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PRODUCT PRESERVING GAUGE BUNDLE FUNCTORS
ON VECTOR BUNDLES

BY

WLEODZIMIERZ M. MIKULSKI (Krakéw)

Abstract. A complete description is given of all product preserving gauge bundle
functors F' on vector bundles in terms of pairs (A4, V') consisting of a Weil algebra A and
an A-module V' with dimp (V) < co. Some applications of this result are presented.

0. Let us recall the following definitions (see e.g. [4]).

Let F': VB — FM be a covariant functor from the category VB of all
vector bundles and their vector bundle homomorphisms into the category
F M of fibered manifolds and their fibered maps. Let By : VB — M f and
Brap — M be the respective base functors.

A gauge bundle functor on VB is a functor F satisfying Bra o F' =
By and the localization condition: for every inclusion of an open vector
subbundle ipy : E|U — E, F(E|U) is the restriction pp' (U) of pp : FE —
Byp(E) over U and Figy is the inclusion pgl(U) — FE.

Given two gauge bundle functors Fy, F»> on VB, by a natural transforma-
tion T : I} — F5 we shall mean a system of base preserving fibered maps
Tp : F1FE — FyF for every vector bundle E satisfying Fof otp = 7g 0 Fif
for every vector bundle homomorphism f : £ — G.

A gauge bundle functor F' on VB is product preserving if for any product
F
projections By ¢ By x Ey 23 E, in the category VB, FE; 2 F(E; x E,)
F
“P2 FE, are product projections in the category FM. In other words,

F(E; x Ey) = F(Ey) X F(E3) modulo (Fpry, Fpr,).
In this paper we prove that all product preserving gauge bundle functors
F on VB are in bijection with the pairs (A, V') consisting of a Weil algebra A
and an A-module V' with dimg (V') < oo, and that the natural transforma-
tions between two product preserving gauge bundle functors on the category
VB are in bijection with the morphisms between corresponding pairs.
Some applications of the above classification results are also presented.
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The product preserving and fiber product preserving bundle functors on
some other categories on manifolds have been described by many authors
[1]-(8].

All manifolds are assumed to be Hausdorff, finite-dimensional, without
boundary and of class C'°°. All maps between manifolds are assumed to be
of class C'*°.

1. Let A = R® nyg be a Weil algebra and V be an A-module with
dimg (V') < co. We generalize the construction of bundles of infinitely near
points [9].

ExaMPLE 1. Given a vector bundle E = (E% M) let TAVE =
{(¢;0) | ¢ € Hom(C*(M),A), ¢ € Hom,(C>M(E),V), z € M},
where Hom(C2°(M), A) is the set of all algebra homomorphisms ¢ from
the (unital) algebra C2°(M) = {germ,(g) | g : M — R} into A and where
Hom,, (C2> f1(E), V) is the set of all module homomorphisms v over ¢ from
the C2°(M)-module C ! (E) = {germ_(h) | h : E — R is fiber linear}
into V. Then T4V E is a fibered manifold over M. A local vector bundle
trivialization (z' op,...,2mop,yt,...,9y*) : B|U 2 R™ x R* on E induces
a fiber bundle trivialization (z',...,2™, g%, ...,7%) : TAVE|UZA™ x V" =
R™ x njt x V™ by 3(p,9) = ¢(germ, (2')) € A, ¥ (¢, ¥) = ¥(germ_(y))
eV, (o) e TAVE, 2 € U,i=1,...,m,j =1,...,k Given another
vector bundle G = (G % N) and a vector bundle homomorphism f : E — G
over f: M — N let TAVf : TAYE — TAVG, TAV f(p,0)) =
(pofiwo f2), (p,¥) € TAVE, 2 € M, where f1 : C% (N) — C(M)

and f} : C’;?;)f'l'(G) — C P (E) are given by the pull-back with respect

to fand f. Then T4V f is a fibered map over f, and T4V is a product
preserving gauge bundle functor on VB.

2. Let F' be a product preserving gauge bundle functor on VB.

EXAMPLE 2. (i) Let A = (GFR, G (+),GF(-),GF(0), GF (1)), where
GF i Mf — FM, GFM = F(M % M), GFf = Ff : GFM — GFN, and
where 4+ : R X R — R is the sum map, - : R x R — R is the multiplication
map, 0 : R — R is the zero and 1 : R — R is the unity. Then Af is a Weil
algebra.

(i) Let V¥ = (F(R — pt), F(+), F(-), F(0)), where pt is the one point
manifold, R — pt is the vector bundle, + : R x R — R is the sum map,
which is a vector bundle homomorphism (R — pt) x (R — pt) — (R — pt)
over pt xpt — pt, 0 : R — R is the zero map, which is a vector bundle
homomorphism (R — pt) — (R — pt) over pt — pt, and - : R x R — R is

the multiplication map, which is a vector bundle homomorphism (R ids, R) x
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(R — pt) — (R — pt) over R x pt — pt. Then V¥ is an A¥-module with
dlmR(VF) < Q.

3. Let F be a product preserving gauge bundle functor on VB and
(AT V) be the corresponding pair. Let TA"V" be the product preserving
gauge bundle functor for (A", V). We prove F = TA" VY

For every vector bundle F = (EAM ) we construct a fibered map
Op : FE — TA" V' E covering idys as follows. If y € FLE, z € M, we
define @, : C2*(M) — AF, o, (germ, (g)) = F(gop)(y) € A¥ = F(R-5R),
g: M — R, where gop : F — R is considered as a vector bundle homo-
morphism (E 2 M) — (Rid—RﬂR) over g : M — R. Then ¢, is an algebra
homomorphism. If y € F,E, 2 € M, we define ¢, : CH(E) — VI
Py (germ, (f)) = F(f)(y), f : E — R is fiber linear, where f is considered
as a vector bundle map (E % M) — (R — pt) over M — pt. Then 1), is

a module homomorphism over ¢,. We put Og(y) = (¢, ¥y) € TZAFvVFE,
ye FLE € M.

PROPOSITION 1. © : F — T4 V" s a natural isomorphism.

Proof. Tt is sufficient to show that @ is a diffeomorphism for any vector
bundle E. Applying vector bundle trivializations, we can assume that £ =
R™ x R* is a trivial vector bundle over R™. Since F and T4"V" are product
preserving and E is a (multi) product of R e R and R — pt, we can assume
that E is either R 95 R or R — pt.

. . ~1

(I) E = (RS R). Consider GFR 25 7A" V(R 15 R) L AP where 7!
is induced by z! = idg : R — R (see Example 1). This composition is the
identity map GFR = AF. Hence Of is a diffeomorphism.

~1

(I1) E = (R — pt). Consider F(R — pt) O parvr R — pt) LV F,
where ¢! is induced by y' = idg : R — R. This composition is the identity
map F(R — pt) = V. Hence O is a diffeomorphism. m

4. Let (A, V) be a pair, where A is a Weil algebra and V' is an A-module
with dimg (V) < oco. Let T4V be the corresponding gauge bundle functor
on VB. Let (A, V) be the pair corresponding to T4V

PROPOSITION 2. (A, V) 2 (A, V).

Proof. Clearly, A = TA*V(RM—R>R) and V = TAV(R — pt). Let O =

Al TA’V(RM—R>R) — Aand IT = 3 : TAY(R — pt) — V, where 7!
is induced by z! = idg and ' is induced by y' = idg (see Example 1).
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Then O : A — A is an algebra isomorphism and I7 : V — V is a module
isomorphism over O. m

5. Let (A1, V1) and (Az, Vo) be pairs, where A; is a Weil algebra and
V; is an A;-module with dimg(V;) < oo, i = 1,2. Let (u, ) be a morphism
from (Ay, V1) into (Az,V5), ie. pu: Ay — Ay is an algebra homomorphism
and v : Vi — V5 is a module homomorphism over pu.

EXAMPLE 3. Let E— M be a vector bundle. We define 75 : TAYVIE
T42V2E, 71" (0,9) = (no @, v o), (p,¢) € TAVE, z € M. Then 7 :
TALVE _, TA2,V2 ig g natural transformation.

6. Let 7 : Iy — F5 be a natural transformation between product pre-
serving gauge bundle functors on VB. Let (Af1, V1) and (Af2 V¥2) be the
pairs corresponding to F; and Fb.

EXAMPLE 4. Let (17, v7) = (Tidg:R—R, TR—pt) : (AT, V1) — (AF2 V),
Then (™, v7) is a morphism of pairs.

7. We are now in a position to prove the following theorem.

THEOREM 1. The correspondence F +— (AY, V) induces a bijective cor-
respondence between the equivalence classes of product preserving gauge bun-
dle functors F on VB and the equivalence classes of pairs (A, V) consisting
of a Weil algebra A and an A-module V' with dimg (V) < co. The inverse
correspondence is induced by the correspondence (A, V) — T4V,

Proof. The correspondence [F| — [(AY, V)] is well defined. For, if 7 :
F; — Fy is an isomorphism, then so is (u™,v7) : (A1, V) — (AF2 VE2),

The correspondence [(A,V)] + [T4V] is well defined. For, if (u,v) :
(A1, V1) — (Ag, V) is an isomorphism, then so is 74 : T41V1 — TA2:V2,

From Proposition 1 it follows that [F] = [T4"V"]. From Proposition 2
it follows that [(A,V)] = [(AF, VE)] if F=T4V. u

8. Let F; and F, be two product preserving gauge bundle functors on
VB. Let (A1 V1) and (AF2, V%) be the corresponding pairs.

PROPOSITION 3. Let (pu,v) : (AT, VIY) — (AF2 VI2) be a morphism.

Let 7lw¥l . By — Fy be a natural transformation given by the composition
v —1

Fy &, pAf v AN TAR2 V2O Fy, where O is as in Proposition 1 and 7"

is described in Example 3. Then T = 7#¥! is the unique natural transforma-

tion Fy — Fy such that (u™,v") = (u,v), where (u”,v7) is as in Example 4.

Proof. First we prove the uniqueness part. Suppose 7 : Fy — Fy is
another natural transformation such that (1™, ™) = (u,v). Then T coincides
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with 7 on the vector bundles R “%% R and R — pt because of the definition of
(u7,v7). Hence T = 7 by the same argument as in the proof of Proposition 1.

The existence part follows from the easily verified equalities Oy !

R—pt ©

v _ -1 v . _
TR pt © Or—pt =V and Oy g g 0Ty g g © OldgR—R = . ®
Now, the following theorem is clear.

THEOREM 2. Let Fy and Fy be two product preserving gauge bundle
functors on VB. The correspondence 7 — (u”,v7) is a bijection between
the natural transformations Fy — Fy and the morphisms (A", V) —
(AF2 VE2) between corresponding pairs. The inverse correspondence is (ju, V)

— T[I“L7V] .

9. As an application of Theorems 1 and 2 we describe all the so-called
excellent pairs, i.e. pairs (F, ) where F' is a product preserving gauge bundle
functor on VB and 7 : F' — idyp is a natural epimorphism (i.e. 7 is a natural
transformation such that 7p : FE — F is a surjective submersion for any
vector bundle F).

Thanks to our previous considerations we have:

(a) Let (F,7) be an excellent pair. Then we have (A, V) and a mor-
phism (u™,v7™) : (AP, V) — (Aldvs Vidvs) — (R R). In other words,
we have a triple (AF™ VE™ oF'™) where AP™ = AF V™ = VF and
of'm = v™ . VET 5 R, Of course, AF™ is a Weil algebra, V™ is an Af-
module with dimg (V") < co and o™ is a non-zero module homomorphism
over the algebra homomorphism Af™ — R.

(b) Conversely, let (A,V,p) be a triple, where A is a Weil algebra, V
is an A-module with dimg(V) < oo and g : V' — R is a non-zero module
homomorphism over the unique algebra homomorphism x : A — R. Then
e . AV TRR >~ id,,5 is a natural epimorphism. In other words, we
have an excellent pair (T4V:¢ 74V:¢) .= (TAV O~ o 7%2), where O :
idylg — TR’R.

(c) Let (F,m) be an excellent pair. Then © : F' — TA" V" is an isomor-

. . F,m F,w F,m F,m F,mr F,7 .
phism of the excellent pairs (F,7) and (T4 5V"7e"" gATTV 0™y 1 )

we have 747V e 09 = 1.

(d) Let (A, V, 0) be a triple as above. Let (T4V>¢, 74:V:2) be the corre-
sponding excellent pair. Let (E’ v, 0) be the triple corresponding to (T4-V2,
7AV:e) Then (O,II) : (A, V) — (A,V) is an isomorphism of the triples
(Z,f/, 0) and (A, V, ), i.e. we have go IT = p.

(e) Let (p,v) : (A1, V1, 01) — (Aa, Va, 02) be a morphism between triples,
where A; is a Weil algebra, V; is a V;-module with dimg(V;) < oo and
0; : V; — R is a non-zero module homomorphism over the algebra homo-
morphism A; — R, ¢ = 1,2. This means that (u,v) : (A1,V1) — (A2, Va)
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is a morphism between pairs such that g, o v = p1. Then 7#% : TAV1
T42V2 is a morphism between the excellent pairs (741:V1-e1 gAVier) and
(TA2,V219277-‘-A2,V2,92)7 i.e. we have mA2:V2,02 o +1v — ALV 01
(f) Let 7 : (F1,m) — (Fh,m2) be a morphism between excellent pairs,
i.e. 7 : I1 — Fy is a natural transformation such that 75 o 7 = m;. Then
TUT) o (AP VY — (AF2 VF2) is a morphism between the triples
I
(AF1,7T17VF177F1’QF177T1) and (AFz,Trz’ VF277T2’ QFQ’WZ), ie. QF277T2 oyT = QF177T1_

Thus we have the following theorem corresponding to Theorem 1.

THEOREM 1. The correspondence (F,w) w— (AF™ VE™ of'™) induces
a bijection between the equivalence classes of excellent pairs (F,m) and the
equivalence classes of triples (A,V, p) consisting of a Weil algebra A, an
A-module V' with dimg(V) < oo and a non-zero module homomorphism

0:V — R over the algebra homomorphism A — R. The inverse bijection is
induced by (A,V, 0) — (TAV:2, 74V:0),

REMARK 1. Let A =R @ n4 be a Weil algebra and V' be an A-module.
If o : V — R is a module homomorphism over the algebra homomorphism
A — R, then ker(g) D na - V. Conversely, if o : V' — R is a functional such
that ker(o) D ng -V, then it is a module homomorphism over A — R.

(g) Let (F1,m), (Fp,m) be excellent pairs. Let (u,v) : (Afvm yivm,
of ™) — (AFz 2 F2mz pF2.m2) he a morphism between the corresponding
triples. Then 7*¥ . Fy — F, (see Proposition 3) is a morphism between
the excellent pairs (Fy,m) and (F3,ms), i.e. mo 0 el = 7.

Thus we have the following theorem corresponding to Theorem 2.

THEOREM 2'. Let (Fy,71) and (Fa,m3) be excellent pairs. The corre-
spondence T — (u”,v7) gives a bijection between the morphisms (Fy,m) —
(Fy, ) between excellent pairs and the morphisms (AFrm™ VL™ pFrmy
(Afem2 2w oF2m2) betyeen the corresponding triples. The inverse bijec-
tion is (u,v) — TV,

10. As another application of Theorem 2 we solve the problem of when
for a product preserving gauge bundle functor F' there is an excellent
pair (F, ).

COROLLARY 1. Let F be a product preserving gauge bundle functor on
VB. Then there ezists a natural epimorphism F — idyp if and only if

VE £ {0}.

Proof. If m : F — idyp is a natural epimorphism, then so is (u™,v7) :
(AF V) — (R,R). Hence, VI # {0}.
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Assume V' # {0}. Then ny -V # V. (For, if ng -V =V, then V =
na-V=n%4-V=..=n4 -V =0 for some l.) So there is a module

epimorphism ¢ : V — R over A — R. Next, we can apply Theorem 2. m

11. As an application of Theorem 1’ we present two non-equivalent ex-
cellent pairs (F,71) and (F,my) for some product preserving gauge bundle
functor F.

EXAMPLE 5. Let A = C§°(R?)/m? be the Weil algebra where m is the
maximal ideal in C§°(R?). Let t* = [germ,(z%)] € A for i = 1,2, where 2!, 22
are the usual coordinates on R2. Then 1,t!,¢2, (t1)2, (t?)2, t'¢? form a basis
(over R) of A and 1,2, (t1)2, (t2)2?,¢!t? form a basis (over R) of the maximal
nilpotent ideal ny C A. Define V' C A to be the vector subspace generated
by t1, (t1)2, (#?)%,t¢2. Then V is an ideal in A, and hence V is a module
over A. Moreover, na - V is spanned by t1¢2 (t!1)2. Define two function-
als 01,02 : V. — R by o1(t!) = 01((t1)?) = 01(t't?) = 0, 01((t?)?) = 1,
02((t1)?) = 02(t't?) = 02((t*)?) = 0 and o(t') = 1. Then gy, 00 are
module homomorphisms over the algebra homomorphism A — R because
ker(o;) D ma -V for i = 1,2. The triples (A, V,01) and (A, V, g2) are not
equivalent. (For, suppose that there exist an algebra isomorphism p: A — A
and a module isomorphism v : V' — V over p such that goov = p1. We have
1= 01((t*)%) = 02(v((?)*)). Then v((t*)?) = t! + a(t')® + Bt't* + ~(1?)*
for some «, 3,7 € R. Since p~1(t!) € N, p=(t!) - (#*)* = 0. Hence 0 =
v(p=H(th) - (#2)%) = p(p () - v((2)?) = 1 w((#%)?) = (¢')?, a contra-
diction.) Then (by Theorem 1’) the corresponding pairs (T4V:21 r4:V:e1) =
(T4, gAV:er) and (TAV-e2 gAVe2) = (TAV rAVie2) are not equivalent.

12. As an application of Proposition 1 we have:

COROLLARY 2. Let F be a product preserving gauge bundle functor
on VB. For every vector bundle p : E — M we have a canonical vector
bundle stucture (and a canonical A¥-module bundle structure) on Fp :
FE — FM, where M is the vector bundleidy; : M — M and p: E — M is
the vector bundle map covering idys. For every vector bundle map f : E — G
over f: M — N the map Ff: FE — FG is a vector bundle map (and an

AF -module bundle map) over Ff:FM — FN.

Proof. Using the isomorphism © from Proposition 1 we can assume that
F =T4V where A is a Weil algebra and V is an A-module with dimg (V)
< 00. Now, the statements follow from Example 1. =

13. Using Corollary 2 one can define the composition F3 o I of product
preserving gauge bundle functors £ and F5 on VB.
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EXAMPLE 6. Let p : E — M be a vector bundle. Then Fip : hE —
F1 M is also a vector bundle (Corollary 2). Applying F5, we define a fibered

manifold F» o Fy(E) := Fg(FlEMFlM) over M, where the projection
Fy0Fy(E) — M is the composition Fyo F}(E) — F1M — M of projections
for F and Fi. Let f : E — G be a vector bundle homomorphism covering
f: M — N. Then F,f : F1E — F>FE is a vector bundle homomorphism
over Fyf (Corollary 2). We put Fy o Fi(f) := Fo(Fif) : Fro Fi(E) —

Fy 0 F1(G) and get a fibered map covering f. It follows that F; o [ is a
product preserving gauge bundle functor on VB.

14. We now compute the pair (AF2°F1 VF20F1) corresponding to the
composition Fy o I} of product preserving gauge bundle functors F; and Fb
on VB.

By tensoring Af1 and A2 we obtain the Weil algebra Af* @r Af2. By
tensoring V' and V2 we obtain the module V' @ V2 over A @p A,

PROPOSITION 4. (AF20F1 Y Feoft) o (AP @p AF2 VI @ V1),

Proof. We have to construct an algebra isomorphism /i : A" @ A2 —
AF2°F1 and a module isomorphism v : VIt @p V2 — V2! gyer f1.

For any point a € At the map i, : R — A i,(t) = ta, t € R, is
a homomorphism between vector bundles idg : R — R and id r, : AfT —
A1, Applying Fy, we obtain Fy(i,) : A2 — AF2°F1 Define i : AF x A2 —
AF2olr (a,b) = Fy(ig) (D), a € AT1) b € AF2. Using the definitions of the
algebra operations, one can show that g is R-bilinear. Then (by the universal
factorization property) we have a linear map g : At @p AF2 — AF2ef,
fi(a ®b) = Fy(ig)(b), a € A1 b € AF2. Considering bases (over R) of Aft
and A2 and using the product property for F,, one can prove that i is an
isomorphism. Using again the definitions of the algebra operations, one can
show that p is an algebra isomorphism.

For any point u € V%1 the map i, : R — VI i, (t) = tu, t € R,
is a homomorphism between the vector bundles R — pt and V1 — pt.
Applying F,, we obtain Fy(i,) : VI2 — VI2efi Define v : VI x V2 —
VEeEL By w) = Fy(iy)(w), u € VI w € V2. Similarly to i, 7 is also R-
bilinear. Then we have a linear map 7 : V1 @p V2 — VIR gy w) =
Fy(iy)(w), u € VI, w € V2, Similarly to ji, 7 is a linear isomorphism.
Using the definitions of the module operations, one can show that v is a
module isomorphism over fi. m

COROLLARY 3. Fyo F} = F o Fj.

Proof. The exchange isomorphism (A1 ®@p A2 VI @p VI?)
(AF2 @p ATV V2 @p V1) induces the natural isomorphism F, o Fy
Fl 9] FQ. |

111
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