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CONFORMAL F-HARMONIC MAPS FOR FINSLER MANIFOLDS

BY

JINTANG LI (Xiamen)

Abstract. By introducing the F-stress energy tensor of maps from an n-dimensional
Finsler manifold to a Finsler manifold and assuming that (n—2)F(t)' —2tF(t)"” # 0 for any
t € [0,00), we prove that any conformal strongly F-harmonic map must be homothetic.
This assertion generalizes the results by He and Shen for harmonics map and by Ara for
the Riemannian case.

1. Introduction. Let M be an n-dimensional smooth manifold and
7w : TM — M be the natural projection from the tangent bundle. Let (x,Y)
be a point of TM with z € M, Y € T,M and let (z,Y*) be the local
coordinates on TM with Y = Y 82,-. A Finsler metric on M is a function
F:TM — [0,00) with the following properties:

(i) Regularity: F'(z,Y) is smooth in TM \ {0};

(ii) Positive homogeneity: F(x,\Y) = AF(z,Y") for A > 0;

(iii) Strong convexity: the fundamental quadratic form g = g;jdz’ ® da’
2 2

Let ¢ : M — M be a non-degenerate smooth map between Finsler
manifolds, i.e. ker(d¢) = {0}. Harmonic maps between Finsler manifolds
are defined as the critical points of energy functionals. They are impor-
tant in both classical and modern differential geometry. In the last decade,
some results on harmonic maps between Finsler manifolds have been ob-
tained ([4], [5], [7], etc.). In [3], He and Shen introduced the stress energy
tensor for ¢ and proved that any conformal strongly harmonic map from
an n-dimensional (n > 2) Finsler manifold to a Finsler manifold must be
homothetic.

In this paper, we are concerned with F-harmonic maps between Finsler
manifolds, which is a natural generalization of harmonic maps. Let F :
[0,00) — [0,00) be a C? function such that 7/ > 0 on (0,00). An F-
harmonic map is a harmonic map, a p-harmonic map and an exponential
harmonic map when F(t) = t, (2t)?/2/p and €, respectively. We deal with

is positive definite, where g;; =
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the F-stress energy tensor of maps between Finsler manifolds and discuss
conformal F-harmonic maps. We prove the following

MAIN THEOREM. Assume that (n — 2)F(t) — 2tF(t)" # 0 for any t €
[0,00). If ¢ is a conformal strongly F-harmonic map from an n-dimensional
Finsler manifold (M, F) to a Finsler manifold, then the map ¢ must be
homothetic.

REMARK. This theorem was obtained by He and Shen [3] for strongly
harmonic maps and by Ara [1] in the Riemannian case.

COROLLARY. Any conformal strongly p-harmonic map from an n-dimen-
sional Finsler manifold to a Finsler manifold must be homothetic (n>p>2).

2. Preliminaries. We shall use the following convention for index ran-
ges, unless otherwise stated:

1<di,j,...<n; 1<a,fB,...<m; 1<a,b,...<n-—1.

Let (M, F) be an n-dimensional Finsler manifold. Then F' determines
the Hilbert form and the Cartan tensor as follows:
OF . . . & Fog;; 0%F?

It is well known that there exists a unique Chern connection V on 7*T'M

with V4 d = wf aaj and w! = I'} da* satisfying
d(dz') — da’ /\w? = —da’ /\wi =0,
6Y’“
F

where §Y" = dY' + Njda?/, NI = 44, Y" — 5 AL AEYSY! and o/ are the
formal Christoffel symbols of the second kind for Gij-

The curvature 2-forms of the Chern connection V are

?kldﬂjk A 5Yl,

W=

dgz] gzkw _gjkw —2Auk

duw’ w Awh = _Ql Rzkldac Adat 4+ =

J F

where R! ki and P Py, are the components of the hh-curvature tensor and the
hv- curvature tensor of the Chern connectlon respectively.

Take a g-orthonormal frame {eZ =ul 7 } with e, = 51; 881 for each fibre
of ™T'M and let {w'} be its dual coframe, where 7 : TM — M denotes the
natural projection. The collection {wi,wfl} forms an orthonormal basis for
T*(TM \{0}) with respect to the Sasaki-type metric g;jdz’ ® dz? + g;;0Y" ®
0Y7. The pull-back of the Sasaki metric from 7'M \ {0} to the sphere bundle
SM is a Riemannian metric g = gijdxi @ dx? + Sgpw? @ w?. Thus the volume
element dVgps of SM may be defined as

dVsy = dv Awh A+ AW = Qda Adr,
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where dv = \/gi; dz, 2 = det(g;j/F), dr = 3,(=1)i"1YidY Ao AdY A
S ANdY™, de =dat A A da.
The volume form dVj; of an n-dimensional Finsler manifold (M, F) can
be defined by

1
dVyr = o(z) dx, U(:C):C ) S Qdr,
" SeM

where S, M = {Y € T,M : F(Y) = 1} is the fibre of SM at z and C,,_;
denotes the volume of the unit Euclidean sphere S™~! .

We quote the following lemmas:

LemMA 2.1 ([7]). For ¢ = ¢y’ € I'(7*T*M) and T = Tjjw' @ w’ €
I(@?*7*T*M), we have

divy ) = Z(veflw)ei + > YaPova,
; a,b

leg Z v H 627 ej) + Z Tip Paab,
a,b
where efl = uf% = uj (@ — N’l‘c ayk) denotes the horizontal part of e; and

Py = Py .

Let ¢ : M™ — M be a non-degenerate smooth map, i.e. ker(d¢) = {0},
and V be the pullback of the Chern connection on 7*(¢~1TM). We have

LeMMA 2.2 ([5]).
X (doU, dpV) = (Vx(doU), ddV) + (doU, V x (dgV'))
+2C(doU, d¢V, (Vx (dpFe,)),
A and X,U,V € I'(m*TM).

Let F : [0,00) — [0,00) be a C? function such that ' > 0 on (0, 00).
The F-energy density of ¢ is the function ex(¢) : SM — R defined by

er(9)(@,Y) = F(3ldg]°) = F (39" (2,Y )99/ gup(®.Y)),

where d¢(822) = O‘(‘ra andY =Y" 8*a =Y f‘(,ra.
We define the F-energy functional Ex(¢p) by
1
Er(¢) = c S er(¢) dVsm.
n—1
SM

We call ¢ an F-harmonic map if it is a critical point of the F-energy
functional.
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PrOPOSITION 2.3 ([6]). ¢ is an F-harmonic map if and only if

| (V.7£) dVerr = 0
SM
for any vector V€ I'(¢~'T M), where

(2.1) mF =Y (VenF(31dg*)dg)e;
+> {2F(31d6*)C (@a, dde;, V nddFey )

+ (Ve F'(31d6[*) C(ddes, dpe:, a)ea
+ F(31do|*)(V per C) (does, dde;, 8o )ea
+ 2]-"( |do|?)C (VFequSel, doei, €q)ea }
+ D F(31d01%) (o déey)ea Poab.
ab
Here 7 is called the F-tension field of ¢.
DEFINITION 2.4. ¢ is called a strongly F-harmonic map if 7r = 0.

REMARK. For Riemannian manifolds any F-harmonic map is actually a
strongly F-harmonic map.

3. The F-stress energy tensor. Let ¢ be a non-degenerate map from
a Finsler manifold (M, F) to a Finsler manifold (M, F'). The F-stress energy
tensor Sr(¢) is a tensor on SM defined by

Sr(¢) = F(3ldel*)g — F'(31do|*)¢"g
THEOREM 3.1. Let ¢ be a non-degenerate map from a Finsler manifold
(M, F) to a Finsler manifold (M,F). Then

divg SF(9)(Y) = — (77, dp(Y)).
REMARK. This result was obtained by He and Shen [3] for harmonic
maps and by Ara [I] in the Riemannian case.

Proof. From
Sr(9) = Sijw' @ w! = {F(51dd|*)i; — F(5]do|*) {ddes, de;) o' @ o’
and Lemma 2.1, we have, for X = x'e; € I'(zm*TM),

(3.1)  divg SF(9)(X) = (Vor S(9)(X. ¢) + D 2" Siv Paa
a,b

= Z{ (31d¢|*))w* @ w*

(§|d¢! )[(Vefwk) ® W+t @ (Vnwh) (X, ¢5)

J
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—{(v Hf’ Hldo®)) (dder, dpe))w* @ W'
+[F (!d¢| W(Vendd)er, dper) + F (5]d|*) (ddex, (V ndg)er)
+2F'(%|d¢|*)C (ddey, doe;, V Hdngen)]w 2w} (X, e;)

+ 3 F(3do)a" Pagi — Y F/(31d6[*)(do X, des) Paas
a a,b
= Zf’(l\d¢r2><vad¢ei,d¢ez->
+Zf’ L1dg|?)C(de;, dpe;, V xndpFe,)
—{ Ven ' (5ld0) (o X, doej) + F (31dl*){(V o do) X, dée;)
+;/(,|d¢‘ )(doX, (V rrdo)e;)
+2F'(31de|*)C(do X, dpe;, V enddFey)}
+ 3" F 1o Pagi — > F'(L1do|) (dp X, des) Paas
a a,b
= —{doX, (VnF'(3]d0|*)dp)e;)
+Zf’ L1dg|?)C(de;, dpe;, V xndpFe,)
—2]—"’( do|>)C(do X, doe;, V enddFen)
+Zf 11de]*)a" Paas Zf’ L1dg[2)(do X, des) Paap.

Let ¢ =}, F'(3|do>)C (dqf)e], doej, dpX)Fw", which is a global section
of m*T*M. By Lemma 2.1 and P,,, = 0, we know that

divg = > {(Vrep 7' (31d0 %)) Cldoe;, die;, dpX)
J
+ 7' (31dp|*)(V o C) (dope;, de, dp X))
+ 27 (31d¢|)C((V peudie;), dge;, dpX)

+ F'(31do*)C(doe;, dej, (V pendd X))},
which implies that

(3.2) Z]—"’ L1do|)C(doe;, dde;, V xndpFey,)

=divg e — Y (Ve F'(31d[*)C(dge;, dge;, dpX)
J



232 J. T. LI

= F(Ldo*)(V g C) (depe, de;, dp X))
J
- Z 2F (31do*)C((V pendge;), doe;, dpX)

—Zf' 31do*)C(ddes, dbei, APV pen X).

Substituting (3.2) into (3.1), we obtain
(33)  divy SF(6)(X)
= divgy = Y _{(Vreu F'(31do*)C(dpe;, dde;, dpX)
J

+ F(31d*)(V per C) (e, de;, dpX)

+2F (3|do [ )C((V pendee;), dde;, dpX)

+ F'(3|do|*)C(de;, de;, dpV pen X) }

—(doX, (Vo F' (3]do|)do)e;)

— 2F/(3|d6|*)C(do X, dge;, V. ndoFey)

+Zf 31de) 2" Pagi — Y F'(31d¢|*)(dp X, ddes) Paas

a,b
= — (77, do(X)) + divg
—Z]—"’ 11de|*)C (dge;, dpes, dpV pou X) +Z]—" L1dp|?) 2! Pag.

Setting X = Y = Fe, in (3.3), using the fact that C(d@Y,-,-) = 0,
V. nY =0 and Pyen = 0, we get
(3.4) divy S¥(6)(Y) = — (17, d6(Y)).

COROLLARY 3.2. Let ¢ be a non-degenerate map from a Finsler manifold
(M, F) to a Finsler manifold (M, F). Then

divg Sp(¢)(Y) = —(7p, dp(Y)).

REMARK. This result was obtained by Takeuchi [§] in the Riemannian
case.

DEFINITION 3.3. A map ¢ : (M, F) — (M, F) is said to be conformal if
¢*g = ng, where p € C(SM) and p > 0.

It is well known from [3] that p must be independent of Y, that is,
p=p(z).

DEFINITION 3.4. A map ¢ is called homothetic if p is a positive constant.

Next we have
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ProproOSITION 3.5. Let ¢ be a non-degenerate map from an n-dimen-
sional Finsler manifold (M, F) to (M, F). Then Sx(¢) = 0 if and only if ¢
is conformal. In this case the conformal factor p of ¢ satisfies F(nu/2) —
uF(np/2) = 0.

Proof. (1) If F(t)—2F(t)" = 0 and ¢ is conformal, then we have |d¢|*> =
> {doe;, dpe;) = np, which implies that

55(0) = (F(on/2) — i (un/2)g = (7(0) = 2270 )9 = .
(2) T S7(¢) = 0, we have F(5|d¢[*)g = F'(5|d¢[*)¢"7, ie. 9 = pg,

where p = F(5]d¢|?)/F'(3]d¢[*). Then ¢ is conformal and F(nu/2) =
pF' (np/2). =

COROLLARY 3.6. Let ¢ be a non-degenerate map from an n-dimensional
Finsler manifold (M, F) to (M,F). Then Sy(¢) = 0 if and only if n = p
and ¢ is conformal.

REMARK. This result was obtained by He—Shen [3] for harmonic maps.

MAIN THEOREM. Assume that (n — 2)F(t) — 2tF(t)" # 0 for any t €
[0,00). If ¢ is a conformal strongly F-harmonic map from an n-dimensional
Finsler manifold (M, F') to a Finsler manifold, then ¢ must be homothetic.

Proof. Since ¢ is conformal, we have Sr(¢) = (F(nu/2) — pF' (nu/2))g;
from this, together with Lemma 2.1 and Theorem 3.1, it can be seen that

0= divSx(¢)(Y)
= Vo {(F(np/2) — pF (njs/2))656' © I H(Y.ex) + > S#(6)(Vi 1) Paat

a,b
= Vyn (F(np/2) — pF' (np/2))
= S (F /) — hF D)V ) '+ @ (T gre (Y, )

= (n/2)F (np/2)Y (1) — F'(np/2)Y (1) — (np/2)F" (npa/2)Y ()
= 3{(n = 2)F(t) = 2tF ()"} (n).
It is obvious that p is constant, which finishes the proof of the theorem. m
For a p-harmonic map ¢, i.e. F(t) = (2t)*/?/p, we have
(n—2)F(t) — 2tF(t)" = (n — p)|dg["~>.
Thus we obtain immediately

COROLLARY 3.7. Any conformal strongly p-harmonic map from an
n-dimensional Finsler manifold to a Finsler manifold must be homothetic
(n>p>2).
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