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AN L1-STABILITY AND UNIQUENESS RESULT FOR
BALANCE LAWS WITH MULTIFUNCTIONS: A MODEL
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Abstract. We study the uniqueness and L1-stability of the Cauchy problem for a
2 × 2 system coming from the theory of granular media [9, 10]. We work in a class of
weak entropy solutions. The appearance of a multifunction in a source term, given by
the Coulomb–Mohr friction law, requires a modification of definition of the weak entropy
solution [5, 6].

1. Introduction. We consider a system describing the motion of an
avalanche down a slope, which will be described by the following values:

• the height h : R+ × R→ R of the avalanche,
• the density % : R+ × R→ R of the avalanche,
• the velocity v : R+ × R→ R of the avalanche.

The system consists of a differential inclusion
∂

∂t
(%h) +

∂

∂x
(%hv) = 0,

∂

∂t
(%hv) +

∂

∂x

(
%hv2 +

1
2
β%h2

)
∈ %hg̃,

(1.1)

where β := β(x) is a given function and g̃ := g̃(x, v) is a given multifunction.
The equation in (1.1) describes the conservation of mass, whereas the dif-
ferential inclusion describes the balance of linear momentum. For simplicity
the dependence of g̃ and β on x will be ignored. The constant β and the
multifunction g̃(v) are defined by

β = k cos(γ),

g̃(v) =

{
sin(γ) + [−cos(γ),+cos(γ)] for v = 0,

sin(γ)− v
|v| cos(γ) for v 6= 0,

where −π/2 < γ < π/2 is an angle between the gravitational force and a
constant slope ground, and k is a positive constant. The evolution of three
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variables (%, h, v) cannot be determined uniquely by these two balance laws,
therefore some additional constitutive relation has to be added. We can
assume that % is a function of h and v, namely % = h−1/2. This leads to
a system of two differential inclusions for two independent variables (h, v).
Following the nonlinear transformations of the above system in [6] we obtain
the new system

∂

∂t
u+

∂

∂x
F (u) ∈ G̃(u),(1.2)

where

F (u) =
(

u1u2
u2

2/2 + u2
1/2

)
, G̃(u) =

(
0

g̃(u2)

)
.(1.3)

We will introduce a class of weak entropy solutions which are appropriate
for the above system.

Definition 1.1. Let η = η(u1, u2), q = q(u1, u2) be scalar C1-functions
and F (u1, u2) be a C1-function satisfying

∇(u1,u2)η(u1, u2) · ∇(u1,u2)F (u1, u2) = ∇(u1,u2)q(u1, u2).

Then (η, q) is called an entropy-entropy flux pair for the system (1.2). If η
is convex, then (η, q) is called a convex entropy-entropy flux pair .

Definition 1.2. We call u ∈ L∞([0, T ) × R;R+ × R) a weak entropy
solution to the system

∂

∂t
u+

∂

∂x
F (u) = G(t, x)

with the initial data u0 ∈ L∞(R;R+ × R) and a source term G ∈
L∞([0, T )× R;R2) if:

(i) u is a weak solution, i.e.
�

[0,T )×R

[
u(t, x) · ∂

∂t
ψ(t, x) + F (u(t, x)) · ∂

∂x
ψ(t, x) +G(t, x) · ψ(t, x)

]
dt dx

+
�

R
u0(x) · ψ(0, x) dx = 0

for all test functions ψ ∈ C1
c ([0, T )× R;R2).

(ii) The entropy inequality
�

[0,T )×R

[
η(u(t, x))

∂

∂t
φ(t, x) + q(u(t, x))

∂

∂x
φ(t, x)

+∇uη(u(t, x)) ·G(t, x)φ(t, x)
]
dt dx+

�

R
η(u0(x))φ(0, x) dx ≥ 0

holds for all nonnegative test functions φ ∈ C1
c ([0, T )×R;R) and all convex

entropy-entropy flux pairs (η, q).
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Remark. The above definition is standard in the theory of conserva-
tion laws. Nevertheless, it cannot be used for system (1.2) because of the
multifunction in the source term. Thus we need the following extension.

Definition 1.3. We call u ∈ L∞([0, T ) × R;R+ × R) a weak entropy
solution to the system (1.2) with initial data u0 ∈ L∞(R;R+ × R) if:

(i) ∃G(t, x) ∈ G̃(u(t, x)) for a.a. (t, x) ∈ [0, T )× R.
(ii) u is a weak entropy solution according to Definition 1.2 to a system

∂

∂t
u+

∂

∂x
F (u) = G(t, x).

The existence of solutions to the Cauchy problem for the system (1.2),
(1.3) was shown in [6]. We recall the corresponding theorem below (see
Theorem 1.1).

Notation. By C0
1+|·|(Ω;X) we denote the Banach space of continuous

functions u : Ω → X with the norm weighted by 1 + | · |, i.e. ‖u‖C0
1+|·|

=

supx∈Ω ‖(1+ |x|)u(x)‖. The notation Cr
b(Ω;X) is used for the Banach space

of r-times differentiable functions with the usual norm.

Theorem 1.1. Assume that the initial data satisfies

u0 = (u0
1, u

0
2) ∈ C3

b(R;R2), inf
x∈R

u0
1(x) ≥ 0, (u0

1 − u, u0
2) ∈ C0

1+|·|(R;R2)

for some positive constant u. Then the system (1.2), (1.3) with the above
initial data has a weak entropy solution in the sense of Definition 1.3 for all
positive T , with infx∈R u1(t, x) ≥ 0 for a.a. t ∈ [0, T ).

For further considerations it is useful to observe that the system (1.2),
(1.3) is equivalent to the following system of two independent inclusions
coupled only by their right-hand sides:

∂

∂t
(u1 − u2)− 1

2
∂

∂x
(u1 − u2)2 ∈ −g̃(u2),

∂

∂t
(u1 + u2) +

1
2
∂

∂x
(u1 + u2)2 ∈ g̃(u2).

(1.4)

Introducing new variables w1 = u1 − u2, w2 = u1 + u2, we can restate this
system in the form

∂

∂t
w1 −

1
2
∂

∂x
w2

1 ∈ −g̃
(
w2 − w1

2

)
,

∂

∂t
w2 +

1
2
∂

∂x
w2

2 ∈ g̃
(
w2 − w1

2

)
.

(1.5)

The last system can be expressed in the form (1.2) for w = (w1, w2), namely

∂

∂t
w +

∂

∂x
F (w) ∈ G̃(w)(1.6)
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with

F (w) =
1
2

(
−w2

1
w2

2

)
, G̃(w) =



−g̃
(
w2 − w1

2

)

g̃

(
w2 − w1

2

)


 .(1.7)

Remark. The transformation of variables (u1, u2) 7→ (w1, w2) is linear,
hence it preserves convexity of the entropy function. Consequently, each
weak entropy solution in the sense of Definition 1.3 to the system (1.2), (1.3)
with initial data u0 = (u0

1, u
0
1) ∈ L∞(R;R2) coincides with a weak entropy

solution to the system (1.6), (1.7) with initial data w0 = (u0
1 − u0

2, u
0
1 + u0

2)
∈ L∞(R;R2).

One could expect that the Cauchy problem for the system consisting of
differential inclusions instead of equations should produce a large number of
solutions. The problem of nonuniqueness can be observed both for ordinary
differential inclusions and for stationary solutions to our problem (see [5] for
details), as opposed to the system of two differential equations, where only
one stationary solution has been obtained.

For a solution u ∈ L∞([0, T )×R;R+×R) in the sense of Definition 1.3
uniqueness for the Cauchy problem cannot be expected because of the possi-
ble occurrence of an initial layer to such a solution. Thus it is natural to look
for a possible class of solutions (and initial data) for the Cauchy problem in
which we have global-in-time existence and uniqueness together. These are
the weak entropy solutions (in the sense of Definition 1.3) with the addi-
tional condition of time regularity C0([0, T );L1

loc(R)). Note that this is the
typical time regularity for uniqueness results for scalar conservation laws
(cf. [7], [8], [4]; see also [12]).

Section 3 establishes the global-in-time existence of weak entropy solu-
tions in C0([0, T );L1

loc(R)) (for all positive T ) under some additional as-
sumption on the initial data (cf. assumption on ω in Lemma 3.3).

Section 4 contains the proof of L1-stability (Thm. 1.2), implying the
uniqueness of solutions, which is our main result.

Theorem 1.2. Let (w1, w2) and (w1, w2) be two weak entropy solutions
in C0([0, T );L1

loc(R;R2)) ∩ L∞([0, T ) × R;R2) to the system (1.6), (1.7)
with (w1 − w1, w2 − w2) ∈ L∞([0, T );L1(R;R2)) and initial data (w0

1, w
0
2),

(w0
1, w

0
2) ∈ L∞(R;R2). Then for any 0 < t < T ,

‖w1(t)−w1(t)‖L1(R)+‖w2(t)−w2(t)‖L1(R) ≤ ‖w0
1−w0

1‖L1(R)+‖w0
2−w0

2‖L1(R).

Remark. Similar results for strongly coupled 2 × 2 systems are not
straightforward. Even for a homogeneous system we need an additional
assumption on BV norm (‖u0‖BV (R;R2) � 1) to show the uniqueness (cf.
[1]–[3]). This yields a global-in-time estimate on the BV norm of solutions.
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However in the case of nonhomogeneous equations some “dissipative proper-
ties” of the right-hand side in the sense of a proper BV norm are meaningful.

2. Technical lemma. For technical reasons it will be convenient to
formulate the following lemma:

Lemma 2.1. Let g̃ : R→ 2R be a monotone multifunction, where g̃(b) ⊂
[−1, 1] is multivalued only if b = 0, and

I(a, b, a, b) = [g − g][η′δ(a+ b− (a+ b))− η′δ(a− b− (a− b)],
where g ∈ g̃(b), g ∈ g̃(b) and ηδ : R→ R for δ > 0 is a function defined by

ηδ(y) =





0, y ∈ (−∞, 0],

y2/4δ, y ∈ (0, 2δ],

y − δ, y ∈ (2δ,∞).

(2.1)

Then I ≤ 0 for every a, a, b, b ∈ R.

Remark. By monotone multifunction we mean that g̃ has the following
property:

∀b, b ∈ R ∀g ∈ g̃(b), g ∈ g̃(b) b < b ⇒ g ≥ g.
Proof. Observe that η′δ is nondecreasing and

η′δ(a+b−(a+b))−η′δ(a−b−(a−b)) = η′δ((a−a)+(b−b))−η′δ((a−a)−(b−b)).
Consider three cases:

1. If b < b then η′δ(a+ b− (a+ b))− η′δ(a− b− (a− b)) ≤ 0.
2. If b = b then η′δ(a+ b− (a+ b))− η′δ(a− b− (a− b)) = 0.
3. If b > b then η′δ(a+ b− (a+ b))− η′δ(a− b− (a− b)) ≥ 0.

The assertion of the lemma is now straightforward.

3. Additional estimates for vanishing viscosity solutions. The
main purpose of this section is to show that higher time regularity of the
limit solutions, i.e. C0([0, T );L1

loc(R;R2)), follows from the properties of the
approximate sequence of vanishing viscosity solutions defined in [6]. We
begin by proving the stability of solutions to the parabolic system

∂

∂t
w1 −

1
2
∂

∂x
w2

1 = ε
∂2

∂x2w1 − gε
(
w2 − w1

2

)
,

∂

∂t
w2 +

1
2
∂

∂x
w2

2 = ε
∂2

∂x2w2 + gε
(
w2 − w1

2

)
,

(3.1)

with initial data (w0
1, w

0
2) = (w1(0), w2(0)) and ε↘ 0. The multifunction g̃

has been replaced by a smooth bounded function gε, which is constructed by
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mollifying g̃ with some smooth function with compact support. The above
problem has a classical solution. We only recall the corresponding theorem
from [6]:

Theorem 3.1. Assume that the initial data satisfies

w0 = (w0
1, w

0
2) ∈ C3

b(R;R2), (w0
1 + w0

2 − 2u,w0
1 − w0

2) ∈ C0
1+|·|(R;R2)

for some positive constant u. Then the problem (3.1) has a classical global-
in-time solution, i.e. w ∈ C0([0, T );C2

b(R;R2)), ∂
∂tw ∈ C0

b([0, T ) × R;R2),
where T is arbitrary. Moreover :

(i) if infx∈R(w0
1(x) + w0

2(x)) ≥ 0, then infx∈R(w1(t, x) + w2(t, x)) ≥ 0;

(ii) for all t ∈ [0, T ),

‖w1(t)‖L∞(R) + ‖w2(t)‖L∞(R) ≤ (|sin(γ)|+ |cos(γ)|)t
+
√

2 (‖w0
1‖L∞(R) + ‖w0

2‖L∞(R)).

For further considerations we need a new, independent of ε, estimate for
the solution to the system (3.1).

Lemma 3.2. Let (w1, w2) and (w1, w2) be two different solutions to the
system (3.1) with initial data (w0

1, w
0
2) and (w0

1, w
0
2) as in Theorem 3.1, and

moreover (w0
1 − w0

1, w
0
2 − w0

2) ∈ L1(R;R2). Then for any 0 < t < T ,

‖w1(t)−w1(t)‖L1(R)+‖w2(t)−w2(t)‖L1(R) ≤ ‖w0
1−w0

1‖L1(R)+‖w0
2−w0

2‖L1(R).

Proof. Let ηδ be defined by (2.1). Simple calculations yield

(3.2)
∂

∂t
[ηδ(w1 − w1) + ηδ(w2 − w2)]− 1

2
∂

∂x
{η′δ(w1 − w1)(w2

1 − w2
1)

− η′δ(w2 − w2)(w2
2 − w2

2)}+
1
2
η′′δ (w1 − w1)(w2

1 − w2
1)
∂

∂x
(w1 − w1)

− 1
2
η′′δ (w2 − w2)(w2

2 − w2
2)
∂

∂x
(w2 − w2)

= ε
∂2

∂x2 [ηδ(w1 − w1) + ηδ(w2 − w2)]

− εη′′δ (w1 − w1)
[
∂

∂x
(w1 − w1)

]2

− εη′′δ (w2 − w2)
[
∂

∂x
(w2 − w2)

]2

+
[
gε
(
w2 − w1

2

)
− gε

(
w2 − w1

2

)]
[η′δ(w2 − w2)− η′δ(w1 − w1)].

Since the last term on the right-hand side is nonpositive by Lemma 2.1,
integrating the above equation over R× (0, t) with 0 < t < T fixed leads to
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(3.3)
�

R
[ηδ(w1(t, x)− w1(t, x)) + ηδ(w2(t, x)− w2(t, x))] dx

−
�

R
[ηδ(w

0
1(x)− w0

1(x)) + ηδ(w
0
2(x)− w0

2(x))] dx

≤
�

R×(0,t)

1
2

{
η′′δ (w2 − w2)(w2

2 − w2
2)
∂

∂x
(w2 − w2)

− η′′δ (w1 − w1)(w2
1 − w2

1)
∂

∂x
(w1 − w1)

}
dt dx

−
�

R×(0,t)

εη′′δ (w1 − w1)
[
∂

∂x
(w1 − w1)

]2

dt dx

−
�

R×(0,t)

εη′′δ (w2 − w2)
[
∂

∂x
(w2 − w2)

]2

dt dx,

which is due to the fact that information on initial data implies that also
w1(t) +w2(t)−2u and w1(t) +w2(t)−2u are bounded in C0

1+|·|(R;R) for all
t ∈ [0, T ) (for details see [6]). Consequently, for a fixed t ∈ [0, T ), the func-
tions wi(t, x)−wi(t, x) vanish at infinity, which together with boundedness
of solutions in C0

b([0, T );C2
b(R;R2)) implies that the integrals

�

R×(0,t)

∂

∂x
{η′δ(wi − wi)(w2

i − w2
i )} dx

and
�

R×(0,t)

∂2

∂x2 ηδ(wi − wi) dx =
�

R

∂

∂x

{
η′δ(wi − wi)

∂

∂x
(wi − wi)

}
dx

vanish for i = 1, 2. Note additionally that

(3.4)
�

R×(0,t)

1
2

∣∣∣∣η′′δ (w2 − w2)(w2
2 − w2

2)
∂

∂x
(w2 − w2)

−η′′δ (w1 − w1)(w2
1 − w2

1)
∂

∂x
(w1 − w1)

∣∣∣∣ dt dx

≤
�

R×(0,t)

εη′′δ (w1 − w1)
[
∂

∂x
(w1 − w1)

]2

+ εη′′δ (w2 − w2)
[
∂

∂x
(w2 − w2)

]2

dt dx

+
‖w1 +w1‖2C0

b

ε

�

A1
δ

ηδ(w1−w1) dt dx+
‖w2 +w2‖2C0

b

ε

�

A2
δ

ηδ(w2−w2) dt dx,
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where Aiδ = {(t, x) ∈ [0, T ) × R | 0 ≤ wi(t, x) − wi(t, x) ≤ 2δ} for i = 1, 2.
Using (3.3) and (3.4) together with the Gronwall lemma applied to the in-
equality

(3.5)
�

R
[ηδ(w1−w1) + ηδ(w2−w2)] dx ≤

�

R
[ηδ(w0

1−w0
1) + ηδ(w0

2−w0
2)] dx

+ max
{‖w1 + w1‖2C0

b

ε
,
‖w2 + w2‖2C0

b

ε

} �

R×(0,t)

[ηδ(w1−w1)+ηδ(w2−w2)] dt dx

implies uniform boundedness (w.r.t. δ) of ηδ(w1 − w1) and ηδ(w2 − w2) in
the space L∞([0, T );L1(R;R)). Note that ηδ(wi(t, x) − wi(t, x)) converges
monotonically pointwise to [wi(t, x)−wi(t, x)]+ as δ → 0, for i = 1, 2. Thus
estimates (3.3) and (3.4) yield

�

R
[w1(t, x)− w1(t, x)]+ dx+

�

R
[w2(t, x)− w2(t, x)]+ dx

≤
�

R
[w0

1(x)− w0
1(x)]+ dx+

�

R
[w0

2(x)− w0
2(x)]+ dx.

Interchanging wi with wi leads to an analogous inequality. Adding both
inequalities yields the assertion of the lemma.

Lemma 3.3. Let (w1, w2) be a classical solution to system (3.1) with
initial data (w0

1, w
0
2) as in Theorem 3.1. Let ω ∈ C0(R;R) be such that

ω(0) = 0 and
�

R
|w0

1(x)− w0
1(x+ h)| dx+

�

R
|w0

2(x)− w0
2(x+ h)| dx ≤ ω(h)

for all h ∈ R+. Then for any 0 < t < T − h and r > 0,
r�

−r
{|w1(t+ h, x)− w1(t, x)|+ |w2(t+ h, x)− w2(t, x)|} dx

≤ c1(h+ h2/3 + h1/3)(r+1)(‖w2
1‖L∞([t,t+h)×R) + ‖w2

2‖L∞([t,t+h)×R) + 1)

+ c2ω(h1/3),

where the constants c1, c2 do not depend on ε.

Proof. Observe that by Lemma 3.2,
�

R
{|w1(t, x)− w1(t, x+ y)|+ |w2(t, x)− w2(t, x+ y)|} dx

≤
�

R
{|w0

1(x)− w0
1(x+ y)|+ |w0

2(x)− w0
2(x+ y)|} dx ≤ ω(|y|).

We begin by analyzing the equations of system (3.1) separately. Multiplying
each by a bounded test function φi(x)K(x), where φi and K are in W 2,∞(R)
with
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K(x) =





1 for |x| ≤ r,
0 for |x| > r + 1,

(x+ r + 1)2(x+ r − 1) for −(r + 1) ≤ x < −r,
(x− r − 1)2(x− r + 1) for r < x ≤ r + 1,

then integrating the equations over R× (t, t+ h) yields
�

R
φi(x)K(x)[wi(t+ h, x)− wi(t, x)] dx

=
�

(t,t+h)×R

(−1)i

2

[
∂

∂x
φi(x)K(x) + φi(x)

∂

∂x
K(x)

]
w2
i (t, x) dt dx

+
�

(t,t+h)×R

{
ε

[
∂2

∂x2φi(x)K(x) +
∂

∂x
φi(x)

∂

∂x
K(x)

+ φi(x)
∂2

∂x2K(x)
]
wi(t, x)

}
dt dx

+
�

(t,t+h)×R
φi(x)K(x)g(t, x) dt dx

for i = 1, 2. A way to obtain the assertion of the lemma would be to take
sgn vi(x) with vi(x) = wi(t + h, x) − wi(t, x) as a test function. But since
sgn vi(x) is discontinuous, we have to mollify it first. Hence, we define the
test function

φi(x) = (ξh ∗ sgn vi)(x),

where ξh(x) = h−1/3ξ(x/h1/3), with some smooth and nonnegative function
ξ of compact support and total mass one. Note that |K|,

∣∣ ∂
∂xK

∣∣,
∣∣ ∂2

∂x2K
∣∣,

|φi|,
∣∣h1/3 ∂

∂xφi
∣∣,
∣∣h2/3 ∂2

∂x2φi
∣∣ are bounded and |gε| is uniformly bounded

(w.r.t. to ε) in L∞([0, T )× R;R). Thus we conclude that
r�

−r
φi(x)vi(x) dx ≤ c1(h+ h2/3 + h1/3)(r + 1)(‖w2

i ‖L∞([t,t+h)×R) + 1).

Since |vi(x)| − vi(x) sgn vi(z) ≤ 2|vi(x)− vi(z)|, we have

|vi(x)| − vi(x) sgn vi(z)

≤ 2
�

R
ξh(s){|w1(t, x)− w1(t, x− h1/3s)|+ |w2(t, x)− w2(t, x− h1/3s)|} ds.

This yields the assertion of the lemma.

Proof of the higher time regularity

Step 1. Note that the sequence of the approximate solutions to (3.1)
has a subsequence strongly convergent in L1

loc([0,∞)×R;R2) (cf. [6, pp. 77,
item 4]) denoted by (wk1 , w

k
2).
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Step 2. This subsequence is also strongly convergent in L1([0, T );
L1([−r, r];R2)) (for all positive T, r) and then (wk1(t), wk2(t)) converges for
a.a. t ∈ [0, T ) in the strong topology of L1([−r, r];R2).

Step 3. By Lemma 3.3 and the additional information on solutions from
Theorem 3.1, the family of functions (wk1 , w

k
2) is uniformly equicontinuous

in C0([0, T );L1([−r, r];R2)) (for all positive T, r), which also implies that
the convergence from Step 2 holds for all t ∈ [0, T ).

Step 4. That w ∈ C0([0, T );X) follows from the following claim (which
is a consequence of the Ascoli–Arzelà Theorem, cf. [11, pp. 71]):

Claim. Let X be a Banach space and (wk) be a uniformly equicontinu-
ous family of functions in C0([0, T );X) such that (wk(t)) is relatively com-
pact in X for all t ∈ [0, T ). Then (wk) is relatively compact in C0([0, T );X).

4. Stability of solutions. The entropy-entropy flux pair (Definition
1.1) has to satisfy the condition

∇(w1,w2)η(w1, w2) · ∇(w1,w2)F (w1, w2) = ∇(w1,w2)q(w1, w2).

In our case the matrix ∇(w1,w2)F (w1, w2) is diagonal, hence the above vector
equation takes the form

(∂w1η(w1, w2), ∂w2η(w1, w2)) ·
(
−w1 0

0 w2

)
= (∂w1q(w1, w2), ∂w2q(w1, w2)).

Hence there are entropy-entropy flux pairs (η1, q1) dependent only on w1
and (η2, q2) on w2. Thus the vector equation can be decoupled into scalar
equations

(η1)′(w1) · (−w1) = (q1)′(w1),

(η2)′(w2) · w2 = (q2)′(w2).

Following the notation from Section 1, g will denote some measurable se-
lection from g̃, namely g(t, x) ∈ g̃

(w2(t,x)−w1(t,x)
2

)
for a.a. (t, x) ∈ [0, T )×R.

Then the entropy inequality (Definitions 1.2(ii) and 1.3(i)) takes the form

(4.1)
�

[0,T )×R

{
[η1(w1(t, x)) + η2(w2(t, x))]

∂

∂t
φ(t, x)

+ [q1(w1(t, x)) + q2(w2(t, x))]
∂

∂x
φ(t, x)

+ g(t, x)[(η2)′(w2(t, x))− (η1)′(w1(t, x))]φ(t, x)
}
dt dx

+
�

R
[η1(w0

1(x)) + η2(w0
2(x))]φ(0, x) dx ≥ 0
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for all nonnegative functions φ ∈ C1
c ([0, T )×R;R). Hence ηiδ(wi, wi) defined

below becomes an entropy function; moreover, qiδ(wi, wi) denotes a corre-
sponding entropy flux, where w i is a parameter taking values in R, i = 1, 2.
We set

ηiδ(wi, wi) =





0 for wi ≤ wi
(wi − wi)2

4δ
for wi < wi ≤ wi + 2δ,

wi − wi − δ for wi > wi + 2δ.
Note that

∂wiη
i
δ(wi, wi) =





0 for wi ≤ wi,
wi − wi

2δ
for wi < wi ≤ wi + 2δ,

1 for wi > wi + 2δ,

∂wiη
i
δ(wi, wi) =





0 for wi ≤ wi,

−wi − wi
2δ

for wi < wi ≤ wi + 2δ,

−1 for wi > wi + 2δ.
Proof of Theorem 1.2. In the above entropy inequality, we use a non-

negative function φ(t, x, t, x) ∈ C1
c (((0, T )×R)2;R) as a test function. Then

for some fixed (t, x) the inequality takes the form
�

[0,T )×R

{
∂

∂t
φ(t, x, t, x)[η1

δ (w1, w1) + η2
δ (w2, w2)]

+ ∂xφ(t, x, t, x)[q1
δ(w1, w1) + q2

δ (w2, w2)]

+ φ(t, x, t, x)g(t, x)[∂w2η
2
δ (w2, w2)− ∂w1η

1
δ (w1, w1)]

}
dt dx ≥ 0.

In the same manner, for (t, x) fixed, we obtain
�

[0,T )×R

{
∂

∂t
φ(t, x, t, x)[η1

δ (w1, w1) + η2
δ (w2, w2)]

+
∂

∂x
φ(t, x, t, x)[q1

δ(w1, w1) + q2
δ (w2, w2)]

− φ(t, x, t, x)g(t, x)[∂w2η
2
δ (w2, w2)− ∂w1η

1
δ (w1, w1)]

}
dt dx ≥ 0.

Here g(t, x) ∈ g̃
(w2(t,x)−w1(t,x)

2

)
for a.a. (t, x) ∈ [0, T ) × R. Integrating the

first inequality with respect to (t, x) and the second with respect to (t, x),
then adding them leads to the following result:
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(4.2)
�

([0,T )×R)2

{(
∂

∂t
+
∂

∂t

)
φ(t, x, t, x)[η1

δ (w1, w1) + η2
δ (w2, w2)]

+
(
∂

∂x
+

∂

∂x

)
φ(t, x, t, x)[q1

δ(w1, w1) + q2
δ (w2, w2)] + φ(t, x, t, x)[g(t, x)

− g(t, x)][∂w2η
2
δ (w2, w2)− ∂w1η

1
δ (w1, w1)]

}
dt dx dt dx ≥ 0.

We fix a smooth, compactly supported function ξ : R → R+ satisfying�
R ξ(x) dx = 1 and we test (4.2) against

φ(t, x, t, x) =
1
ε2 ψ

(
t+ t

2
,
x+ x

2

)
ξ

(
t− t
2ε

)
ξ

(
x− x

2ε

)
,

where ψ : R×R+ → R+ is a C1-function with compact support (supp(ψ) ⊂
((0, T )× R)2). Note that

(
∂

∂t
+
∂

∂t

)
φ(t, x, t, x) =

1
ε2

∂

∂t
ψ

(
t+ t

2
,
x+ x

2

)
ξ

(
t− t
2ε

)
ξ

(
x− x

2ε

)
,

(
∂

∂x
+

∂

∂x

)
φ(t, x, t, x) =

1
ε2

∂

∂x
ψ

(
t+ t

2
,
x+ x

2

)
ξ

(
t− t
2ε

)
ξ

(
x− x

2ε

)
.

Letting ε ↘ 0 we find that (4.2) leads to (for more details on this step we
refer the reader to [7])

�

[0,T )×R

{
∂

∂t
ψ(t, x)[η1

δ (w1, w1) + η2
δ (w2, w2)]

+
∂

∂x
ψ(t, x)[q1

δ(w1, w1) + q2
δ (w2, w2)]

+ ψ(t, x)[g(t, x)− g(t, x)][∂w2η
2
δ (w2, w2)− ∂w1η

1
δ (w1, w1)]

}
dt dx ≥ 0

for all nonnegative C1-functions ψ with compact support in (0, T ) × R.
Density of C1

c ((0, T ) × R;R) in W1,1
0 ([0, T ) × R;R) together with the fact

that (w1, w2), (w1, w2) ∈ L∞([0, T )×R;R2) implies that the above inequality
also holds for ψ ∈ W1,1

0 ([0, T ) × R;R). Therefore we use a test function
ψ(t, x) = ζr(x)θε,s(t), where

ζr(x) =





0, |x| > r + 1,

r + 1− |x|, r < |x| < r + 1,

1, |x| < r,
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θε,s(t) =





0, 0 < t ≤ s or t > τ + ε,

1, s+ ε < t ≤ τ ,

1
ε
t− s

ε
, s < t ≤ s+ ε,

−1
ε
t+ 1 +

τ

ε
, τ < t ≤ τ + ε,

for r > 0, 0 < s < τ , 0 < ε < τ−ε. According to Lemma 2.1 the nonpositive
term containing g can be omitted. We have

1
ε

r�

−r

τ+ε�

τ

[η1
δ (w1, w1) + η2

δ (w2, w2)] dt dx

− 1
ε

�

{r<|x|<r+1}

τ+ε�

s

θε,s(t)[q1
δ (w1, w1) + q2

δ (w2, w2)] dt dx

≤ 1
ε

r�

−r

s+ε�

s

[η1
δ (w1, w1) + η2

δ (w2, w2)] dt dx.

Let first s↘ 0, and then ε↘ 0. Using in both cases continuity with respect
to t (i.e. w,w ∈ C0([0, T );L1

loc(R;R2))) we conclude that
r�

−r
[η1
δ (w1, w1) + η2

δ (w2, w2)] dx−
τ�

0

�

{r<|x|<r+1}
[q1
δ (w1, w1) + q2

δ (w2, w2)] dx dt

≤
r+1�

−(r+1)

[η1
δ (w

0
1, w

0
1) + η2

δ (w
0
2, w

0
2)] dx

for all t ∈ [0, T ). Letting first δ ↘ 0, and then r → ∞, we conclude with a
standard dominated convergence theorem argument that

�

R
{[w1(τ, x)− w1(τ, x)]+ + [w2(τ, x)− w2(τ, x)]+} dx

≤
�

R
{[w0

1(x)− w0
1(x)]+ + [w0

2(x)− w0
2(x)]+} dx.

Interchanging wi with wi leads to the analogous inequality. Adding both
inequalities yields the assertion of the theorem.

Remark. The proof of Theorem 1.2 is a modification of one from [7].
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