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Abstract. Let D and 9D denote the open unit disk and the unit circle of the complex
plane, respectively. We denote by Pp (resp. Py;) the set of all polynomials of degree at
most n with real (resp. complex) coefficients. We define the truncation operators Sp for
polynomials P, € Py, of the form P, (z) := Z?:o ajzj, a; € C, by

n
~ 4 ~ a .
Su(Pu)(2) = 3@, @ i= 7 Lymindlag), 1)
7=0 /

(here 0/0 is interpreted as 1). We define the norms of the truncation operators by

| max,cyp |Sn(Pn)(2)]
[Snll5iop == sup
[Snlloo! P,eP, Max;cpp |Pn(2)]
”SnHCOr%p = sup maX,ecoD |S7L(P”)(Z)|
00,0D " .

P,epPc MaXyeoD [Pr(2)]

Our main theorem establishes the right order of magnitude of the above norms: there is
an absolute constant ¢; > 0 such that

avV2n+ 1< [[Sullshp < 1Snll05, < Ve + 1.

This settles a question asked by S. Kwapien. Moreover, an analogous result in Lp(0D) for
p € [2,00] is established and the case when the unit circle D is replaced by the interval
[—1,1] is studied.

1. New result. Let D and D denote the open unit disk and the unit
circle of the complex plane, respectively. We denote by P,, (resp. Py ) the set
of all polynomials of degree at most n with real (resp. complex) coefficients.
We define the truncation operators S,, for polynomials P, € Py, of the form

P,(z):= Zajzj, a; € C,
5=0

2000 Mathematics Subject Classification: Primary 41A17.

Key words and phrases: truncation of polynomials, norm of the polynomial truncation
operator, Lovasz—Spencer—Vesztergombi theorem.

Research supported, in part, by NSF under Grant No. DMS-0070826.

[287]



288 T. ERDELYI

by

=0

|

(here 0/0 is interpreted as 1). In other words, we leave a coefficient a;
unchanged if |a;| < 1, while we replace it by a;/|a;| if |a;| > 1. We define
the norms of the truncation operators by

v maxzeop [Sn(Fn)(2)]
I1Snll5hp = sup - :
(

pcp, Max,ecop |Pn(z)]
15, |00 = sup maxcop |Sn(Pn) z)|.
’ P,epg MaXzepD | P (2)]

Our main theorem establishes the right order of magnitude of the above
norms. This settles a question asked by S. Kwapien.

THEOREM 1.1. There is an absolute constant ¢; > 0 such that
aV2n+ 1 < [|1S,]5%p < ISallsesp < V2n+ 1.

In fact, we are able to establish an L,(0D) analogue of this as follows.
For p € (0,00), let

150 (Pn)llz, o0)

a8k =
P,eP, HPnHLp(aD)
T e Gy [CT:)
D, ’ ’

p.ere  |IPullz,oD)
THEOREM 1.2. There is an absolute constant c; > 0 such that
ex(2n+ 1) < |18, 195l < (1S, 508 < (204 1)/
for every p € [2,00).

Note that it remains open what is the right order of magnitude of
1Snlli3n and [[S,[l5%5 5 when 0 < p < 2. In particular, it would be in-
teresting to see if [|S, ()75 < c is possible for any 0 < p < 2 with an
absolute constant c. We record the following observation in this direction,

due to S. Kwapien.

THEOREM 1.3. There is an absolute constant ¢ > 0 such that

I1Salli5p = cv/logn.

If the unit circle 9D is replaced by the interval [—1,1], we get a com-
pletely different order of magnitude of the polynomial truncation projector.
In this case the norms of S,, are defined as before with [—1, 1] in place of
oD.
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THEOREM 1.4. We have
22 <8, 5 gy < ISl < V2R T 82

2. Lemmas. To prove the lower bound of Theorem 1.1 we need two
lemmas. The first one is from [LSV].

LEMMA 2.1 (Lovéasz, Spencer, Vesztergombi). Let ajr, j = 1,...,n1,
k =1,...,ng, be such that |ajx| < 1. Let also p1,...,pn, € [0,1]. Then
there are choices

Eke{_pk)l_pk}a kzlv"'anQa
such that for all j,

n2
’ Zékamk’ < Cy/nq
k=1
with an absolute constant C.

Our second lemma is a direct consequence of the well known Bernstein
inequality (see Theorem 1.1 on p. 97 of [DL]) and the Mean Value Theorem.

LEMMA 2.2. Suppose Q. is a polynomial of degree n (with complex co-

efficients) and
2m
0, = — ),
P (14n>

zj = exp(ijbn), Qn(z)| <M, j=1,...,3n.

Then

(2)] < 2M.
ZHEI%IQ (2)| <

The inequalities below (see Theorem 2.6 on p. 102 of [DL]) will be needed
to prove the upper bound of Theorem 1.1.

LEMMA 2.3 (Nikol’skil Inequality). Let 0 < ¢ < p < oo. If P, is a
polynomial of degree at most n with complex coefficients then

1/q-1/p
2nr + 1
| Pallz,op) < ( o ) I Prllz, o)

where = r(q) is the smallest integer not less than q/4.

The next lemma may be found in [Ri] or [Er].
LEMMA 2.4 (Erdés). Suppose that zo € C and |zo| > 1. Then
P < [Tonle) 2 max [Pa@)]. P € P,

)

where To, € Pay, defined by

Ty, () := cos(2narccosz), z € [—1,1],
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is the Chebyshev polynomial of degree 2n. As a consequence, writing
Ty (2) = 227~ 1H 2 -z zj € (0,1),

we have
max |P,(2)] < 8"/2? max |P,(x)|.

Z€0D z€[-1,1]
3. Proofs
Proof of Theorem 1.1. We apply Lemma 2.1 with n; = 3n, no = n,
0, :=exp(2r/(3n)), a;i = exp(ijkb,),
and p; = ... = p, = 1/3; with the choices
er €{-1/3,2/3}, k=1,...,n,

coming from Lemma 2.1, we define

z)=3 Z ez
j=1

Then @, is a polynomial of degree n with each coefficient in {—1,2}, and
with the notation

zj =exp(ijbn), Jj=1,...,3n,
we have

|Qn(z;)] <3CV3n, j=1,...,3n.

Hence Lemma 2.2 yields

(3.1) max |Q,(2)| < 120V

z€0D

In particular, if we denote by m the number of indices k for which e, = 2/3,
then

13m —n|=[2m — (n —m)| = |Qn(1)| < 12CV/n,
hence
(3.2) 15,(Qn)(1)] = |m — (n —m)| = |2m — n| > n/3 — 8Cv/n.
Now (3.1) and (3.2) give the lower bound of the theorem.
To see the upper bound, observe that Lemma 2.3 implies

von +1 Van+1
max | (Pn)(2)] < ?IIS w(Pr)ll2.6D) < ?IIP L2 0D)

2n + 1 max | P, (z)]
2€0D

for all polynomials P, of degree at most n with complex coefficients. This
proves the upper bound of the theorem. m
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Proof of Theorem 1.2. Let p € [2,00). Using (3.2) and the Nikol’skii-type
inequality of Lemma 2.3, we obtain

(3-3) 19:(Qu)l 1, (op) = cin /P
with an absolute constant ¢; > 0. On the other hand, (3.1) implies
(3.4) 1Qullz,op) < con'/?

with an absolute constant co > 0, and the lower bound of the theorem
follows.
To see the upper bound, observe that Lemma 2.3 implies

o 41\ /2P
15,y < (2550 ) IS, (P) s

on 41\ /2P
(%) iden
< (2n+ D)YEYP|PylL, op)

for all polynomials P, of degree at most n with complex coefficients. This
proves the upper bound of the theorem. m

Proof of Theorem 1.3. Let n = 2™%2 — 2. Consider the polynomial

1 ok —2k
Py(2) —42m+—1H<1+Z Tz >

Then, for z € 0D,
m ok _ok
z¢ +z
=4 14—
II(1+ =),

k=0

and hence ||P, ||z, op) = 4. Also,

Pu(z) = Su(P)(2) = 22" (34 30 + 7))
k=0
Let .
Ro(2) =3+ (2% +27%)
k=0
Then

150 (Pa)ll 00y 2 150 (Pn) = Prllzyop) = [1Pallzyop) = [1Bnll L, o0) =

We will prove that || R, ||z, ap) > ¢/m for some absolute constant ¢ > 0.
It is easy to see that if b, ag, aq, ..., a, are complex numbers and

2)=0b+ Zak(z2k + z_zk),
k=0
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then
4 o 2\ 1/2
|||y 0p) < \/g(!b\ + Z |2ak] ) )
k=0
Therefore
[ RnllLyop) < V39 +4(m + 1).
Moreover,

| Rullzoapy) = V9 + 2(m + 1).

By Holder’s inequality,

2/3 1/3
1Rl o 1Rl S0y = 1Rl Lacom).
Hence we obtain
4 1/3
(V3V9 +4(m + D)2 Rull p) = VO +20m + 1),

and thus || R, 1, op) > ¢v/m. This gives

S (P,
H ( )HL (8D) Z C/\/E Z C”\/@
1 Pnll Ly (o)

with absolute constants ¢/ > 0 and ¢’ > 0. =

Proof of Theorem 1.4. First we prove the upper bound. Using Lemma
2.4 we obtain

<
2y 15 (PR < ragg 15 (PG

on 4+ 1) /2
g( - ) 150 (Pa) | aon)

o+ 1\
<(%5) IR dsaon)

2 1 1/2
g( nt ) 8"/2\/27 max | Pp(z)],
27T ze[_lfl]

which proves the upper bound of the theorem.
Now we turn to the lower bound. We define Q),, € P4, by

Qn(z) = 22"(1 = 22)" = 22"

<
i M:
o
|
—_
N—
<.
N
o
N—
N
[\V]
<

Then

(35) w100 = (1)
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Also,

3

Sn(Qn)(2) = 22" (_1)jz2j7

hence for every positive even n,

(3.6) [Sn(@n)(1)] = 1.
Now we deduce the lower bound of the theorem by combining (3.5) and
(3.6). m
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