x)|2|u(t, y)|2

|x− y|γ+2
dx dy.

In particular, if a(·) is radial, then setting r = |x| we obtain

V ′a(t) = 2 Im
�

Rd
a′
x · ∇u
r

ū dx,(2.4)

V ′′a (t) = 4
�

Rd

a′(r)
r
|∇u|2 dx+ 4

�

Rd

(
a′′(r)
r2
− a′(r)

r3

)
|x · u|2 dx(2.5)

−
�

Rd
∆2a|u|2 dx

− γ
� �

Rd×Rd
(x−y) · [∇a(x)−∇a(y)]

|u(t, x)|2|u(t, y)|2

|x− y|γ+2
dx dy,

Now we use the above lemma to show a result similar to the almost finite
speed of propagation [1]. Let m0 = ‖u0‖2.
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Lemma 2.2. For any η0 > 0 and all t ≤ η0R/(2m0C0), we have

(2.6)
�

|x|≥2R

|u(t, x)|2 dx ≤ η0 + oR(1),

where oR(1)→ 0 as R→ +∞.
Proof. Take a1(·) ∈ C4(Rd) radial such that 0 ≤ a1 ≤ 1, |a′1| ≤ 1/R, and

a1(r) =
{

0, 0 ≤ r ≤ R,
1, r ≥ 2R.

(2.7)

Then by (2.4) and (2.1), we have

|V ′a1
(t)| ≤ 2R−1‖∇u‖2‖u‖L2(|x|≥R) ≤ 2R−1C0m0,

thus

Va1(t) = Va1(0) +
t�

0

V ′a1
(s) ds ≤

�

|x|≥R

|u0|2 dx+ 2R−1C0m0t.

Therefore �

|x|≥2R

|u(t, x)|2 dx ≤ Va1(t) ≤ η0 + oR(1)

whenever t ≤ η0R/(2m0C0), and this completes the proof.

Inspired by the virial identity
d2

dt2

�

Rd
|x|2|u(t)|2 dx = 16K(u(t)),

where

(2.8) K(u(t)) =
1
2

�

Rd
|∇u|2 dx− γ

8

� �

Rd×Rd

|u(t, x)|2|u(t, y)|2

|x− y|γ
dx dy,

we can rewrite V ′′a (t) in (2.5) as

(2.9) V ′′a (t) = 16K(u(t)) +R1 +R2 +R3,

where

R1 = 4
�

Rd

(
a′(r)
r
− 2
)
|∇u|2 dx+ 4

�

Rd

(
a′′(r)
r2
− a′(r)

r3

)
|x · u|2 dx,

R2 = −γ
� �

Rd×Rd
[(x− y) · (∇a(x)−∇a(y))− 2|x− y|2]

|u(x)|2|u(y)|2

|x− y|γ+2
dx dy,

R3 = −
�

Rd
∆2a|u|2 dx

= −
�

Rd

(
a(4) +

2(d− 1)
r

a(3) +
(d− 1)(d− 3)

r2

(
a′′ − a′

r

))
|u|2 dx.
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We will show R1, R2 and R3 are error terms, by making use of localization.
We take a(·) ∈ C4(Rd) radial satisfying

a′′(r) =
{

2, 0 ≤ r ≤ 2R,
0, r ≥ 4R,

(2.10)

and a(0) = a′(0) = 0, a′′ ≤ 2, and a(4) ≤ R−2. Then we have

Lemma 2.3. There exists a constant C1 = C1(s, γ, d,m0, c0) such that

(2.11) V ′′a (t) ≤ 16K(u(t)) + C1‖u‖2−γ/(2s)L2(|x|≥2R)
.

Proof. First, we prove that R1 ≤ 0. Indeed, if a′′(r)/r2 − a′(r)/r3 ≤ 0,
then obviously R1 ≤ 0 since |a′| ≤ 2r. On the other hand, if a′′(r)/r2 −
a′(r)/r3 ≥ 0, then again

R1 ≤ 4
�

Rd
(a′′ − 2)|∇u|2 dx ≤ 0.

Moreover, we have

supp{(x− y) · (∇a(x)−∇a(y))− 2|x− y|2}
⊂ {(x, y) : |x| ≥ 2R} ∪ {(x, y) : |y| ≥ 2R}.

In the region where |x| ≥ 2R,

|(x− y) · (∇a(x)−∇a(y))| . |x− y|2,

and we use the Hölder inequality, generalized Young inequality and Sobolev
embedding theorem to control the contribution to R2 from this region by
�

Rd

�

{|x|≥2R}

|u(t, x)|2|u(t, y)|2

|x− y|γ
dx dy . ‖u‖2

L2d/(d−γ/2)(|x|≥2R)
‖u‖2

L2d/(d−γ/2)

. ‖u‖2−γ/(2s)
L2(|x|≥2R)

‖u‖γ/(2s)
Ḣs

‖u‖2−γ/(2s)
L2 ‖u‖γ/(2s)

Ḣs
. C

2+8/(2s)
0 ‖u‖2−γ/(2s)

L2(|x|≥2R)
.

Similarly, we have the same control in the region where |y| ≥ 2R. Thus

R2 . ‖u‖2−γ/(2s)
L2(|x|≥2R)

.

Furthermore,
R3 ≤ CR−2‖u‖2L2(|x|≥2R).

Hence,
V ′′a (t) ≤ 16K(u(t)) + C1‖u‖2−γ/(2s)L2(|x|≥2R)

.

Proof of Theorem 1.1. Now we use the above two lemmas to prove The-
orem 1.1. By (2.6) and (2.11), we get

(2.12) V ′′a (t) ≤ 16K(u(t)) + C1(η2−γ/(2s)
0 + oR(1))
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for any t ≤ T , η0R/(2m0C0). Integrating the above inequality from 0 to
T twice, and using the fact that

K(u(t)) ≤ E(u(t)) < 0 for any t ∈ R,
we obtain

Va(T ) ≤ Va(0) + V ′a(0)T +
T�

0

t�

0

g
(
16K(u(s)) + C1(η2−γ/(2s)

0 + oR(1))
)
ds dt

≤ Va(0) + V ′a(0)T +
(
16E(u0) + C1(η2−γ/(2s)

0 + oR(1))
)
T 2.

Taking η0 such that C1η
2−γ/2s
0 = −1

2E(u0), and R large enough, one has

(2.13) Va(T ) ≤ Va(0) + V ′a(0)
η0R

2m0C0
+ α0R

2,

where α0 = E(u0)η2
0/(4m0C0)2 < 0. Next we claim that

(2.14) Va(0) = oR(1)R2, V ′a(0) = oR(1)R.

In fact,

Va(0) ≤
�

|x|≤
√
R

|x|2|u0(x)|2 dx+
�

√
R≤|x|≤2R

|x|2|u0(x)|2 dx+R2
�

|x|≥2R

|u0(x)|2 dx

≤ Rm2
0 +R2

�

|x|≥
√
R

|u0(x)|2 dx+R2
�

|x|≥2R

|u0(x)|2 dx

= oR(1)R2.

Similarly, we have V ′a(0) = oR(1)R2.
Taking R large enough, by (2.13) and (2.14), we get

Va(T ) ≤ oR(1)R2 + α0R
2 ≤ 1

2α0R
2 < 0.

This contradicts Va(T ) ≥ 0, and so the proof of Theorem 1.1 is complete.

Proof of Corollary 1.1. Using the Galilean transformation, we define

(2.15) v(x, t) = eiξ0·(x−tξ0)u(x− 2tξ0, t).

If u is a solution of (1.1), then so is v, and also

E(v) = E(u0) + 2ξ0P (u0) + |ξ0|2M(u0)

= M(u0)
∣∣∣∣ξ0 +

P (u0)
M(u0)

∣∣∣∣2 + E(u0)− P (u0)2

M(u0)
.

On the other hand, if we choose ξ0 = −P (u0)/M(u0), then we get

(2.16) E(v) = E(u0)− P (u0)2

M(u0)
< 0.

Hence, by the same argument as in Theorem 1.1, replacing u by v, we obtain
the desired result.
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3. Proof of Theorem 1.2. In this section, we use some techniques
from scattering theory to prove Theorem 1.2. First, we deduce that the sign
of ‖u(t)‖1−sc

L2 ‖∇u(t)‖sc
L2 is invariant along the flow (1.1) under the restriction

M(u0)1−scE(u0)sc < M(Q)1−scE(Q)sc :

Proposition 3.1. If u0 satisfies (1.7), then

(3.1) ‖u(t)‖1−sc
L2 ‖∇u(t)‖sc

L2 > ‖Q‖1−scL2 ‖∇Q‖scL2 , ∀t ∈ (−Tmin, Tmax),

where (−Tmin, Tmax) is the maximal lifespan of the solution.

Proof. For a contradiction, if there exists t0 ∈ (−Tmin, Tmax) such that

(3.2) ‖u(t0)‖1−sc
L2 ‖∇u(t0)‖sc

L2 = ‖Q‖1−sc
L2 ‖∇Q‖scL2 ,

then by the Hardy–Littlewood–Sobolev type inequality,

(3.3) ‖(|x|−γ ∗ |u|2)|u|2‖L1 ≤ CHLS‖∇u‖γ2‖u‖
4−γ
2 ,

where

CHLS =
(

4− γ
γ

)γ/2 4
4− γ

‖Q‖−2
2 =

‖(|x|−γ ∗ |Q|2)|Q|2‖L1

‖∇Q‖γ2‖Q‖
4−γ
2

;

this will be proved in the Appendix.
Thus by (3.3), we obtain

M(Q)
1−sc
sc E(Q) > M(u(t0))

1−sc
sc E(u(t0))

= 1
2‖u(t0)‖

2(1−sc)
sc

2 ‖∇u(t0)‖22 − 1
4‖u(t0)‖

2(1−sc)
sc

2 ‖(|x|−γ ∗ |u|2)|u|2‖L1

≥ 1
2‖u(t0)‖

2(1−sc)
sc

2 ‖∇u(t0)‖22 − 1
4CHLS(‖u(t0)‖

1−sc
sc

2 ‖∇u(t0)‖2)γ

= 1
2M(Q)

1−sc
sc ‖∇Q‖22 − 1

4M(Q)
1−sc
sc ‖(|x|−γ ∗ |Q|2|Q|2‖L1

= M(Q)
1−sc
sc E(Q),

which gives a contradiction, and this completes the proof.

By a similar argument to that for Theorem 1.1, one can reduce Theo-
rem 1.2 to the following lemma:

Lemma 3.1. If u0 satisfies (1.7), then there exists β0 < 0 such that

(3.4) K(u(t)) ≤ β0, ∀t ∈ (−Tmin, Tmax).

Proof. First we claim that

(3.5) K(u(t)) < 0, ∀t ∈ (−Tmin, Tmax).
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In fact, by Proposition 3.1 and (1.7), one has

K(u(t)) =
γ

2
E(u)−

(
γ

4
− 1

2

)
‖∇u‖22

<

(
M(Q)
M(u0)

) 1−sc
sc
(
γ

2
E(Q)−

(
γ

4
− 1

2

)
‖∇Q‖22

)
= 0,

which means that

(3.6) ‖∇u‖22 ≤
γ

4
‖(|x|−γ ∗ |u(t)|2)|u(t)|2‖L1 , ∀t ∈ (−Tmin, Tmax).

This together with (3.3) implies that

4
γ
‖∇u(t)‖22 ≤ ‖(|x|−γ ∗ |u(t)|2)|u(t)|2‖L1 ≤ CHLS‖∇u‖γ2‖u‖

4−γ
2 ,

and so

(3.7) ‖∇u(t)‖γ−2
2 ≥ 4

γCHLSM(u0)2−γ/2
> 0.

Next we claim that there exists δ0 > 0 such that

(3.8) K(u(t)) < −δ0‖∇u‖22, ∀t ∈ (−Tmin, Tmax).

In fact, suppose this were not true; then there exist {tn} and δn → 0 such
that

−δn
(
γ

4
− 1

2

)
‖∇u(tn)‖22 < K(u(tn)) < 0.

Hence

M(u(tn))
1−sc
sc E(u(tn))

=
2
γ

(
M(u(tn))

1−sc
sc

(
K(u(tn)) +

(
γ

4
− 1

2

)
‖∇u(tn)‖22

))
≥ 2
γ
‖u(tn)‖

2(1−sc)
sc

2 ‖∇u(tn)‖22(1− δn)
(
γ

4
− 1

2

)
>
γ − 2

2γ
(1− δn)‖Q‖

2(1−sc)
sc

2 ‖∇Q‖22 = (1− δn)M(Q)
1−sc
sc E(Q);

letting n→ +∞, we have

M(u)1−scE(u)sc ≥M(Q)1−scE(Q)sc .

This contradicts the inequality M(u)1−scE(u)sc < M(Q)1−scE(Q)sc .
Combining (3.7) and (3.8), we obtain

(3.9) K(u(t)) ≤ β0, ∀t ∈ (−Tmin, Tmax).
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4. Appendix. In this Appendix, we find the best constant in the Hardy–
Littlewood–Sobolev type inequality (3.3).

First, by the symmetry
� �

Rd×Rd

x · (x− y)
|x− y|γ+2

φ(x)2φ(y)2 dx dy = −
� �

Rd×Rd

y · (x− y)
|x− y|γ+2

φ(x)2φ(y)2 dx dy,

and a direct computation, we have the following identities:

Lemma 4.1. If φ ∈ S(Rd), then
�

Rd
x · ∇φ∆φdx =

d− 2
2

�

Rd
|∇φ|2 dx,

�

Rd
x · ∇φ φdx = −d

2

�

Rd
|φ|2 dx,

�

Rd
x · ∇φ (|x|−γ ∗ |φ|2)φdx =

(
−d

2
+
γ

4

) � �

Rd×Rd

φ(x)2φ(y)2

|x− y|γ
dx dy.

Lemma 4.2. Assume that 2 < γ < min{4, d}. Let φ be an H1(Rd) solu-
tion of the equation

(4.1) −∆φ+ φ = (|x|−γ ∗ |φ|2)φ.

Then the following identities hold:

K1(φ) ,
�

Rd
[|∇φ|2 + |φ|2] dx−

� �

Rd×Rd

φ(x)2φ(y)2

|x− y|γ
dx dy = 0,

K2(φ) ,
�

Rd
|∇φ|2 dx− γ

4

� �

Rd×Rd

φ(x)2φ(y)2

|x− y|γ
dx dy = 0,

K3(φ) ,
�

Rd
|∇φ|2 dx− γ

4− γ

�

Rd
|φ|2 dx = 0.

Now we establish the best constant in (3.3):

Lemma 4.3. Assume that 2 < γ < min{4, d}. Let Q be a radially sym-
metric, positive ground state of the elliptic equation (4.1). The best constant
in the Hardy–Littlewood–Sobolev type inequality

(4.2)
� �

Rd×Rd

|u(x)|2|u(y)|2

|x− y|γ
dx dy ≤ CHLS‖∇u‖γ2‖u‖

4−γ
2 ,

is CHLS =
(4−γ

γ

)γ/2 4
4−γ ‖Q‖

−2
2 .
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Proof. We follow the argument of M. Weinstein [16]. Consider the We-
instein functional

(4.3) J(u) =
‖u‖4−γ2 ‖∇u‖γ2

‖(|x|−γ ∗ |u|2)|u|2‖L1

, ∀u ∈ H1(Rd).

We need to show that

(4.4) inf
u∈H1\{0}

J(u) = C−1
HLS.

Let σ be the above infimum, and consider a minimizing sequence {un}.
By the Hölder inequality, general Young inequality and Sobolev embedding
theorem, we have

‖(|x|−γ ∗ |u|2)|u|2‖L1 . ‖u‖4
L4d/(2d−γ) . ‖u‖4−γ2 ‖∇u‖γ2 ,

and so σ > 0. Set vn(x) = µnun(λnx) with

µn =
‖un‖(d−2)/2

2

‖∇un‖d/22

and λn =
‖un‖2
‖∇un‖2

,

so that ‖vn‖2 = ‖∇vn‖2 = 1 and

‖(|x|−γ ∗ |vn|2)|vn|2‖−1
L1 = J(vn) = J(un)→ σ > 0 as n→ +∞.

Let v∗n be the Schwarz symmetrization of vn, i.e. the radial decreasing rear-
rangement (see [8]). Then ‖v∗n‖2 = ‖vn‖2 = 1, ‖∇v∗n‖2 ≤ ‖∇vn‖2 = 1 and

‖(|x|−γ ∗ |v∗n|2)|v∗n|2‖−1
L1 ≤ ‖(|x|−γ ∗ |vn|2)|vn|2‖−1

L1

= J(vn) = J(un)→ σ > 0 as n→ +∞,
by the general rearrangement inequality. We know that {v∗n} is bounded
in H1, so up to a subsequence, it converges to some v weakly in H1. By radial
symmetry, it also converges strongly in Lp for all 2 < p < 2∗ = 2d/(d− 2).
By the Hölder and general Young inequalities, we deduce that

‖(|x|−γ ∗|v∗n|2)|v∗n|2−(|x|−γ ∗|v|2)|v|2‖L1 . ‖v∗n−v‖p‖v∗n+v‖p(‖v∗n‖2p+‖v‖2p),
where 2 < p = 4d/(2d− γ) < 2∗, and so

‖(|x|−γ ∗ |v|2)|v|2‖L1 = lim
n→+∞

‖(|x|−γ ∗ |v∗n|2)|v∗n|2‖L1 = σ−1 > 0.

By the Fatou Lemma, we have

‖v‖2 ≤ lim
n→+∞

‖v∗n‖2 = 1 and ‖∇v‖2 ≤ lim
n→+∞

‖v∗n‖2 ≤ 1,

and hence

σ ≤ J(v) =
‖v‖4−γ2 ‖∇v‖γ2

‖(|x|−γ ∗ |v|2)|v|2‖L1

≤ 1
‖(|x|−γ ∗ |v|2)|v|2‖L1

= lim
n→+∞

‖(|x|−γ ∗ |v∗n|2)|v∗n|2‖−1
L1 = σ.
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This implies that

(4.5) J(v) = σ and ‖v‖2 = ‖∇v‖2 = 1.

Since v is a minimizer, it satisfies the Euler–Lagrange equation

(4.6)
d

dε
J(v + εw)

∣∣∣∣
ε=0

= 0, ∀w ∈ H1(Rd).

Taking into account (4.5), we obtain

(4.7) − γ∆v + (4− γ)v = 4(|x|−γ ∗ |v|2)v.

Let now u be defined by v(x) = au(bx) with a =
(4−γ

4

)1/2(4−γ
γ

)(d−γ)/4 and

b =
(4−γ

4

)1/2, so that u is a solution of (4.1) and

J(u) = J(v) = σ.

Since u satisfies equation (4.1), we deduce from Lemma 4.2 that

‖∇u‖22 =
γ

4
‖(|x|−γ ∗ |u|2)|u|2‖L1 and ‖∇u‖22 =

γ

4− γ
‖u‖22,

and so

(4.8) J(u) =
4− γ

4

(
γ

4− γ

)γ/2
‖u‖22.

As Q also satisfies equation (4.1), it satisfies the same identity (4.8). Since
u minimizes J , we have J(Q) ≥ J(u), which implies that ‖u‖2 ≤ ‖Q‖2. On
the other hand, Q being a ground state of (4.1), it is also a solution of (4.1)
of minimal L2-norm (see [9]), so that ‖Q‖2 ≤ ‖u‖2. Therefore, ‖Q‖2 = ‖u‖2,
and the result now follows from (4.8).
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