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Abstract. We show the consistency of “there is a nice o-ideal Z on the reals with
add(Z) = N; which cannot be represented as the union of a strictly increasing sequence
of length w1 of o-subideals”. This answers [Borodulin-Nadzieja and Glab, Math. Logic
Quart. 57 (2011), 582-590, Problem 6.2(ii)].

1. Introduction. Borodulin-Nadzieja and Glab [3] studied generaliza-
tions of the Mokobodzki ideal and they showed that those o-ideals do not
have Borel bases of bounded Borel complexity. In [3, Section 5| they noticed
that the unbounded Borel complexity of bases implies that the additivity of
the o-ideal under consideration is X;. This observation exposed the heart of
a result of Cichoni and Pawlikowski |5 Corollary 2.4] and showed the im-
portance of the existence of a strictly increasing wi-sequence of o-subideals
which add up to the whole ideal.

Therefore Borodulin-Nadzieja and Glab introduced a new cardinal invari-
ant cofin(Z) associated with non-trivial o-ideals Z: the minimal length of a
strictly increasing sequence of o-subideals with union Z (see Definition .
They showed that the additivity of the o-ideal Z is not larger than cofin(Z)
(see [3, Proposition 5.2] or Theorem here), and in [3, Problem 6.2(ii)]
they asked if the two invariants can be different. In the present paper we
answer this question in the affirmative.

In the second section we define the relevant cardinal invariants, and we
point out situations when cofin(Z) < cof(Z) for the meager and the null
ideals. In Section 3 we introduce a nicely definable o-ideal Z; with a Borel
basis consisting of IIJ sets. Then we show that, consistently, add(Zy) = Ny

while cofin(Zy) = Ry (Corollary [3.15).

Notation. Most of our notation is standard and compatible with that
of classical textbooks (like Bartoszynski and Judah [I]). However, in forc-
ing we keep the older convention that a stronger condition is the larger
one.
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e Ordinals will be denoted with initial letters of the Greek alphabet (a—()
and integers (finite ordinals) will be denoted by i, j, k, £, m, n. Letters &, A,
will denote uncountable cardinals.

e By a sequence we mean a function whose domain is a set of ordinals.
Sequences will be denoted by letters n, v, p, 0,<, ¢, (with possible indices).

For two sequences n,v we write v <1 1 whenever v is a proper initial
segment of 7, and v < 1 when either v << n or v = n. The length of a
sequence 7 is the order type of its domain and it is denoted by £g(n).

e The power set of a set X is denoted by P(X), the collection of all
subsets of X of size m is denoted by [X]™, and the collection of all finite
subsets of X is denoted by [X]<®o.

e The Cantor space “2 is the space of all functions from w to 2, equipped
with the product topology generated by sets of the form {n € “2: v < n}
for v € ¥>2.

e A family Z of subsets of X which is closed under finite unions and
taking subsets is called an ideal on X. It is a proper ideal if X ¢ Z (i.e.,
T # P(X)) and it is a o-ideal if it is closed under countable unions. The
o-ideal of meager subsets of the Cantor space “2 is called M and the o-ideal
of Lebesgue null sets is N.

e For a forcing notion P, all P-names for objects in the extension via
P will be denoted with a tilde below (e.g. A, ). The canonical name for
a P-generic filter over V is denoted Gp. The Cohen forcing for adding &
many Cohen reals in “2 is called C, (so a condition in Cy, is a finite function
p : dom(p) — 2 with dom(p) C k x w and the order of C, is the inclusion).
The forcing C is C;.

2. cofin and M, N

DEFINITION 2.1. Let Z be an ideal on X . We define the following cardinal
characteristics of Z:

(1) add(Z) =min{|A|: ACZ & JA ¢TI}

(2) cof(Z) =min{|B| : BC I & (VA€ Z)(3B € B)(AC B)};

(3) cofin(Z) is the minimal limit ordinal v for which there exists a se-
quence Z = (Z,, : a < «y) such that

(2) T =Ug<r Za

(b) Zo, € I for o < f < 7y, and

(c) each Z, is a o-ideal

(or 0o if there is no sequence Z as above);

(4) cofin™ (Z) and cofin*(Z) are defined similarly to cofin(Z), but clause
(c) is replaced by (¢)~ and (c)*, respectively, where

(¢)~ each Z, is an ideal;
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(c)* each Z, is closed under taking subsets (i.e., B C A € Z, implies
B e 1,);

(5) cofin™(Z) is the minimal limit ordinal v for which there exists a
sequence (Z, : a < 7) such that clauses (a)-(c) of (3) above are
satisfied and

(d) all singletons belong to Zy.

If 7 is a non-principal ideal (i.e., cof(Z) > Rg), then cofin™(Z) is a well
defined cardinal and cofin™ (Z) < cof(Z). To see this, pick a basis {B¢ : { <
cof (Z)} C T for Z. Let (p be the first ordinal ¢ < cof(Z) such that for some
set B € Z every member of 7 can be covered by finitely many elements of
{B: : € < (} U{B}. Necessarily, (o is a limit ordinal. Let B* € Z be such
that {B: : € < (o} U {B*} generates Z, i.e., every set in Z can be covered
by B* and finitely many sets B, with ¢ < (. For ¢ < (o let Z; be the
ideal generated by {B: : ¢ < ¢} U{B"}. Then Z = [, Z¢ and, by the
minimality of (o, the sequence (Z;: ¢ < (o) does not stabilize. Consequently,
we may choose an increasing sequence ((, : o < cf({p)) cofinal in (y and
such that (Z¢, : a < cf((p)) is a strictly increasing sequence of ideals with
union Z.

The cardinal invariant cofin was introduced by Borodulin-Nadzieja and
Glab in [3, Section 5|. It has the flavor of the altitude of Boolean algebras (see
van Douwen, Monk and Rubin [9] p. 236]), but the two cardinal coefficients
seem to be unrelated.

THEOREM 2.2 (Borodulin-Nadzieja and Gtab [3, Section 5|). Let Z be a
non-principal ideal of subsets of X. Then
add(Z) < cofin*(Z) < cofin™ (Z) < cof(Z),
cofin™ (Z) < cofin(Z) < cofin™ (Z).

PROPOSITION 2.3. Let k = &0 be an uncountable cardinal.
(1) The Cohen algebra C,; for adding k many Cohen reals forces that
add(M) = cofin(M) = cofin™ (M) = Ry < cof (M) = x = 2%,
(2) The Solovay algebra B, for adding k many random reals forces that
add(N) = cofin(N) = cofin™ (V) = Ry < cof(N) = x = 2%,

Proof. (2) In both cases the proof is essentially the same, so let us argue
for the Solovay algebra only. Represent  as the disjoint union x = |, <y Ke
where each K. is of size k. For ¢ < wy set @ = min(K,) and A, = U§<s K.

Suppose that 7 = (r, : @ < k) is a By-generic over V, so r, € “2
are random reals, and let us argue in V|[7]. For each ¢ < w; let Z. be the
o-ideal generated by singletons and the family of all Borel null sets coded
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in V[rg : a € A;]. Then (Z; : € < wy) is an increasing sequence of o-ideals,

Ty contains all singletons and N = J, <w; Le. Moreover, for each ¢ < wy,

B:={ze“2: (Vn<w)(x(2n) =714.2n))} € Zo41 \ Z..

Why? Clearly, B is a Borel null set coded in V[ry : @ € Act1], s0 B € T 1.
Suppose B; are Borel null sets coded in V[r, : @ € A.] and z; € (“2)V (for
i <w). Choose z* € {x € 2NV : (Vn < w)(xz(2n) = 0)}\{zi+7ra. : 1 <w}.
Then z* 4 r,._ is a random real over Vr, : a € A.] and consequently
¥ 4714, € B\ (U<, BiU{z; : i <w}). Thus we may conclude that B ¢ 7.. =

DEFINITION 2.4 (Rostanowski and Shelah [0, Definition 3.4|). Let Z be
an ideal of subsets of a space X and o*, 8* be limit ordinals. An o™ x 5*-base
for T is an indexed family B = {B, 3 : a < o* & < *} of sets from T
such that

(i) B is a basis for Z, i.e., (VA € Z)(3B € B)(A C B), and
(ii) for each ag, a1 < a*, By, /1 < /* we have

Baoﬁo - Boqﬁl & ag <o & By < B

It follows from the results of Bartoszynski and Kada [2] (for the meager
ideal) and Burke and Kada [4] (for the null ideal) that for any cardinals
and A of uncountable cofinality we may force that M has a k x A-basis,
and we may also force that N has a k x A-basis. In [6, Theorem 3.7] we
constructed a model in which both ideals have k x A-bases.

PROPOSITION 2.5. Let k, A be regular uncountable cardinals, with K < A.
(1) If Z is a o-ideal on a space X and I has a k X A-base, then

k =add(Z) = cofin(Z) and cof(Z) = A.
(2) There is a ccc forcing notion P forcing that 2% = \X0 and

(i) the o-ideal N has a k x A\-base {Aqp : a < K, B < A} with the
property that

(&7s) > (03] V ﬁO > ﬁl = |Aoco,ﬂo \ Aoq,ﬁl‘ = 2N05

(ii) the o-ideal M has a Kk x X\-base {Bqg:a < K, < A} with the
property that

ag>a1 V Po> P = ‘Bao,ﬂo \ Bal,ﬂ1| = 9%o,
In particular,
IFp “add(M) = add(N) = cofin™ (M) = cofin™ (N) = k and
cof (M) = cof (N) = \”.

Proof. (1) Assume that {B,3:a < K, f < Kk} is a K x A-base for Z. It
should be clear that then k = add(Z) and cof(Z) = A.
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Let us argue that cofin(Z) < s. For ¢ < k let Z; be the o-ideal generated
by the family {Ba g : a < ¢ & § < A}. Plainly, (Z¢ : ¢ < k) is an increasing
sequence of o-ideals such that Z = UC <rL¢c- We claim that Bey1,0 € Zeqq \Z¢.
Suppose that I C ((+1) x A is countable. Then we may choose 5* < A such
that I C (( 4+ 1) x 8* and consequently | J{Bas : (a,8) € I} C B¢ g«. But
Bet1,0 € Begr and s0 By € U{Bas : (o, 8) € I}. Now we may conclude
that BC+170 Qé Ic.

(2) The forcing notion Q" constructed in the proof of [6, Theorem 3.7]
has the desired properties (see [6l Remark 3.8|). =

3. cofin and Z;. We introduce here a nicely definable Borel ideal Zy
for which, consistently, add(Z;) < cofin(Zf). The proof of the consistency
will resemble Shelah [8, Chapter II, Theorem 4.6] (and thus also [7]). The
appropriate forcing notion is obtained by means of F'S iteration of ccc forcing
notions, however the iteration itself is forced too.

CONTEXT 3.1. Let us fix two strictly increasing functions f,g : w — w
such that for each n < w we have

2<g(n) < f(n) and Mg n%l—l'

fn

~—

DEFINITION 3.2.

(1) A null slalom below f is a function ¢ € [],_, P(f(n)) such that

limy, o0 |0(n)[/ f(n) = 0.

(2) Let Sy be the collection of all null slaloms below f and let Xy =
IL.<. f(n) be equipped with the natural product topology (so X is
a Polish space).

(3) For ¢ € Sy we define

[p] = {z € Xy : (370 <w)(z(n) € p(n))}.
OBSERVATION 3.3. Let ¢; € Sf (fori < w).

(1) [po] € la] if and only if (V>°n < w)(po(n) S 1(n)).
(2) There is ¢ € Sy such that | J;_[¢:] C [¢].

DEFINITION 3.4. Let Zy be the o-ideal of subsets of Xy generated by all
sets [p] for ¢ € Sy. Thus, by Observation
T = {AC Xy (Bp e SAC D).
We will construct a forcing notion PP forcing that add(Zy) < cofin(Zy),
but first we need several technical ingredients.

DEFINITION 3.5. For a cardinal x we define a forcing notion Q.
A condition p in Qf is a finite function such that dom(p) C s and for
some n = nP < w, for all ¢ € dom(p) we have p(e) € [],_,,[f(1)]9%.
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The order < = <qg of Qf is defined by letting p < ¢ if and only if
dom(p) € dom(g) and (Ve € dom(p))(p(e) < q(e)).
For e <k, a Qg—name 1/(5) is defined by

IFoi v(e) = J{p(e) 1 € € dom(p) & p € Gy}
OBSERVATION 3.6.

(1) The forcing notion Qf is equivalent to C,,, the forcing adding k many
Cohen reals.
(2) Ikqy “for every e < k we have v(e) € [, [f(7)]? 90 C 8§

DEFINITION 3.7. Let p be an infinite cardinal and ¢ = (¢¢ : ( < p) be a
sequence of null slaloms below f (so ¢ € Sy for ¢ < p). We define a forcing
notion Q7 ().

A condition in Qj,(p) is a tuple p = (kP,mP,uP,o?) = (k,m,u,0) such
that

(a) kym <w, 0 #u € [p]<M, o eI[,., P(f(i), and

(b) for each £ > k and ¢ € u we have [p¢(€)| < f(€)/(m - |ul).

The order < = = <qip y of Qy(¢) is defined by p < ¢ if and only if
(p,q € Q(¢) and) kP < kq mP < m4, u? C u?, oP < 09, and for each
Ce [kP, kq) we have

o(O1 < f(0)/mP and | J{pc(0) : ¢ € uP} C o%(¢).
We also define a Qj,(¢)-name ¢ by

“_Q* (@) S = U{O’p pE GQ*(¢)}

PROPOSITION 3.8. Let p1 be an infinite cardinal and p=(p¢ : (<p) CSy.
Then Qy,(p) is a well defined ccc forcing notion of size p and

oy “s €8 & UJled Sl ey
C<p

Proof. First note that if p € Qj(¢) and m = mP, k = kP + 1, u = u?
and 0 = 0P (U, ¢ (kP)), then (k,m,u, o) € Q},() is a condition stronger
than p. Hence we may conclude that Ibqx () < € [[;, P(f())-

Also, if p € Q(¢) and m > mP, then we may find k > k” such that
loc(0)] < f(€)/(m-|uP|) for all ¢ € vP and ¢ > k. Let u = v” and o in
[Tick P(f(i)) be such that o(¢) = oP(¢) for £ < kP and o(€) = e, ¥c(£)
for £ € [kP, k). Then (k,m,u,0) € Qj(¢) is a condition stronger than p and
it forces that |g(¢)| < f(£)/m for all £ > k. Hence we may conclude that
Fau) € € S
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It follows from the definition of the order of Qj, () that
plFgs ) (V0= KP)(VC € uP)(pc(f) € <(0)),

and hence easily IFqx 5) Uc<,lec] € [<]-
Let us argue now that Qj,(¢) satisfies the ccc. Suppose (pe : € < wi) C
QZ(@). For each € < wy, we may find K¢ > kP< such that

(@) (V0= K°)(YC € uP*) ([ (O)] < F(6)/(2 - [ub<] - mP=)),

and define p* € [[, - P(f(i)) so that p°(£) = oP=(£) for £ < kP and
p°(€) = Uceure p¢(€) for £ € [kP=, K€). Then we may find an uncountable set
S Cwy and K*,m*, p*, £* such that for all € € S:

(@)2 K* :KE, m* :mps’ p* :pE and |u5| = /*.

Consider distinct €g,e; € S: letting u* = u® U u®' we get a condition
(K*,m*,u*, p*) € Q},(¢) stronger than both p., and p,. =

DEFINITION 3.9. Let k < A be uncountable regular cardinals.

(1) A Y-iteration for k, A is a finite support iteration (Pg, Qs : 8 < a) of
cce forcing notions such that the following demands (®)1-(®)s are
satisfied.

(®)1 0 <a<Xand Qy = Qf is the forcing notion adding x Cohen
reals as represented in Definition [3.5 with Qf-names v(e) (for
€ < k) as defined there.

(®)2 For each B < a we have IFp, [Qg| < A.

(®)3 Let n < w. Suppose that (pc : ( < k) CPyand (§¢ : ( < k) C K
and o # 0¢ for ( < ¢’ < k. Then there are ¢ € Py, m > n,
v C Kk, and A¢ (for ¢ € v) such that

(i) Jvo[ = f(m)/(2- g(m)),
(ii) pc < g forall ¢ €w,
(i) A¢ € [f(m)]90™ (for ¢ € v) are pairwise disjoint sets,
(iv) qlkp, “ (V¢ €v)(v(6c)(m) = A¢) 7.
(2) The collection of all (dense subsets of) Y-iterations for x, A of length

< A which belong to H(3}) is denoted by Y,. It is ordered by the
end-extension of iterations <.

The condition [3.9(1)(®)3 implies that the null slaloms added at the first
step of a Y-iteration provide a family of sets whose union is not included in
any null slalom. Note that in [3.9(1)(®)3 necessarily |[v| < f(m)/g(m).

LEMMA 3.10. Assume k < A are regular uncountable cardinals. Suppose
that (Pg,Qp : B < ) is a Y-iteration for k, \. Then IFp, add(Zy) < k.



218 A. ROSLANOWSKI AND S. SHELAH

Proof. We know that for each ¢ < sk we have IFp, v(¢) € S (remember
Observation [3.6), and therefore Ibp, {[v(¢)] : € < K} C Z;. We are going to
argue that

e, (lv(e)] : e < v} ¢ 7.

Suppose towards a contradiction that this is not the case. Then we may pick
p € P, and a P,-name ® such that

plrp, ¢ € Sy & (Ve < k)(V¥n < w) (v(e)(n) C <~p(n))

(remember Observation [3.3]). Now for each € < k we pick a condition p. > p
and an integer n. < w such that

P IFp, (Vn > ne)(v(e)(n) C o(n) & |p(n)|/f(n) < 1/4).
For some n* < w the set S = {& < k : n. = n*} is of size . Apply[3.9(1)(®)3
to (pe:e€85) CPqand (e: e € S) C kand n =n* to find ¢ € Py, m > n*,
v C S, and A. (for € € v) such that conditions (i)—(iv) there hold. Then

glre, “ | JA: = [Jv(e)(m) C p(m) & [p(m)] < f(m)/4”.

ecv eev
But |J,e, Az| = [v| - g(m) > f(m)/2, a contradiction. =

CONTEXT 3.11. For the rest of this section we fix uncountable regular
cardinals k < A such that A" = \. Also, instead of “Y-iteration for k, \” we
will just say “Y-iteration”.

LEMMA 3.12.

(1) (Po,Qf) is a Y-iteration (of length 1).

(2) Assume that (Pg,Qp : B < ) is a Y-iteration of length o < X\ and Q
is a Po-name for a ccc forcing notion of size < (i.e., Irp, |Q| < Ii)
Then (Pg,Qgp : f < o) Py, Q) is a Y-iteration of length a+1. In
particular, N(Pg,@g : B < a)(Py,C) is a Y-iteration.

(3) If (P3,Qp : B < @) is a Y-iteration and Q is a Py-name for a
o-centered forcing, then (Pg,Qp : B < a)™(Py, Q) is a Y-iteration.

(4) If v < X is a limit ordinal and (Pg, Qg : 8 < ) is an FS iteration
such that (Pg,Qg : B < «) is a Y-iteration for every o < vy, then
(Ps,Qp : B <) is a Y-iteration.

(5) (Y2, <) is a <A-complete forcing notion (i.e., all chains of length <\
have an upper bound in Y7).

Proof. In all cases the only demand of Definition (1) that needs to be
verified is (®)s3.

(1) Let Q’g be the forcing notion adding x Cohen reals as described in
Definition Let n < w, 6¢ € k and p; € QF (for ¢ < k) satisfy the
assumptlons of - 3. By making conditions p¢ stronger and possibly
passing to a subsequence we may also assume that:
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x)1 O¢ € dom(p¢) for all { < k,
(*)1 o ¢
(x)2 for some m >n+2, for all ( < K, we have nP¢ = m (so p¢(e) €
[Tic, [ ()99 for e € dom(py)),
x)3 the family {dom(p;) : ( < Kk} forms a A-system of finite sets and
¢
for all ¢,{" < k the conditions p¢, pcr are compatible.

Pick any v C & of size [f(m)/(2-g(m))]. Since

o | atmy < T8 gy < TG0 SO ),
we may choose pairwise disjoint sets A¢ € [f(m)]? 9(m) (for ¢ € v). Now define
a condition ¢ € Qf so that dom(q) = (J{dom(p¢) : ¢ € v}, n? =m + 1 and
for e € dom(p¢) the sequence g(e) extends p¢(e) and ¢(d¢)(m) = A¢ (for
¢ €ev).

(2) Without loss of generality, for some ordinal v* < k we have IFp_“ the
set of conditions in Q is v*". Let n <w and p¢ € Payq, ¢ € K (for ¢ < k)
satisfy the assumptions of |3.9| -(1 3. We may make our conditions stronger
and we may pass to a subsequence so we may assume that o € dom(p¢)
and pe(a) = v < v* is an actual object, not a name (for ¢ < k). Apply the
assumption of. ®)3 for (Pg, Qg : B < a) to n,p¢la, é¢ (for ¢ < k) and
choose m > n, ¢* € Py, v C k and pairwise disjoint sets Ac C f(m) each of
size g(m) (for ¢ € v) such that

o [o] = f(m)/(2- g(m)), and
e ¢* is stronger than all p¢[a for ¢ € v, and it forces that v(d¢)(m) = A¢
(for ¢ € v).

Let g € Py41 be such that ¢la = ¢* and ¢(a) = 7.
(3) Assume that IFp,“Q is a o-centered forcing notion”, and fix a
P,-name F' such that

IFp“ F: Q — w is a function satisfying:
if 2o,..., 7, € Q, k <w, and F(zg) =--- = F(zx) =m
then the conditions z, ...,z have a common upper bound in Q.

Suppose that n < w and pc € Pat1, 8¢ € K (for ( < k) satisfy the as-
sumptions of |3.9| - 3. By making the conditions stronger and passing to
a subsequence we may demand that o € dom(p¢) and for some M < w we
also have p¢la lFp,“ F(pe(o)) = M 7. Use the assumption of- 3 for
(Ps,Qp : B < a) for n,p¢la,d¢ (for ¢ < k) to find m > n, ¢* € ]P’a, v Q K
and pairwise disjoint sets A € [f(m)]9(™ (for ¢ € v) such that

e [v| = f(m)/(2-g(m)), and

e ¢* is stronger than all p¢ o for ¢ € v, and it forces that v(d¢)(m) = A¢

(for ¢ € v).
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Then also the condition ¢* forces that F(p¢(a)) = M for all { € v, and thus
we may pick a Py-name g, such that ¢* IF “ g, is a condition stronger than
all p¢(a) for ¢ € v™. Define ¢ € Py 1 by gla = ¢* and g(a) = qa.

(4) Let n,p¢,d¢ (for ¢ < k) be as in the assumptions of (1)(®)3. By
passing to a subsequence we may also demand that {dom(p¢) : ( < k} is a
A-system of finite subsets of v with root D. Pick @ <  such that D C «.
Since (Pg,Qp : B < a) is a Y-iteration, we may apply (1)(®)3 to n,d¢ and
pcla (for ¢ < k). This will give us ¢*,v and A¢ (for ¢ € v) satisfying (i)—(iv)
there (with p¢[a in place of p¢ and ¢* in place of ¢). Let ¢ € P be such that
dom(q) = dom(g*) U J{dom(p¢) : ¢ € v} and ¢qfa = ¢* and ¢(8) = p¢(B3)
whenever ¢ € v, 8 € dom(p¢) \ a.

(5) Follows from (4). m

LEMMA 3.13. Assume that

(a) No < p < K is a reqular cardinal, o < X is a limit ordinal of cofinality
woand (a(C) : ¢ < u) is a strictly increasing sequence cofinal in «,

(b) (Ps,Qp : B < ) is a Y-iteration,

(¢) @ = (pc: ¢ < p)is aPygy-name for a p-sequence of null slaloms
below f (so Ik @¢ € Sy),

(d) for each ¢ < p we have Irp, . Qac)y = C with ¢¢ being the Py ¢y y1-
name for the Cohen real in “2 added by Qu (),

(e) 7¢ is a Po-name for an element of 2 (for ¢ < p),

(f) for ¢ < u, P is a Po-name for a null slalom below f such that

. i) af cc(i) =1¢,
IFe, “pli) = {?C() fecli) =1¢
- 0 if cc(i)=1—1¢
and 1} = @C 2 ¢ < p) is the resulting Po-name for a p-sequence of
null slaloms below f.

for each i < w?”,

Then (Pg,Qgp : B < a) (Pa, Q},(¢)) is a Y-iteration of length o + 1.

Proof. First we consider the case when p = k and let us argue that
condition [3.9(1)(®)3 holds for Pg1.

Let n < w, pc € Pog1 and 0¢ < & (for ¢ < k) be such that o # ¢ for
¢ < ¢’ < k. For each ¢ < k pick a condition p’C € Po41 stronger than pe and
such that

()1 a € dom(p’c), and for some k¢, mS,u¢ and o¢ (objects, not names)

we have p’C fa lFp,, pg(a) = (k¢,mS,us, o)
Choose conditions p’C’ € P, stronger than p’C (so also p’c’ > p¢), and such
that pf/(a) = p(a) and for all ¢:

(%) for each € € u¢ we have p'C’ lalbp, “7. = tg ” for some tg (an object,

not name),
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(%) for some i¢ < w and all ¢ € uS,

a(e) € dom(py) and pf(ale)) € 9 are actual objects, not names.

Since each @ is a Py (g)-name, we may decide the initial segments of . by
strengthening pc[ a(0) only (i.e., without changing pC[[ a(0), ). Therefore,
after using a procedure similar to that in the proof of 3.8 for each ¢ < &
we may find a condition pC € Poy1, K¢ > kS + i€ and a sequence p¢ €

[Lic k¢ P(f(i)) such that
(*)a pc < p < pf and p¢[a(0), @) = p¢l[e(0), ), and
(*)s p¢ ke, pE(a) = (KC m<,u, p°)”.

Next we may find a set S C & of size k, and K*, m*, p*,¢* and £* such that
(¥)g K* = K¢ m*=mS, p* = p¢, |u¢| = ¢* and i = i*, for all ¢ € S,
(¥)7 {uS : ¢ € S} is a A-system of finite subsets of x with root U,

x)g {dom(p}) : ( € S} is a A-system of finite subsets of o + 1 with
¢

root D,
(¥)g for some €* < k we have D \ {a} C a(e*) and U = u¢ Ne* for all
¢eSs.
Since (Pg, Qs : B < a(e)) is a Y-iteration, we may apply [3.9) . ®)3 to

(p¢la(e”),d¢ : ¢ € S) and n. This will give us v C S, qo € Pyex), m > n and
A¢ € [f(m)]9'™ for ¢ € v such that

()10 » [o] 2 £(m)/(2 - g(m)) and pEla(=*) < go for all ¢ € v,

o Ac N Ag = 0 for distinct ¢, ¢’ € v, and
® qo IFp, vy “ (VC € 0)(v(Sc)(m) = A) ™.
Next, since @ are P, )-names, we may pick g1 € Py x), 1 > qo, K > K* >
i* and p: € [[;.x P(f(3)) (for € € U) such that
Q1 1Fp o (Ve € U)(pe K = pe)”

and

0 e, ) (V5 2 K)(VC € 0) (Ve € u®)(p:=(7)] < f()/ (o] - € - m*)) .
Define q € P41 so that
dom(q) = dom(q1) U U{dom(p}) : ¢ € v},
qla(e) = q,
if ¢ € vand B € dom(py)\ (a(e™)U{a(e) : € € ut}), then ¢(3) = p:(B),
o if ( € v and ¢ € uf \ ¥, then g(a(e)) € X2 is such that Py (o ( )) =
pi(ale)) < q(ale)) and for i € [i*, K) we have g(a(e))(i) =1 — £,

e ¢(a) = (K,m*,ut,o"), where ut = J{u® : ¢ € v} and oF €

[L;<x P(f(@)) is such that p* < o and o1 (i) = .y pe(i) for i €
[K*, K).

The rest, when p = &, should be clear.
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Let us assume now that p < x and again, to argue for (1)(®) 3, SUppose
that n < w, pc € Poq1 and §¢ < k (for ¢ < k) are such that d¢ # ¢ for
¢ < ¢’ < k. Passing to stronger conditions we may assume that, for each
¢ <k,

o €dom(py) and p¢lalFp, “pe(a) = (K, mS,us,0°)”

(where k¢, mS, u¢, 0¢ are actual objects). For some £* < p and k, m,u, o the
set

S = {C < Kk :dom(pe) C ale”)U{a} & (S, m& ub, o) = (k:,m,u,a)}

is of size k. As before, (P3,Qp : B < a(e”)) is a Y-iteration, so we may
find v € S, o € Pyery, m > n and A¢ € [£(m)]9"™ for ¢ € v such that
demands listed in ()19 are satisfied. Let ¢ € Py41 be such that dom(q) =
dom(qp) U {a} and qla IF ¢(a) = (k,m,u,0). =

THEOREM 3.14. Assume k < A are uncountable reqular cardinals such
that \* = . Let H C Y} be generic over V and let Q = (Pq,Qq : v < \) =

UH € V[H] and Py = lim(Q). Then Py is a ccc forcing notion with a dense
subset of size A and

IFp, “MA_,(ccc) and MA(o-centered) and
add(Z;) = k and cofin™ (Z;) > kT and 280 =\ "

Proof. First note that the forcing with Y? does not add sequences of
ordinals of length <A (by Lemma [3.12|(5)). Hence in V[H] &, X are still
regular cardinals and A" = A.

Let us work in V[H].

Clearly Q is a Y-iteration for s, A of length \. Hence Py is a ccc forcing
notion, it has a dense subset of size A and forces that 2% = X (remember
3.9(1)(®)2, [3.12(2)). A canonical Pyx-name 7 for a real in [], ., Z, (where
Z,:in <w) €V, Z, #0) is a sequence (A,, T, : n < w) such that each
A, is a maximal antichain in Py, m, : A, — Z, and ¢ IFp,“n(n) = m,(q)”
for ¢ € Ay, n < w. For every Py\-name p for an element of Hn~<w Z,, there is
a canonical name 7 such that IFn = p. Also, if n is a canonical Py-name for
a real, then it is a Py-name for some o < \.

Let us argue that IFp, cofin™(Z;) > ™. If not, then for some infinite
regular cardinal p < k and Py-names Z, ¢¢ (for ¢ < p) we have

(®)1 IFp, “9c € Sy and I C Zy is an ideal”,
and for some p € Py,

(®)2 plie, “ Uee, Ze = Zp and (V¢ < p)([pc] ¢ L)

We may assume that all ¢ are canonical P, -names for some ag < A.
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Suppose now that ¢ < p and ¢¢ is a canonical Py-name for a real in “2.
Let ng, 3/1% be Py-names for elements of Sy such that for each 7 < 2 we have

« 7 QOC(TL) lf NCC(TL) = i’ ”
I+ n)=19 - for each n < w”.
Bt ) {@ if ce(n) =1—i
Then g, [oc] = [02 U [l so p Ibe,“ [0 ¢ Zc or [¥}] ¢ Zc™. Let
7 = 7((,¢c¢) be a canonical Py-name for a member of {0,1} such that
AL

Cramm 3.14.1. For some sequence (a((),cc, ¢ : ¢ < p) we have

(1) (a(C) : ¢ < p) C A is strictly increasing with oy < a(0), and for each
¢ < p:

(ii) P,y Qage) = C and ¢¢ is the canonical Pyc)y1-name for the Co-
hen real in 2 added by Qg ¢y, and 7((,c¢) 15 a Py(cq1y-name (for a
member of {0,1}),

(iil) ¢ is a Py¢y1)-name for an element of Sy such that

. ~ [ec(n) if ce(n) =7(C cc),
Feoen "0e(m) = { 0 if co(n) =1—7(¢¢c)

(iv) if o =sup(a(() : ¢ < p), then lFp ., Qo+ = Q;‘;(z}), where 1} = (¢ :
¢ < p.

Proof of the Claim. We move back to V and we use a density argument
in Y2 above P = (Ps,Qp : B <ag+1) € Y2. Let T be a Y)-name for
the function 7(-, ) introduced (in V[H]) earlier. Note that if ¢ is a canonical
P3-name, Q* = <IP’;, Q5 : 8 < v) € Y and ¢ < p, then Q* forces that (,¢)
belongs to the domain of 7 and T(¢,¢) is a Y)-name for an element of V.

Suppose that Q = (I%, @/ﬁ : B < a) € Y) is a condition stronger than P
(so ag +1 <« and Qf = Qg for 8 < ap).

By induction on ¢ < p we build a sequence (Q¢, a((),c¢ : ¢ < ) such
that

()1 Q¢ = (P, Q1 B < a(()) € Vi (s0 £g(Q¢) = a(¢) +1 < N),
(X)g for ¢ < e < p we have

Q<yy Q¢ <y) Qe and a<a(() <a(e) <A,

(X)3 II—P;(C) @;(C) = C and ¢¢ is the canonical P;(C)

Cohen real in “2 added by Q/, (©)

(X)s Q¢y1 decides the value of T((,¢c) and forces (in Y7) that it is a
]P)’Oé(c_i_l)—name.

foralln <w?”,

4-hame for the
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The construction is clearly possible by Lemma/[3.12{2), (4). Then letting o* =
sup(a(€) : ¢ < p) we find that Q, = (P5, Q) : B < a*) € Y, is a condition
stronger than all Q¢ (for ¢ < p); remember (4) again. Moreover, if names
¢ are defined as in clause (iii), and 7¢ is the value forced to T'(¢, ¢¢) by Qc¢+1

(see (M)4 above), and ¢¢ are as described in (K)3, then the assumptions
of Lemma are satisfied. Therefore Q* = Q, " (Po+, Q5 (¢)) € Y2 is a
condition stronger than Q. This condition forces in Y7 that (a((), e P
¢ < p) satisfies the demands (i)—(iv). m

Let a(C),c¢, ¢ (for ¢ < p) and a* be as in Claim [3.14.1{(i)-(iv), so in

particular IFp , Qu = QZ(?) Let ¢ be a Py+41-name for the null slalom
added by Qg+ (see Definition . It follows from Proposition that

ke, JWd [ € Zy,
C<p

and hence, by (®)2, p IFp, (3e < pu)(Uc ] € Ze). Pick €* < p and a
condition g € Py stronger than p such that ¢ IFp, U<<u[1~bd € Z.+. Then also
q IF [tpe+] € Lo+ (remember (®)1), but this contradicts the choice of 7(g*, ¢o+)
and 7;05*.

To argue that IFp, MA,(ccc) note that every Py-name Q for a ccc
forcing notion on some 7* < k is actually a Po-name for some a < A.
Therefore by the standard density argument in Y7, for unboundedly many

B < A we have IFp, Qs = Q (remember 3.12(2)). Similarly we may justify
that IFp, MLA (o-centered).

It follows from Lemma that IFp, add(Zy) <k. Since IFp, MA ., (ccc),
we easily see that the equality is forced. m

COROLLARY 3.15. It is consistent that add(Zy) = Ry and cofin™ (Zy) =
cofin(Zy) = Ny.

4. Open problems. Can we get a result parallel to Corollary for

the null and/or meager ideals? Or even better:

PROBLEM 4.1. Let Z be either the meager ideal M or the null ideal A
Is it consistent that

add(Z) < cofin(Z) < cof(Z)?

The method used in the proof of Theorem gives the consistency of
add(Zy) < k & &1 < cofin™ (Zy). Can the gap be bigger?

PROBLEM 4.2. Is it consistent that add(Zy) = Ry < Roq < cofin™(Zy) ?

The cardinal invariant cofin introduced by Borodulin-Nadzieja and Gtab
has several natural relatives (or variants), some were listed in Definition
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Are those coefficients distinct or are they equivalent within the realm of nice
o-ideals?

PROBLEM 4.3. Is it consistent that for some Borel o-ideal Z on “2
we have cofin®(Z) < cofin™ (Z)? Or cofin™ (Z) < cofin(Z)? Or cofin(Z) <
cofin™(Z)?

Acknowledgements. Both authors acknowledge support from the
United States—Israel Binational Science Foundation (Grant no. 2010405).
This is publication 1022 of the second author.

REFERENCES

[1] T. Bartoszynski and H. Judah, Set Theory. On the Structure of the Real Line, A K
Peters, Wellesley, MA, 1995.

[2] T. Bartoszynski and M. Kada, Hechler’s theorem for the meager ideal, Topology
Appl. 146/147 (2005), 429-435.

[3] P. Borodulin-Nadzieja and S. Glab, Ideals with bases of unbounded Borel complezity,
Math. Logic Quart. 57 (2011), 582-590.

[4] M. R. Burke and M. Kada, Hechler’s theorem for the null ideal, Arch. Math. Logic
43 (2004), 703-722.

[5] J. Cichori and J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals,
J. Symbolic Logic 51 (1986), 560-569.

[6] A. Rostanowski and S. Shelah, Monotone hulls for N'N M, Period. Math. Hungar.,
to appear; arXiv:1007.5368.

[7] S. Shelah, Whitehead groups may not be free, even assuming CH. II, Israel J. Math.
35 (1980), 257-285.

[8] S. Shelah, Proper and Improper Forcing, Perspectives in Math. Logic, Springer, 1998.

[9] E.K.van Douwen, J. D. Monk, and M. Rubin, Some questions about Boolean algebras,
Algebra Universalis 11 (1980), 220-243.

Andrzej Rostanowski Saharon Shelah
Department of Mathematics Institute of Mathematics
University of Nebraska at Omaha The Hebrew University of Jerusalem
Omaha, NE 68182-0243, U.S.A. 91904 Jerusalem, Israel
E-mail: roslanow@member.ams.org and
URL: http://www.unomaha.edu/logic Department of Mathematics

Rutgers University

New Brunswick, NJ 08854, U.S.A.

E-mail: shelah@math.huji.ac.il

URL: http://www.math.rutgers.edu/ " shelah

Received 19 June 2013;
revised 8 December 20183 (5965)


http://dx.doi.org/10.1016/j.topol.2003.08.028
http://dx.doi.org/10.1002/malq.201020081
http://dx.doi.org/10.1007/s00153-004-0224-4
http://dx.doi.org/10.2307/2274013
http://arxiv.org/abs/1007.5368
http://dx.doi.org/10.1007/BF02760652
http://dx.doi.org/10.1007/BF02483101




	1 Introduction
	2 cofin and M, N
	3 cofin and If
	4 Open problems
	REFERENCES

