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Abstract. Let S be a commutative local ring of characteristic p, which is not a field,
S* the multiplicative group of S, W a subgroup of S*, G a finite p-group, and SAG a
twisted group ring of the group G and of the ring S with a 2-cocycle A € Z%(@G, S*).
Denote by Ind, (S /\G) the set of isomorphism classes of indecomposable S AG-modules of
S-rank m. We exhibit rings SAG for which there exists a function fx : N — N such that
fa(n) > n and Indfk(n)(S)‘G) is an infinite set for every natural n > 1. In special cases
fa(N) contains every natural number m > 1 such that Indm(SAG) is an infinite set. We
also introduce the concept of projective (S, W)-representation type for the group G and
we single out finite groups of every type.

Introduction. Let p > 2 be a prime. A finite group whose order is
a positive power of p is called a p-group. Suppose G is a p-group, G’ the
commutant of G, rad A the Jacobson radical of a ring A, A = A/rad A
the factor ring of the ring A by rad A, S a commutative local ring with
an identity element of characteristic p*, SP = {a? : a € S}, S* the mul-
tiplicative group of S, and Z2(G, S*) the group of all S*-valued normal-
ized 2-cocycles of the group G that acts trivially on S*. A twisted group
ring S*G of the group G and of the ring S with A € Z2(G,S*) is the
S-algebra with S-basis {ug : g € G} satisfying u,up = Agpugep for all
a,b € G ([31, pp. 2-4]). Let e be the identity element of G. We have
Uglle = Uely = Ug for all a € G. The S-basis {uy : g € G} of SAG will
be called natural. If H is a subgroup of G, then the restriction of a co-
cycle A : G x G — S* to H x H will also be denoted by A. In this case
SMH is a subring of S*G. By an S*G-module we mean a finitely generated
left S*G-module which is S-free, that is, an S*G-lattice (see [10, p. 140]).
The study of S-representations of S*G is essentially equivalent to the study
of S*G-modules (see [9, §10]; [12, p. 74]). The module corresponding to
a representation is called the underlying module of that representation
(112, p. 74]).
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Following the terminology of [26], we say that S G is of finite (resp. infi-
nite) representation type if the set of all isomorphism classes of indecompos-
able S*G-modules is finite (resp. infinite). Let D(S*G) be the set of S-ranks
of all indecomposable S*G-modules. If D(S*G) is finite (resp. infinite), then
SAG is of bounded (vesp. unbounded) representation type. Let Indg(S*G) be
the set of isomorphism classes of indecomposable S*G-modules of S-rank
d and let N be the set of positive integers. We say that S*G is of SUR-
type (Strongly Unbounded Representation type) if there exists a function
fr : N — N such that fy(n) > n and Indfk(n)(S)‘G) is an infinite set for
every n > 1. A function fy will be called an SUR-dimension-valued function.

Higman [25] proved that if S is a field of characteristic p, then a group
algebra SG is of finite representation type if and only if SG is of bounded
representation type. This does not hold in the case when S is not a field
[17], [32]. Gudivok [16] and Janusz [27], [28] showed that if S is an infinite
field of characteristic p and G is a non-cyclic p-group for which |G/G’| # 4,
then Ind, (SG) is an infinite set for every natural n > 1. Let G be a finite
p-group of order |G| > 2, S a commutative local ring of characteristic p¥, and
rad S # 0. Gudivok and Chukhray [19], [20] proved that if S is an infinite
field or S is an integral domain, then Ind,, (SG) is infinite for every natural
n > 1. In paper [24], joint with Sygetij, they obtained a similar result in
the case where G is a non-cyclic p-group, p # 2 and S is an infinite ring
of characteristic p or S is an infinite field. We note that in [22], [23], Gudi-
vok and Pogorilyak investigate group rings SG of bounded representation
type for the case when G is a p-group and S is an arbitrary commutative
local ring of characteristic p* with rad S # 0. The similar problem was stud-
ied in [4] for twisted group rings S*G, where S is a Dedekind domain of
characteristic p.

We remark that the investigations mentioned above were considerably
stimulated by the well-known Brauer—Thrall conjectures [26] for finite-di-
mensional algebras over an arbitrary field. For a complete discussion of
related problems in the modern representation theory of finite groups, al-
gebras, quivers and vector space categories the reader is referred to the
monographs [11], [13] and [33].

In the present paper we describe twisted group rings S*G of SUR-
type. We shall also characterize finite p-groups depending on a projective
(S, W)-representation type. Our investigations extend the results of [4], [19]
and [20]. We obtain indecomposable S*G-modules of S-rank fy(n) by ap-
plying induction from S*H-modules to S*G-modules, where H is a sub-
group of G. If M is an indecomposable S* H-module then the induced mod-
ule M5C is also an indecomposable S*G-module under some assumptions
which generalize the hypotheses of the Green Theorems [14], [15]. When
SMH is a group ring and |H| > 2, we make use of the indecomposable S AH-
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modules which are constructed in [19] (see also [18]) as initial S* H-modules.
If S*H is not a group ring then first we find p € Z2(H,S*) such that
S H = S*H and S*H contains a group ring S*B, where B is a subgroup
of H and |B| > 2. In this case we obtain indecomposable S* H-modules by
applying induction from S* B-modules to S* H-modules.

Let us briefly present the results obtained. In Section 1, we define the
kernel of a cocycle and prove its properties. In Section 2, we obtain further
information on the infinite series of indecomposable modules of R-rank n
over a group ring RH studied in [19], where n > 2 is an arbitrary natural
number, R is a commutative local ring of characteristic p, and H is a cyclic
p-group of order |H| > 2 or a group of type (2,2). In particular, we prove
that, for every such module V', the ring Endry (V) is finitely generated as
an R-module.

In Section 3, we single out rings S*G of SUR-type for the case when S is
an arbitrary local integral domain of characteristic p, and, in Section 4, for
the case when S is a commutative local noetherian ring of characteristic p.
We prove that if S is a local integral domain of characteristic p, H the kernel
of A\ € Z%(G, S*), and |H : G'| > 2, then for S*G one can construct the SUR-
dimension-valued function f\(n) = nd, where d = |G : H| (Theorem 1).
If S is a local noetherian integral domain of characteristic p then in the
above statement we can assume that |H| > 2 (see Corollary to Theorem 4).
Let S be a local integral domain of characteristic p, F a subfield of S,
and A € Z%(G, F*) such that FAG is a non-semisimple algebra. Then for
SAG there exists an SUR-dimension-valued function fy(n) = nd, where
d = dimp FAG. In addition, one should assume that one of the following
conditions holds:

1) p#2,d < |G:G'| (Theorem 2);
2) p=2,d < 3|G: G'| (Theorem 3);
3) p # 2, S is a noetherian ring (Theorem 6).

We remark that if SAG = SG, then d = 1 and f\(n) = n, in each of
the above cases, and we recover the results of [19], [20]. In Theorem 5,
we prove the existence of a ring S*G with SUR-dimension-valued function
fa(n) = n-|G : B|, where B can be an arbitrary subgroup with G’ C B C G,
and moreover the S-rank of every indecomposable S*G-module is a value of
the function f).

In Section 5, we introduce the concept of projective (S, W)-representa-
tion type for a finite group (finite, infinite, purely infinite, bounded, un-
bounded, purely unbounded, strongly unbounded, purely strongly unbound-
ed). We prove a number of propositions about p-groups with a given
projective (S, W)-representation type over a ring S = F[[X]] (Proposi-
tions 5-8).
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1. Non-semisimple twisted group algebras

LEMMA 1. Let G be a p-group, R an integral domain of characteristic p,
R* the multiplicative group of R, W a subgroup of R*, \:GxG — W a
2-cocycle, and A the union of all cyclic subgroups (g) of G such that the
restriction of X\ to (g) x (g) is a W-valued coboundary. Then G' C A, A is
a normal subgroup of G, and up to cohomology in Z*(G, W),

(1) Aga = Aag =1
forall g € G, a € A.

Proof. Evidently if T is a subgroup of G and the restriction of X :
GxG — W toT xT is a W-valued coboundary then T' C A. By
[29, Corollary 4.10, p. 42|, the restriction of A to G’ x G’ is a W-valued
coboundary. Hence, G’ C A. Let B be a normal subgroup of G with G’ C B
and suppose the restriction of A to B x B is a W-valued coboundary. We
may assume A,y = 1 for all b,b' € B. Let {u, : g € G} be a natural R-basis
of R*G. For any b € B, g € G we have

-1 _
UgUplly = YU,

where v € W, b/ = gbg™'. Then
uguLblug_l _ Vlb‘ulﬁ"
whence v = 1. Consequently, Ay, = Ay 4. Let {g1 =€, 92,...,9n} be a cross
section of B in G ([12, p. 79]). We set vg,;, = Ag, pug,p for every i € {1,...,n}
and b € B. Then vy, = ugy,, vy = up, vy, = vy, and for any g = g;c, c € B,
we have
VgUp = Vg; Vel = Vg; Uch = Vg, (ch) = Vghs  UbVg = Ubg-

Therefore, up to cohomology, A\ = A\ g =1 forall g € G, b € B.

Let H be a cyclic subgroup of G such that the restriction of A to H x H
is a W-valued coboundary. Let D = BH and suppose D # B. Because
G’ C B, D is a normal subgroup of GG. By hypothesis,

Qp - Qg
At =
Qhh!
for any h,h’ € H, where « is a mapping of H into W. If z,y € BN H then
Aoy =1 and Ay, = 2
Oy

whence oy = agzoy. It follows that a; =1 for any x € BN H.
Let hy = e, ha,...,hy, € H and {hi,...,hy} be a cross section of B
in D.If d e D and d = bh;, b € B, then we set
Vg = oz}:l_lud.
Let di = zh; and do = yh;, where x,y € B, be arbitrary elements of D.
Assume that h;hj = bh,, b€ B, and z = hiyhi_l. Then Ay, = 1, and hence
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Qph, = pQlp, = Q,, Whence Qhih; = Qp,- Thus, we get
Vd, * Vdy = a,:ilumuhi . a}:jluyuh]. = a,;la,:jluxuz)\h“hjuhihj
= ai;lhjudldz = O‘};}udldQ = Vddy-
This proves that the restriction of A to D x D is a W-valued coboundary. Let
a; € A, H; = {a;), 1 <i<mn,and D, = G'H; - -- H,. Applying induction on
n, we conclude in view of the above arguments that D,, is a normal subgroup
of G, D,, C A, and up to cohomology in Z?(G, W) we have Agd = Adg =1

for all ¢ € G, d € D,,. This completes the proof, because A = D; for
some S. m

DEFINITION. The subgroup A introduced in Lemma 1 is said to be the
kernel of the cocycle A € Z2(G,W). We denote this subgroup by Ker(\).

In what follows, we assume that every cocycle A € Z2?(G,W) under
consideration satisfies condition (1). We remark that if p1,44 = Ay for
any 7,y € G, then p € Z%(G/A, W) and Ker(u) = {A}.

Let F be a field of characteristic p, and W a subgroup of F*. Set ip(W) =
sup{0, m}, where m is a natural number such that the algebra

Flal/ (2" =m) @F - ®@F Fl2] /(2" = ym)

is a field for some 71, ...,7v, € W. By Proposition 1.1 of [6], for any natural
number ¢, there exists a field F' such that ip(F™*) = t.

PROPOSITION 1. Let G be a finite p-group, F a field of characteris-
tic p, W a subgroup of F*, X\ € Z*>(G,W), and B = Ker()\). Then the set
V = FAG -rad F*B is a nilpotent ideal of the algebra FAG, and the quotient
algebra FAG/V is isomorphic to F*H, where H = G/B and T2ByB = Azy
for any x,y € G. If d = dimp FAG then d is a divisor of |G : B|. Sup-
pose that ip(W) > k, where k is the number of invariants of the group
G/G'. Then for every subgroup B of G containing G’ there exists a cocycle
A\ € Z2(G,W) such that B = Ker(\) and dimp FAG = |G : B|.

Proof. Let A\ € Z*(G,W) and B = Ker()\). By Lemma 1, B is a normal
subgroup of G, G’ C B, and A\gp = N\py =1 for all g € G, b € B. It follows
that F*B is the group algebra of B over the field F' and

rad F*B = @ F(up — ue).
beB, bte
Then V = FAG - rad F B is a nilpotent ideal of FAG. The quotient alge-
bra F G /V is the commutative twisted group algebra F™H of the group
H = G/B and the field F with the 2-cocycle 7 € Z2(H, W), where 7,55
= Mgy for any =,y € G. A natural F-basis of FXG/V is formed by elements
of the form uy + V.
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Let H = (h1) x -+ x (h,) be a group of type (p°!,...,p° ). The algebra
F™H has a natural F-basis {vy : h € H} satisfying the following conditions:

1) if

h=hy"---hl
and 0 < j; < p® for every ¢ =1,...,r, then
J1 Jr

op =ty
2) ’UZ? = Ve, ; EW (1=1,...,7).

We denote the algebra F™H also by [H, F,aq,...,a,]. In view of [5, Theo-
rem 1] we have F™H = K, where K is a finite purely inseparable extension
of F and [K : F] divides |H|. Since F*G = F~H, d divides |G : B|.

Now we prove the final statement. Let B be the subgroup of G with
G' C Band set H=G/B. Assume H = (hy) x -+ x (h,). Then r < k. Since
ir(W) >k,

Flz]/(a? =) @p - - @p Fla]/(a” — )
is a field for some ~vi,...,7 € W. The twisted group algebra FFH =
[H,F,v,...,7] is a field. Let Ay, = pypyp for all z,y € G. Then X €
Z%(G,W) and Ker(\) = B. Let V = F?G - rad F*B. Because F’\G/V =
FHH and FFH is a field, we have V = rad FAG and dimp F G = |G : B|. =

PROPOSITION 2. Let G be a finite p-group, F' a field of characteristic p,
A€ Z3(G, F*), and d = dimp FAG.

(i) There exists a homomorphism of F G onto a twisted group algebra
of the form

p—1

(2) A= P Kvl, " =aPv (a e K",
=0

where m > 0, K is a finite purely inseparable extension of F; d =
[K:F]l-p" L 1=0ford=|G:G'| and 1 <1 <m ford<|G:G";
add KP for0<l<m and a=1 forl=m.

(ii) If d < 1/p|G : G'|, then there exists a homomorphism of F G onto
A with 2 <1 <m or onto a twisted group algebra of the form

r_ i 7 _ mo_ p"
3) A= @ Kvyvy,  vaup = vpva, vh =alve, vy = [P,
,J

where m,n > 0, K is a finite purely inseparable extension of F,
d=[K:F]-p™*"=2 and rad A’ is generated by elements
1 — n—1
A vy — [
Proof. We keep the notations used in the proof of Proposition 1, and we
assume that G is non-abelian. Arguing as in that proof, we establish the
existence of an algebra homomorphism FAG onto the algebra F™H, where
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H = G/G" and Ty yor = Aay for all z,y € G. Let H = (h1) x - -+ x (h) be
a group of type (p't,...,p"*) and {up, : h € H} a natural F-basis of F™H.
If F™H is semisimple then F™H is a field and d = |G : G'|. We have

p"—1
F"H = @ Kvl, P =awv, (a € F*),
j=0
where m = I, K = Flup,,...,up,_,], and v, = up, . In this case a ¢ KP.
Assume now that the algebra F™H is non-semisimple. Suppose also that
Flup,,...,up,_,] is a field and Flup,,...,up,_,,up,] is not. Let
Hy=[[(h), Ho=(h), U=radF"H;, W=F"H-U,

T
and F"H,/U = K, where K is a finite purely inseparable extension of F'.
Then

FTH/W 2 F"H, /U ®p FTHy 2 K ®@p F"Hy = K™ H>,

and hence, F™"H/W is isomorphic to a twisted group algebra A of the
form (2), where m = [,. The case when Flup,]| is not a field for every
1=1,...,k is treated similarly.

Assume that d < (1/p)|H|. Then there exists a homomorphism of the
algebra F™H onto an algebra of the form (2) with [ > 2 or onto an algebra
A’ of the form (3), where o, € K, a ¢ KP for m > 1, and 8 ¢ KP? for
n > 1. Let m > 1 and L = K(0), where 0 is a root of the polynomial

X7 g,

If o € LP then there exists a homomorphism of A’ onto
pm—1
P Lvi, 2" =9""v (yELY),
i=0
which is of the form (2). =

2. Infinite sets of indecomposable underlying modules of repre-
sentations of a group ring of a p-group. Let H = (a) be a cyclic p-group
of order |H| > 2, and R a commutative local ring of characteristic p. As-
sume that there is a non-zero element ¢ € rad R which is not a zero-divisor.
Let E,, be the identity matrix of order m, J,,(0) the upper Jordan block of
order m with zeros on the main diagonal, and (1) the m x l-matrix of the

form
1

0
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Denote by I; a matrix R-representation of degree n of the group H defined
in the following way:

1) if n = 2 then A
1t )
Fi(a):<0 1> (i € N);
2) if n =3m (m > 1) then
En t'Ep  Jn(0)
L= 0 E. ¢E, (i € N);
0 0 En
3)ifn=3m+1(m>1) then
En t2E, Jn0) t(1)

0 E t'E 0 ,
Fi = m m N )
(a) o o  E. 0 (i€ N)
0 0 0 1

4) if n =3m+2 (m > 1) then
En t72E,  Jn(0) 21 (1)

0 E. t%TE, 0 t2(1)

Iifa)=1 0 0 B 0 0 (i € N).
0 0 0 1 1
0 0 0 0 1

Let V; be the underlying RH-module of this representation.

Note that I is a slight modification of the representation of H which
was constructed in [19, Lemma 4] for the case when R is a local integral
domain of characteristic p. One can obtain this representation as a result of
the substitution J,,,(0) — E,, + Jp, (0).

LEMMA 2. If © # j, then the RH-modules V; and V; are non-isomor-
phic. The algebra Endry (V;) is finitely generated as an R-module and there
is an algebra isomorphism

Endgry(V;)/rad Endgy(V;) =2 R/rad R for every i € N.

Proof. By direct calculations we find that if i # j and CTIj(a) = I'j(a)C
for some C' € R™ ", then detC ¢ R*. Hence the modules V; and V; are
non-isomorphic for i # j. We prove the second and third statement only for
the case n = 3m + 2, because the proof in the remaining cases is similar.

Suppose that

Ci1 Ci2 Ci3 Cis Cis
Co1 Co Coz3 (o Cos
C=1]0C3 C3 Cz3 C34 Cs5
Cy Cyo Cy3 Cyg Cys
Cs1 Cs2 Cs3 Csy Chss
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is a square matrix of order n = 3m + 2 with entries from the ring R. In
addition, we assume that C11, Coo, Cs3 are square matrices of order m and
Cua, Css square matrices of order 1. If I(a)C = CTIj(a), then

Co1=0, C31=0, C3=0, 0C34=0,
Cyn=0, C51=0, C52=0, C54=0;
Cog = C11 —t"2(1)Cup;  Cs3 = Cpy — (72 +£2) (1) Co;
Csy = 210y, Oy + 2 (1)Cus = 12011 (1);
(4)  Cs5 =t2Cuo(l) + Caa;  Cog = t*T1C45 + t3(1)Cs5 — t°Coa(1);
C11Jm(0) — I (0)C1y
= t"T2(Co3 + 1" (1)Cy3 + T3 (1)Cyp — t712C12);
Crq = t'"2Ch5 + J1n(0)C3s
+ 21 Oys + (1) Cs5 — tC11 (1) — t2C12(1).

We can find all solutions of this system if we know the solutions of the
following system:

(5) t2 2055 4+ (14 t)(1)Cs5 — (1 + 1) C11(1) = 0,
(6)  C11Jm(0) = Jn(0)C1y = t"T2(Coz + "2 (1) Cyz3 + 13 (1) Cyp — *72C1s).
Define

B =Cy + ti+2<1>C43 + ti+3<1>C42 — ti+2012; Cs5 = (a);

01
B=(by), Cin=(zr), 1<kil<m; Cz=|
om
Equation (5) yields
12042 £2i+2
rm=a+-——>0q;, xq=-—=0, 2<ji<m.
11 T T % 7=
We declare a, §; for all j =1,...,m to be free unknowns. Equation (6) can
be written in the form
0 xn T12 o Tim—1 To1 T2t Tom
0 2 22 e Tam—1 T3l  T32 v T3m
(7) . . . . _
0 Tm—-1,1 ITm-12 - Tm—1,m-1 Tml ITm2 *°° Tmm
0 Tml Tm?2 te Tmm—1 0 0 tee 0
b1 b12 bis - bim
bo1 ba2 bos - by
bm—l,l bm—l,2 bm—1,3 T bm—l,m

bml me bm3 T bmm
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Equate the first columns on the left side of (7) with those on the right,
thereby obtaining

i

t
bpji = ——9 forke{l,.... m—1}, by =0.
k1 T okt { } m1
Equating the second columns on both sides of (7), we get
T2 T . bio i
. _ . 1+ . _
- . —t : ’ bm2 - 1+t m-
Tm2 Tm—11 bm—12
There is no restriction on w12, b12,...,by,—1,2. We declare x1;,b17,...,bp—1,
for [ = 2,...,m to be free unknowns. Taking into consideration the ex-

pression of x;1 for 2 < j < m, we conclude that 112 divides x ;o for every
j €43,...,m}. We use induction on ¢, where 2 < ¢ < m and ¢ indexes
columns in the matrix Cq1. Let ¢ < m — 1, and suppose that xj;, by; have
been determined for all k € {1,...,m} and | € {2,...,q}, where:

1) xp for 2 < k < m, 2 <1 < q are linear combinations of free unknowns
with coefficients in R and t*+2 divides the coefficients of xj; for every
je{l+1,...,m}; moreover Ty = Tp_1,-1 — t"+2bk,1,l;

2) 1 2byy = Ty 1.

Equating the (¢ + 1)th columns on both sides of (7), we obtain
£+ 20, 011 = Tomg
Tjgr1 = Tj_1,q — ti+2bj,1,q+1 for all j € {2,...,m}.
Since t is not a zero-divisor and t'*2 divides the coefficients of Timg, ONE can

solve the first equation for b, 44+1. The second equation implies that 2
divides the coefficients of z; 441 for every j € {¢+2,...,m}.

Thus the set of pairs (C11, B) is finitely generated as an R-module. For
a given matrix B,

023 — B— ti+2<1>c43 o ti+3<1>c42 4 ti+2012.

Since the matrices Ca,C13,Ci5 (i = 1,2,3,4), Cy2,Cy3,Cs5 are arbitrary,
the ring K of matrices C' commuting with I';(a) is finitely generated as an
R-module.

Let P = rad R. We have
Cy = (mod PR™ ™).

It follows from (4) that
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Cnui Ci2 Ci3 Ciy Cys

0 Cn Cx 0 O

0 0 011 0 035 (mod PRan)’

0 Cip Ci3 Cs5 0

0 0 0 0 Css
and hence, det C' = o™ (mod P). Since C or C' — E is an invertible matrix
over R, it follows that C or C — F is invertible in K. Therefore, K is a local
ring. We have C' = aE+ D, where D € rad K. The mapping f : K/rad K —
R/P defined by f(C' +rad K) = o+ P is an isomorphism. This proves that
EndRH(VZ-) = R | ]

LEMMA 3. Let H = (a) x (b) be an abelian group of type (2,2), t € rad R,
t # 0 and suppose t is not a zero-divisor. Denote by W; the underlying RH -
module of the matrixz representation A; of degree n of the group H defined
as follows:

1) if n=2m (m > 1), then

st =5 ) am= (5 ) Gem,

m

Q
Il

2)if n=2m+1 (m>1), then

E, tE, 0 En  Jn(0) (1)
Aila)=| 0 E, 0], A®=| 0 E, 0 (i € N).
0 0 1 0 0 1

If © # j, then the modules W; and W; are non-isomorphic. Moreover,
Endgry(W;) is finitely generated as an R-module and there is an algebra
isomorphism

EndRH(Wi)/rad EndRH(Wi) = R/radR

for all i € N.

The proof of Lemma 3 is similar to that of Lemma 2, and we leave it to
the reader.

3. Twisted group rings S*G of SUR-type if S is an arbitrary
local integral domain

LEMMA 4. Let R be a commutative local artinian ring or a complete
commutative local noetherian ring of characteristic p, G a finite p-group,
A\ € Z3(G,R*), H a subgroup of G, and V an indecomposable RH -module.
Assume that the quotient algebra

EndeH(V) = EndeH(V)/rad EndeH(V)

is isomorphic to a field K containing R, and one of the following conditions
1s satisfied:
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(i) G=H - T, where T is a subgroup of the center of G,
(ii) if Ks is the separable closure of R = R/rad R in K, then the order
of the group Aut(Ks/R) is not divisible by p.

Then VE*G 45 an indecomposable R*G-module, and the quotient algebra

EHdRAG(VRAG)
s isomorphic to a field, which is a finite purely inseparable extension of K.

LEMMA 5. Let R be a commutative local ring of characteristic p*, G
a finite abelian p-group, H a subgroup of G, A\ € Z*(G,R*), and M an
indecomposable R* H-module. Assume that Endpa g (M) is finitely generated
as an R-module and End gy (M) is isomorphic to a field K containing R.

Then MEC s an indecomposable R G-module. Moreover,
EndeG(MRAG)
is finitely generated as an R-module and the quotient algebra

End g (ME*G)

s isomorphic to a field, which is a finite purely inseparable extension of K.

The proofs of Lemmas 4 and 5 are similar to those of Lemma 2
of [2] and Lemma 2.2 of [3]. These lemmas generalize the results by
Green [14], [15], concerning the absolutely indecomposable modules over
group rings.

Until the end of this section we assume that S is an arbitrary local
integral domain of characteristic p, P = rad S, P # 0, F is a subfield of S,
and G a finite p-group. Denote by [M] the isomorphism class of SG-modules
which contains M. Let 9, (SG) be the set of all [M] satisfying the following
conditions:

(i) the S-rank of M equals n;
(ii) Endgg (M) is finitely generated as an S-module;
(iii) Endgg(M) =2 S.

LEMMA 6. Let |G| > 2. Then M, (SG) is an infinite set for every n > 1.

Lemma 6 follows from Lemmas 2 and 3.

THEOREM 1. Let A\ € Z?(G,S*) and H = Ker()\).

(i) If |H| > 2, then S’\G is of SUR-type with f\(n) = nt,, where 1 <
tn <|G: H].

(ii) Assume that |H : G'| > 2. Then f\(n) = nd, where d = |G : H|, is
an SUR-dimension-valued function for S*G.
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Proof. (i) Let [V] € M, (SH), {u,y : g € G} be a natural S-basis of S*G,
and {g1 =e€,92,...,9m} a cross section of H in G. Then

m
VI =DV with Vi =u, @ V.
i=1
Since the SH-module V; is conjugate to V' for every ¢, there is an algebra
isomorphism

EndSH(V;) = EndSH(V)

for each 4. Since the ring of SH-endomorphisms of V; is local for every
i€{l,...,m}, in view of the Krull-Schmidt Theorem [30, Sect. 7.3]
the SH-module V5'C has a unique decomposition into a finite sum of
indecomposable SH-modules, up to isomorphism and the order of sum-
mands. Hence, in view of Lemma 6, there are infinitely many non-isomor-
phic indecomposable S*G-modules M such that M is an S*G-component
of a module of the form VS'¢. Note that the S-rank of M is divisible
by n and does not exceed n - |G : H|. Therefore, there exists a natural
number ¢, such that 1 < ¢, < |G : H| and Ind,, (S*G) is an infinite
set.

(ii) Let A = G/G’ and
U — @ S(ua — U,@).

a€G’, ae

The set V = S*G - U is a two-sided ideal of S*G. The factor ring S*G/V
is isomorphic to S*A, where . yqr = Azy for all z,y € G. It contains
the group ring SB, where B = H/G'. Since |B| > 2, by Lemma 6 the set
M., (SB) is infinite for every n > 1.

Assume that [M] € 9,,(SB). By Lemma 5, the induced S*A-module
M3"4 is indecomposable. Its S-rank is equal to n-|A : B| = n-|G : H|.
Arguing as in case (i), we deduce that Ind,4(S*A) is infinite for every n > 1.
It follows that Ind,4(S*G) is an infinite set for each n > 1. m

THEOREM 2. Let p # 2 and A € Z*(G,F*). If the algebra F G is not
semisimple, then the ring S*G is of SUR-type. Moreover, if d = dimp FAG
and d < |G : G|, then f\(n) = nd is an SUR-dimension-valued function
for S*G.

Proof. There exists an algebra homomorphism of FAG onto F*G, where
G = G/G and jiz¢ryor = Ay for all z,y € G. We have d = dimp FFG.
Taking into account this fact and Theorem 1 we can assume that G is
abelian and FAG is non-semisimple.
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In view of Proposition 2, there exists an algebra homomorphism of FAG
onto a twisted group algebra
pm—1
A= @ Kvi, " = o', (v € K7),
§=0

where K is a finite purely inseparable extension of the field F, 1 <[ < m,
ag KP forl <mand d=[K : F]-p™! Since S'G = S ®r F G, there is
an algebra homomorphism of S G onto a twisted group ring

p"—1

A=SerA= P R1v.),

j=0

where R = S ®p Kv.. Note that if
w=1® ailvg’m_l,

then w?' = 1® ve. Hence we conclude that the ring

pl-1
I'= @ Ruw'
i=0
is a twisted group ring of a cyclic group of order p! and of the ring R.

The ring R is a finitely generated S-free S-algebra. By [10, Proposi-
tion 5.22, p. 112], we have

R=R/radR= (R/PR)/rad(R/PR) = S ®r K,

but then ([11, p. 100]) R is a commutative local ring of characteristic p. Let ¢
be a non-zero element of P. The element ¢ ® v, is not a zero-divisor in R and
t®v, € rad R. In view of Lemma 2, for every n > 1, there are infinitely many
pairwise non-isomorphic indecomposable I'-modules Vi, Va, . . . satisfying the
following conditions:

1) the R-rank of V; is equal to n;

2) Endp(V;) is finitely generated as an R-module;

3) Endp(V;) = R.
By Lemma 5, the induced A-module V;A is an indecomposable module of
R-rank np™~'. Further, the algebra

End(VA)
is isomorphic to a field which is a finite purely inseparable extension of the
field R. Since
VMrevie---oV,
by the Krull-Schmidt Theorem ([30, Sect. 7.3]) the modules V! and Vj/1 are

non-isomorphic for ¢ # j. The module ViA is an indecomposable S*G-module
of S-rank [K : F]-np™ ! =nd. =
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THEOREM 3. Let p=2, A € Z*(G, F*), and d = dimp F*G.

(i) If the algebra FAG is not semisimple, then the set Ind;(S*G) is in-
finite for some l < |G]|.
(ii) If d < %|G : G'|, then S*G is of SUR-type. In this case the function

fa(n) = nd is an SUR-dimension-valued function.

Proof. (i) If |G'| # 1, then by Theorem 1 we may suppose that |G| = 2.
Let G' = (a), t € rad S, and ¢ # 0. Denote by M; the underlying SG’-module
of the indecomposable representation

Fizuar—><(1) t1> (1 € N)

of the ring SG'. If i # j, then the SG’-modules M; and M; are non-
isomorphic. By the same arguments as in the proof of Theorem 1(i), we
can prove that Ind;(S*G) is infinite for some [ < |G].

Suppose that |G’| = 1, d = |G| and H is the socle of G. Then

S H = SHH ~ SFH, @5 SHo,

where u € Z?(H, F*), H = Hy x Hy, Hy C Ker(u), and Hy = {a) is a group
of order 2. We assume that [ is a representation of the ring SHs, and M;
is the underlying module of I;. By Lemma 5,

Vi = M

is an indecomposable S* H-module and Endgxy(V;) is a finite purely insep-
arable extension of S, up to isomorphism. If i # j, then the S* H-modules
Vi and V; are non-isomorphic. Arguing as in the proof of of Theorem 1(i),
we finish the proof in this case.

(i) If d < |G : G|, then we reason as in the proof of Theorem 2.
However, note that if p = 2, then there are two cases, namely that of
an algebra A of the form (2), where m > 2, and of an algebra A’ of the
form (3). We apply Lemma 2 in the first case and Lemma 3 in the sec-
ond. m

4. Twisted group rings S*G of SUR-type if S is a local noethe-
rian ring. In this section we suppose that S is a commutative local noethe-
rian ring of characteristic p, I’ a subfield of S, P = rad S, and S is the P-adic
completion of S. We also assume that S is not a field, and if S is not an
integral domain then S = S/P is an infinite field. Throughout, we identify
S with its canonical image in 5. It is well known (see [8, p. 205]) that S is
a complete commutative local noetherian ring.

Let H be a finite p-group. Denote by [M] the isomorphism class of the
SH-module M. Let 9, (SH) be the set of all classes [M] satisfying the
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following two conditions:
(i) the S-rank of M is equal to n;
(ii) Endg, (M) = S/rad S.
LEMMA 7. Let H be a finite p-group of order |H| > 2, and
MO(SH) = {(V) € M(SH) : V=28 ®g M for some SH-module M}
Then MO (SH) is an infinite set for every n > 1.

Proof. If S contains a non-zero nilpotent element, then the conclusion
follows from Lemma 2 in [19]. Assume that S is not an integral domain and
S does not have a non-zero nilpotent element. Then S has two elements u
and v such that uwv = 0, u & §v, and v ¢ Su. This allows us to apply the
same type of argument as in the proofs of Lemmas 3 and 5 of [19]. Let S

be an integral domain, ¢t € P, and t # 0. Then { is not a zero-divisor in S
([8, p- 204]). In view of Lemmas 2 and 3, the set MY (SH) is infinite.

THEOREM 4. Let G be a p-group and \ € Z*(G,S*). Assume that G
contains a subgroup H such that |H| > 2 and the restriction of X\ to H x H
is a coboundary. Then S G is of SUR-type with SUR-dimension-valued
function fx(n) =n-|G: H|.

Proof. Without loss of generality, we can suppose that \,; = 1 for all
a,b € H. In view of Lemma 7, 9% (5H) is infinite for each n > 1. If [V] €
ED??L(S”\H ) then, by Lemma 4, VG is an indecomposable S*G-module. Since

ax
(VS G)gH =VaeW,

where W is an SH-module, the set of all isomorphism classes [VSAG] is
infinite, in view of the Krull-Schmidt Theorem ([10, p. 128]). Then V =
S ®g M, where M is an indecomposable S H-module. It follows that there
are infinitely many pairwise non-isomorphic indecomposable S*G-modules
of the form M5*¢. We also note that the S-rank of M5 C is n - |G : H|. =

COROLLARY 1. Let G be a p-group, S a local noetherian integral domain
of characteristic p, rad S # 0, A\ € Z*(G,S*), and H the kernel of \. If
|H| > 2, then fyx(n) =n-|G : H| is an SUR-dimension-valued function.

Denote by F[[X1,...,X,]] the F-algebra of formal power series in the
indeterminates X1, ..., X,, with coefficients in the field F' of characteristic p.

THEOREM 5. Let S = FI[[X]], W be a subgroup of F*, G a finite
p-group, t the number of invariants of the group G/G', ip(W) > t, and
B a subgroup of G such that G' C B. If |B| > 2, then there is a co-
cycle A € Z2(G, W) such that Ker(\) = B, dimg FAG = |G : B|, S*G is of
SUR-type and satisfies the following conditions:
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(i) the function fx(n) = n-|G : B| is an SUR-dimension-valued function
for SAG;
(ii) the S-rank of every S*G-module is a value of fy;
(iii) there is only one S*G-module of S-rank fx(1), up to isomorphism.

Proof. In view of Proposition 1, there is a cocycle A € Z2(G, W) such
that B = Ker()\) and dimp FAG = |G : B|. By Theorem 4, the function
fa(n) = n-|G : Bl is an SUR-dimension-valued function for S*G. Let M
be an S*G-module. Then M/X M is an FAG-module and dimp(M/X M) is
divisible by |G : B|, because FAG is a local algebra. Since the S-rank of M
equals dimp (M /X M), it is a value of f).

Let K be the quotient field of S. Obviously, the ring S*G is an S-order
in the algebra K G. Let M be an S*G-module of S-rank fy(1). We embed
M in the irreducible K*G-module M* = K ®g M. Since the set

U= @K)\G(Ub — Ue)
beB
is a nilpotent ideal of K*G, we have U C rad K*G. Note also that
beB

is an ideal of S*G. Since rad K*G - M* = 0 and V C rad K*G, we have
VM = 0 and M may be viewed as a module over S*G/V. But S*G/V
= StH, where H = G/B and iz yB = A\py forallz,y € G.If L = FF*H and
T = L[[X]], then L & FAG, T = SFH, and L is a finite purely inseparable
extension of F. Therefore M is T-torsion free. Since T is a principal ideal
ring, we get M = S*H. u

THEOREM 6. Let p # 2, S be a local noetherian integral domain
of characteristic p, radS # 0, F a subfield of S, G a finite p-group,
A€ Z2(G,F*), and d = dimp F*G. If the algebra FAG is not semisimple,
then S*G is of SUR-type with SUR-dimension-valued function f(n) = nd.

Proof. If d = |G : G'|, then G’ # {e}. In this case, |Ker(A\)| > 2 and
Theorem 4 applies. If d < |G : G’|, then Theorem 2 applies. =

PROPOSITION 3. Let p # 2, F be a perfect field of characteristic p,
S = F[[X]], G an abelian p-group, G the socle of G, and \ € Z*(G,S*).
Suppose that S*G /X2S G is not the group ring of G over the ring S/X2S.
If |G| > p, then S*G is of SUR-type. If |G| = p, then S*G is of finite
representation type.

Proof. Arguing as in the proof of Proposition 4.4 of [4], we show that
if |G| > p, then S*"G = SHG, where p € Z*(G,S*) and Ker(u) # {e}.
Applying induction from S* Ker(u)-modules to S*G-modules and next from



282 L. F. BARANNYK AND D. KLEIN

SAG-modules to SAG—moclules, we deduce, in view of Lemmas 5 and 7, that
SAG is of SUR-type. If |G| = p then, by Proposition 4.4 of [4], S*G is of
finite representation type. m

PROPOSITION 4. Let F be a perfect field of characteristic 2, S = F[[X]],
G an abelian 2-group, and \ € Z*(G, S*). Assume that G contains a cyclic
subgroup H of order 4 such that S*H/X2SH is not the group ring of H
over the ring S/X?2S. Then:

(i) the ring S*G is of bounded representation type if and only if G is a
cyclic group or a group of type (27,2);

(ii) the ring S*G is of SUR-type if and only if it is of unbounded repre-
sentation type.

Proof. Let D = {g € G : g* = e}. By the same type of argument as in the
proof of Proposition 4.5 of [4], one can establish that if G is neither a cyclic
group nor a group of type (27,2), then S*D = S*D, where |Ker(u)| > 4.
Arguing as in the proof of Proposition 3, we conclude that S G is of SUR-
type. If G is a cyclic group or a group of type (2", 2), then, by Proposition 4.5
of [4], S*G is of finite representation type. m

5. The projective representation type of finite groups over lo-
cal rings. Let S be a commutative ring with identity, S* the multiplicative
group of S, W a subgroup of S*, GL(n,S) the group of all unimodular
matrices of order n over S, G a finite group, and Z?(G,W) the group
of all W-valued normalized 2-cocycles of the group G that acts trivially
on W. A projective (S, W)-representation of the group G of degree n is
defined [1] as a mapping I' : G — GL(n,S) such that I'(e) = E and
I'(a)I"'(b) = Agpl (ab), where A\,p € W for all a,b € G. It is easy to see
that A : (a,b) — A, belongs to Z2(G,W). We also say that I" is a pro-
jective (S, W)-representation of G with cocycle A\. Two projective (S, W)-
representations I} and I» of G are called equivalent if there exists a uni-
modular matrix C' over S and elements ay € W (g € G) such that

C™'I(g)C = agly(g)

for all ¢ € G. If W = S§* then I is called a projective S-representation
of G. If W = {1} then I is said to be a linear or ordinary S-representation
of GG. By analogy with indecomposable projective S-representations of the
group G, we can introduce the concept of an indecomposable projective
(S, W)-representation of G (]9, §51]).

We say that a group G is of finite projective (S, W)-representation type if
the number of (inequivalent) indecomposable projective (S, W)-representa-
tions of G with cocycle X is finite for any A € Z2(G,W). Otherwise, G
is said to be of infinite projective (S, W)-representation type. If the num-
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ber of indecomposable projective (S, W)-representations of G with cocy-
cle X is infinite for every A € Z2(G, W), we say that G is of purely infi-
nite projective (S, W)-representation type. A group G is defined to be of
bounded projective (S, W)-representation type if the set of degrees of all
indecomposable projective (S, W)-representations of G with cocycle A is
finite for each A € Z2(G,W). Otherwise, G is said to be of unbounded
projective (S, W)-representation type. If the set of degrees of all indecom-
posable projective (S, W)-representations of G with cocycle A is infinite
for each A € Z2(G, W), G is defined to be of purely unbounded projective
(S, W)-representation type. A group G is of strongly unbounded projective
(S, W)-representation type if for some cocycle A\ € Z2(G, W) there is a func-
tion f\ : N — N such that f\(n) > n and the number of indecomposable
projective (S, W)-representations of G with cocycle A and of degree fy(n) is
infinite for all n > 1. If there is such a function f, for every A € Z%(G, W),
then G is of purely strongly unbounded projective (S, W)-representation type.

PROPOSITION 5. Let S be a local integral domain of characteristic p,
rad.S # 0, ' a subfield of S, W a subgroup of S*, and G a finite p-group.

(i) If |G| > 2, then G is of strongly unbounded projective (S, W')-repre-
sentation type.

(i) If |G'| > 2, then G is of purely strongly unbounded projective (.S, S*)-
representation type.

(iii) Let W C F* and G/G’ be a direct product of r cyclic subgroups,
where v > ip(W) 41 forp>2 and r > ip(W)+2 for p=2. Then
G is of purely strongly unbounded projective (S, W')-representation
type.

Proof. Statement (i) follows immediately from the results of [19], [20]
(see also Lemmas 2 and 3). Statement (ii) follows from Theorem 1. Now
we prove (iii). Let H = G/G’, and H be the socle of H. For any cocycle
p € Z*(H,W) we have S*H = S°H, where 0 € Z*(H,W) and B := Ker(o)
satisfies the following conditions: if p > 2, then |B| > p; if p = 2, then
|B| > 4. Applying induction from S°B-modules to S° H-modules, and
then from S*H-modules to S*H-modules, we conclude, in view of Lem-
mas 5 and 7, that S*H is of SUR-type. Since for every A\ € Z2%(G,W)
there exists a homomorphism of S*G onto S*H, where MGl yG' = gy for
all x,y € G, it follows that G is of purely strongly unbounded projective
(S, W)-representation type. m

PROPOSITION 6. Let G be a finite p-group, F a field of characteristic p,

S = F[[X]], and W a subgroup of S*.
(i) G is of bounded projective (S, W)-representation type if and only if
|G| = 2. Moreover, G is of unbounded projective (S, W')-representa-
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tion type if and only if G is of strongly unbounded projective (S, W)-
representation type.

(ii) Let W C F* and p # 2. Then G is of purely strongly unbounded
projective (S, W)-representation type if and only if |G'| # 1 or
G is a direct product of | cyclic subgroups and | > ip(W) + 1.
In addition, G is of purely strongly unbounded projective (S, W)-
representation type if and only if G is of purely unbounded projective
(S, W)-representation type.

(iii) Let p = 2 and |G'| # 2. Then G is of purely strongly unbounded
projective (S, F*)-representation type if and only if one of the fol-
lowing conditions is satisfied: 1) |G'| > 2; 2) G is a direct product
of 1 cyclic subgroups and | > ip(F*) + 2; 3) G is a direct prod-
uct of ip(F*) + 1 cyclic subgroups whose orders are not equal to 2.
Furthermore, G is of purely strongly unbounded projective (S, F*)-
representation type if and only if G is of purely unbounded projective
(S, F*)-representation type.

Proof. (i) It follows from Lemma 6 (or Lemma 7) that if G is of bounded
projective (S, W)-representation type, then |G| = 2. Let us prove the suffi-
ciency. Let |G| = 2 and A € Z2(G, W). If S*G = SG then the S-rank of every
indecomposable S*G-module is 1 or 2 (see [17]). Assume that S*G # SG.
Then S*G = S[f], where 0 is a root of the polynomial Y2 — a, @ € S¥,
which is irreducible over S. Let o = ag + a1 X + as X%+ - -+, a; € F. Denote
by K the quotient field of S and by T the integral closure of S in K (0). If
ap € F?, then T = S[f]. Let ap € F2. Obviously, we can assume ag = 1.
Then T = S + Sw, where w = X (1 + b0 X +--- + b, 1 X" 1 +0) and

a=1+0X24 402 X" 2 ¢ Z a; X7, ag, & F? or agp41 # 0.
i>2n
It is clear that the ring S[f] is noetherian and T is finitely generated as an
S[f]-module. Since S is a principal ideal domain, every ideal in S[¢] can be
generated by two elements. Moreover, any ring L with S[f] C L C T is local.
Applying Theorem 1.7 of 7], we show that each indecomposable torsion free
S[0]-module is isomorphic to a ring L with S[#] C L C T. Hence the S-rank
of each indecomposable S*G-module equals 2. The second statement follows
from Theorem 1 and the first statement.

(ii) Apply Proposition 5.

(iii) Let p = 2, m = ip(F™), and G be a direct product of m + 1 cyclic
subgroups of order 4 each. We show that dimp FAG < 1|G| for all X €
Z%(G, F*). Obviously, it is sufficient to prove this for

FAG = @ Fufll1 culmtl o with wh = ogue (j=1,...,m+1),

Am+17 aj
1150y im4-1



TWISTED GROUP RINGS 285

where K = Flug,,...,Uq,) is a field. Let L = F[u? ,...,u2 ]. For each

a

a € F there exists 3 € L such that o = 2. The element 3 is uniquely

expressible as
2 : 20 2i
YitseorimUaq " ua,;nv
Tm

1s--- ]

3=
(2
where i; = 0,1 and ~;, . € F. However, 7, . i, = 51-21’._',% for some
Oiv,...im € L. It follows that 3 = 0? for p € K, and hence o = o¢*. This allows
us to assume that a,,+1 = 1. But then dimp FAG = 4™, 4™ = %|G|.
If condition 1) holds, we apply Proposition 5. If 2) or 3) holds, we apply
Theorem 3. u

corim

PROPOSITION 7. Let G be a finite p-group, F a field of characteristic p,
S = F[[X]], and W a subgroup of S*.

(a) G is of infinite projective (S, W)-representation type.

(b) If W C F*, then G is of purely infinite projective (S, W)-represent-
ation type if and only if one of the following two conditions is satis-
fied: 1) |G'| # 1; 2) G is a direct product of | cyclic subgroups, where
1> ip(W)+1.

Proof. Statement (a) follows from Theorems 1 and 3.

(b) Let W C F*. If 1) or 2) is satisfied, then in view of Theorems 2
and 3, G is of purely infinite projective (S, W)-representation type. Let G
be a direct product of r cyclic subgroups, where r < ip(W). Then there is
a cocycle A € Z2(G,W) such that FAG is a field. Let K = F*G. We have
SAG = K[[X]], and so every indecomposable S*G-module is isomorphic
to S*G. Hence G is not of purely infinite projective (S, W)-representation
type. m

PROPOSITION 8. Let G be a finite 2-group, |G'| = 2, F a field of charac-
teristic 2, and S = F[[X1,...,Xn]]. If m > 1 then G is of purely strongly
unbounded projective (S, S*)-representation type.

Proof. By our assumption, S*G’ = SG’ for every cocycle A € Z%(G, S*),
and the set Ind,, (SG’) is infinite for each n > 1 (see [21]). Since S is a com-
plete commutative noetherian local ring, the Krull-Schmidt Theorem holds
for SG’-modules ([10, p. 128]). Then, arguing as in the proof of Theorem 1,
we prove that for every n > 1 there exists a natural number ¢, such that
1 <t, < 3|G| and Indy, (S*G) is infinite.
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