# PRIME AND SEMIPRIME RINGS WITH SYMMETRIC SKEW n-DERIVATIONS 

BY
AJDA FOŠNER (Koper)


#### Abstract

Let $n \geq 3$ be a positive integer. We study symmetric skew $n$-derivations of prime and semiprime rings and prove that under some certain conditions a prime ring with a nonzero symmetric skew $n$-derivation has to be commutative.


1. Introduction. Throughout the paper, $\mathcal{R}$ will represent a ring with a center $\mathcal{Z}$ and $\alpha$ an automorphism of $\mathcal{R}$. For a positive integer $n>1$, we say that a ring $\mathcal{R}$ is $n$-torsion free if $n x=0, x \in \mathcal{R}$, implies $x=0$. As usual, the commutator $x y-y x, x, y \in \mathcal{R}$, will be denoted by $[x, y]$. Recall that a ring $\mathcal{R}$ is prime if $x \mathcal{R} y=0, x, y \in \mathcal{R}$, implies $x=0$ or $y=0$, and it is semiprime if $x \mathcal{R} x=0, x \in \mathcal{R}$, implies $x=0$.

An additive map $d: \mathcal{R} \rightarrow \mathcal{R}$ is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in \mathcal{R}$ and it is called a skew derivation (or an $\alpha$-derivation) associated with the automorphism $\alpha$ if $d(x y)=d(x) y+\alpha(x) d(y)$ for $x, y \in \mathcal{R}$. Of course, skew derivations are generalizations of the usual derivations (corresponding to $\alpha=\mathrm{id}$, the identity map on $\mathcal{R}$ ). A map $f: \mathcal{R} \rightarrow \mathcal{R}$ is said to be centralizing if $[f(x), x] \in \mathcal{Z}$ for all $x \in \mathcal{R}$. In the special case when $[f(x), x]=0$ for all $x \in \mathcal{R}$, the map $f$ is said to be commuting.

The study of commuting mappings is closely connected with the notion of biderivations. A biadditive map $D: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ is called a biderivation if for all $x, y \in \mathcal{R}$, the maps $x \mapsto D(x, y)$ and $y \mapsto D(x, y)$ are derivations. In particular, $D(x u, y)=D(x, y) u+x D(u, y)$ and $D(x, y v)=D(x, y) v+$ $y D(x, v)$ for all $x, y, u, v \in \mathcal{R}$. It turns out that every commuting map gives rise to a biderivation. Namely, let $f$ be a commuting map of $\mathcal{R}$ and let $D: \mathcal{R} \rightarrow \mathcal{R}$ be a map defined by

$$
D(x, y)=[f(x), y], \quad x, y \in \mathcal{R} .
$$

By the linearization of $[f(x), x]=0$, we get

$$
[f(x), y]+[f(y), x]=0, \quad x, y \in \mathcal{R} .
$$

2010 Mathematics Subject Classification: Primary 16W25; Secondary 16N60.
Key words and phrases: prime ring, semiprime ring, symmetric skew $n$-derivation, centralizing mapping, commuting mapping.

Thus, we have

$$
\begin{aligned}
D(x u, y) & =[f(x u), y]=[x u, f(y)]=[x, f(y)] u+x[u, f(y)] \\
& =[f(x), y] u+x[f(u), y]=D(x, y) u+x D(u, y)
\end{aligned}
$$

for all $x, y, u \in \mathcal{R}$. Similarly,

$$
D(x, y v)=[f(x), y] v+y[f(x), v]=D(x, y) v+y D(x, v)
$$

for all $x, y, v \in \mathcal{R}$. Hence, $D$ is a biderivation. Brešar, Martindale, and Miers [3] proved that every biderivation $D$ of a noncommutative prime ring $\mathcal{R}$ is of the form $D(x, y)=\lambda[x, y], x, y \in \mathcal{R}$, where $\lambda$ is a fixed element from the extended centroid of $\mathcal{R}$. Using certain functional identities, Brešar [1] extended this result to semiprime rings.

The famous result of Posner [8] states that the existence of a nonzero centralizing derivation on a prime ring implies that the ring is commutative. In fact, this result initiated the study of centralizing and commuting mappings in rings. In the last few decades a number of mathematicians have done a great deal of work concerning commutativity of prime and semiprime rings admitting different kind of mappings which are centralizing or commuting on some appropriate subset of a ring (see [2] for further references). Moreover, also biderivations and related mappings of prime and semiprime rings as well as of some certain algebras have been studied a lot. Let us just mention the work of Vukman [9, 10] who investigated symmetric bi-derivations on prime and semiprime rings in connection with centralizing mappings. In [6], Jung and Park studied symmetric 3 -derivations and commutativity of prime rings and in [7] Park generalized the results obtained in [6] to symmetric $n$-derivations ( $n \geq 3$ ).

Recently we obtained similar results to Posner's and Vukman's for symmetric skew 3 -derivations on prime and semiprime rings [5]. The main purpose of this paper is to generalize these results and to apply Posner's theorem [8, Theorem 2] to symmetric skew $n$-derivations for $n \geq 3$.
2. Preliminaries. In the following, $n$ will be a positive integer. Before stating our main theorems, let us recall some basic definitions and wellknown results which we will need.

Let $\mathcal{R}^{n}=\mathcal{R} \times \cdots \times \mathcal{R}$. A map $D: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is $n$-additive if it is additive in each argument, and it is symmetric if $D\left(x_{1}, \ldots, x_{n}\right)=D\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $x_{1}, \ldots, x_{n} \in \mathcal{R}$ and every permutation $\pi \in \mathcal{S}_{n}$. Now, let $D$ be a symmetric $n$-additive map. Then it is easy to see that

$$
\begin{equation*}
D\left(-x_{1}, x_{2}, \ldots, x_{n}\right)=-D\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{R}$. Thus, for all elements $x_{2}, \ldots, x_{n} \in \mathcal{R}$, the map $D\left(\cdot, x_{2}, \ldots, x_{n}\right): \mathcal{R} \rightarrow \mathcal{R}$ is an endomorphism of the additive group of $\mathcal{R}$.

Furthermore, the map $\tau: \mathcal{R} \rightarrow \mathcal{R}$ defined by

$$
\tau(x)=D(x, \ldots, x), \quad x \in \mathcal{R},
$$

is called the trace of $D$. It is easy to compute that

$$
\tau(x+y)=\tau(x)+\tau(y)+\sum_{k=1}^{n-1}\binom{n}{k} D(\underbrace{x, \ldots, x}_{k \text { times }}, \underbrace{y, \ldots, y}_{n-k \text { times }})
$$

for all $x, y \in \mathcal{R}$. Note also that, by (11), $\tau$ is an odd function if $n$ is odd, and an even function if $n$ is even.

Motivated by the notion of $n$-derivations we introduce the following definition.

Definition. An $n$-additive map $D: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is called a skew $n$-derivation associated with the automorphism $\alpha$ if for every $k=1, \ldots, n$ and all $x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n} \in \mathcal{R}$, the map $x \mapsto D\left(x_{1}, \ldots, x_{k-1}, x, x_{k+1}, \ldots, x_{n}\right)$ is a skew derivation of $\mathcal{R}$ associated with $\alpha$. In particular, for all $x, y, x_{1}, \ldots$, $x_{k-1}, x_{k+1}, \ldots, x_{n} \in \mathcal{R}$ we have
$D\left(x_{1}, \ldots, x_{k-1}, x y, x_{k+1}, \ldots, x_{n}\right)$ $=D\left(x_{1}, \ldots, x_{k-1}, x, x_{k+1}, \ldots, x_{n}\right) y+\alpha(x) D\left(x_{1}, \ldots, x_{k-1}, y, x_{k+1}, \ldots, x_{n}\right)$.

The above definition covers the notion of skew derivations as well as the notion of skew biderivations. Namely, a skew 1-derivation is a skew derivation and a skew 2-derivation is a skew biderivation. Moreover, this definition generalizes the notion of $n$-derivations (the case when $\alpha=\mathrm{id}$ ).

Let us end this section with two simple examples.
Example 1. Let $\mathcal{R}$ be a commutative ring, $\alpha$ an automorphism of $\mathcal{R}$, and $d: \mathcal{R} \rightarrow \mathcal{R}$ a skew derivation of $\mathcal{R}$ associated with $\alpha$. Then the map $D: \mathcal{R}^{n} \rightarrow \mathcal{R}$ defined by

$$
D\left(x_{1}, \ldots, x_{n}\right)=d\left(x_{1}\right) \cdots d\left(x_{n}\right), \quad x_{1}, \ldots, x_{n} \in \mathcal{R},
$$

is a symmetric skew $n$-derivation associated with $\alpha$.
Example 2 ( $\mathbf{7 ]}$ ). Let $\mathbb{F}$ be a field and

$$
\mathcal{R}=\left\{\left[\begin{array}{ll}
x & y \\
0 & 0
\end{array}\right]: x, y \in \mathbb{F}\right\} .
$$

It is easy to see that the set $\mathcal{R}$ with matrix addition and matrix multiplication is a noncommutative ring. Let $A_{k}=\left[\begin{array}{ccc}x_{k} & y_{k} \\ 0 & 0\end{array}\right] \in \mathcal{R}, k=1, \ldots, n$, and define a map $D: \mathcal{R}^{n} \rightarrow \mathcal{R}$ by

$$
D\left(A_{1}, \ldots, A_{n}\right)=\left[\begin{array}{cc}
0 & x_{1} \cdots x_{n} \\
0 & 0
\end{array}\right] .
$$

Obviously, $D$ is a symmetric skew $n$-derivation of $\mathcal{R}$ associated with id.
3. The results. From now on we will always assume that $n \geq 3$. For a positive integer $k$ with $1 \leq k \leq n$ and for $x, y \in \mathcal{R}$, we will write

$$
D_{k}(x, y)=D(\underbrace{x, \ldots, x}_{k \text { times }}, \underbrace{y, \ldots, y}_{n-k \text { times }}) .
$$

In the proofs of our results, we will use the following simple lemmas. The first one was proved by Chung and Luh [4].

Lemma 1 ([4, Lemma 1]). Let $\mathcal{R}$ be an $n!$-torsion free ring and $x_{1}, \ldots, x_{n}$ $\in \mathcal{R}$ such that

$$
t x_{1}+t^{2} x_{2}+\cdots+t^{n} x_{n}=0
$$

for all positive integers $1 \leq t \leq n$. Then $x_{i}=0$ for all $1 \leq i \leq n$.
The next lemma is an immediate consequence of Lemma 1 .
Lemma 2. Let $\mathcal{R}$ be a $n!$-torsion free ring and $x_{1}, \ldots, x_{n} \in \mathcal{R}$ such that

$$
t x_{1}+t^{2} x_{2}+\cdots+t^{n} x_{n} \in \mathcal{Z}
$$

for all positive integers $1 \leq t \leq n$. Then $x_{i} \in \mathcal{Z}$ for all $1 \leq i \leq n$.
Proof. Let $y \in \mathcal{R}$. Then, according to our assumptions,

$$
0=\left[t x_{1}+t^{2} x_{2}+\cdots+t^{n} x_{n}, y\right]=t\left[x_{1}, y\right]+t^{2}\left[x_{2}, y\right]+\cdots+t^{n}\left[x_{n}, y\right]
$$

for all positive integers $1 \leq t \leq n$. By Lemma 1 , it follows that $\left[x_{k}, y\right]=0$ for $k=1, \ldots, n$. Thus, $x_{1}, \ldots, x_{n} \in \mathcal{Z}$, as desired.

Lemma 3. Let $\mathcal{R}$ be a prime ring and $a, b \in \mathcal{R}$. If $a[x, b]=0$ for all $x \in \mathcal{R}$, then either $a=0$ or $b \in \mathcal{Z}$.

Proof. Note that

$$
0=a[x y, b]=a x[y, b]+a[x, b] y=a x[y, b]
$$

for all $x, y \in \mathcal{R}$. Thus, $a \mathcal{R}[y, b]=0$ for all $y \in \mathcal{R}$, and, since $\mathcal{R}$ is prime, either $a=0$ or $b \in \mathcal{Z}$.

Lemma 4. If $\mathcal{I}$ is a nonzero two-sided ideal of a prime ring $\mathcal{R}$ and $D$ : $\mathcal{R}^{n} \rightarrow \mathcal{R}$ a symmetric skew $n$-derivation associated with an automorphism $\alpha$ such that $D\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in \mathcal{I}$, then $D\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in \mathcal{R}$.

Proof. It is sufficient to show that for any integer $k$ with $1 \leq k \leq n$,

$$
D\left(r_{1}, \ldots, r_{k}, x_{k+1}, \ldots, x_{n}\right)=0
$$

for all $r_{1}, \ldots, r_{k} \in \mathcal{R}$ and $x_{k+1}, \ldots, x_{n} \in \mathcal{I}$. We use induction on $k$.
Let $x_{1}, \ldots, x_{n} \in \mathcal{I}$ and $r_{1} \in \mathcal{R}$. Then $r_{1} x_{1} \in \mathcal{I}$ and

$$
\begin{aligned}
0 & =D\left(r_{1} x_{1}, x_{2}, \ldots, x_{n}\right)=D\left(r_{1}, x_{2}, \ldots, x_{n}\right) x_{1}+\alpha\left(r_{1}\right) D\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =D\left(r_{1}, x_{2}, \ldots, x_{n}\right) x_{1} .
\end{aligned}
$$

Thus, $D\left(r_{1}, x_{2}, \ldots, x_{n}\right) \mathcal{I}=0$ and, since $\mathcal{R}$ is prime, $D\left(r_{1}, x_{2}, \ldots, x_{n}\right)=0$. So, we proved our claim for $k=1$.

Now, let $k \geq 1$ and assume that $D\left(r_{1}, \ldots, r_{k}, x_{k+1}, \ldots, x_{n}\right)=0$ for all $r_{1}, \ldots, r_{k} \in \mathcal{R}$ and $x_{k+1}, \ldots, x_{n} \in \mathcal{I}$. Replacing $x_{k+1}$ by $r_{k+1} x_{k+1}$, where $r_{k+1} \in \mathcal{R}$, we get

$$
\begin{aligned}
0 & =D\left(r_{1}, \ldots, r_{k}, r_{k+1} x_{k+1}, \ldots, x_{n}\right) \\
& =D\left(r_{1}, \ldots, r_{k}, r_{k+1}, x_{k+2}, \ldots, x_{n}\right) x_{k+1}+\alpha\left(r_{k+1}\right) D\left(r_{1}, \ldots, r_{k}, x_{k+1}, \ldots, x_{n}\right) \\
& =D\left(r_{1}, \ldots, r_{k}, r_{k+1}, x_{k+2}, \ldots, x_{n}\right) x_{k+1}
\end{aligned}
$$

It follows that $D\left(r_{1}, \ldots, r_{k}, r_{k+1}, x_{k+2}, \ldots, x_{n}\right) \mathcal{I}=0$ and, by primeness of $\mathcal{R}, D\left(r_{1}, \ldots, r_{k}, r_{k+1}, x_{k+2}, \ldots, x_{n}\right)=0$, as desired.

Our first theorem is a generalization of [5, Theorem 1] and [7, Theorem 2.3].

TheOrem 1. Let $\mathcal{R}$ be a noncommutative n!-torsion free prime ring, $\mathcal{I}$ a nonzero two-sided ideal of $\mathcal{R}, \alpha$ an automorphism of $\mathcal{R}$, and $D: \mathcal{R}^{n} \rightarrow \mathcal{R}$ a symmetric skew n-derivation associated with $\alpha$. Suppose that

$$
\begin{equation*}
[\tau(x), \alpha(x)]=0 \tag{2}
\end{equation*}
$$

for all $x \in \mathcal{I}$. Then $D=0$.
Proof. Let $t$ be an integer with $1 \leq t \leq n$ and $x, y \in \mathcal{I}$. Substituting $x+t y$ for $x$ in (2), we obtain

$$
\begin{aligned}
0= & t\left([\tau(x), \alpha(y)]+\binom{n}{n-1}\left[D_{n-1}(x, y), \alpha(x)\right]\right) \\
& +t^{2}\left(\binom{n}{n-1}\left[D_{n-1}(x, y), \alpha(y)\right]+\binom{n}{n-2}\left[D_{n-2}(x, y), \alpha(x)\right]\right) \\
& \vdots \\
& +t^{n}\left(\binom{n}{1}\left[D_{1}(x, y), \alpha(y)\right]+[\tau(y), \alpha(x)]\right) .
\end{aligned}
$$

Thus, by Lemma 1,

$$
\begin{equation*}
[\tau(x), \alpha(y)]+n\left[D_{n-1}(x, y), \alpha(x)\right]=0 \tag{3}
\end{equation*}
$$

for all $x, y \in \mathcal{I}$. Replacing $y$ by $x y$ in the above relation, we get

$$
\begin{aligned}
0 & =\alpha(x)[\tau(x), \alpha(y)]+n\left(\tau(x)[y, \alpha(x)]+\alpha(x)\left[D_{n-1}(x, y), \alpha(x)\right]\right) \\
& =\alpha(x)\left([\tau(x), \alpha(y)]+n\left[D_{n-1}(x, y), \alpha(x)\right]\right)+n \tau(x)[y, \alpha(x)]
\end{aligned}
$$

and, according to $(3)$, we have

$$
\tau(x)[y, \alpha(x)]=0, \quad x, y \in \mathcal{I}
$$

First we would like to prove that $\tau(x)=0$ for all $x \in \mathcal{I}$.

Recall that $\mathcal{I}$ is noncentral. Indeed, if $\mathcal{I}$ is central, then $0=[\mathcal{R} \mathcal{I}, \mathcal{R}]=$ $[\mathcal{R}, \mathcal{R}] \mathcal{I}+\mathcal{R}[\mathcal{I}, \mathcal{R}]=[\mathcal{R}, \mathcal{R}] \mathcal{I}$, and thus $[\mathcal{R}, \mathcal{R}]=0$, i.e., $\mathcal{R}$ is commutative, a contradiction. So, suppose that $x \in \mathcal{I} \backslash \mathcal{Z}$. Then $\alpha(x) \notin \mathcal{Z}$ and, according to Lemma3, $\tau(x)=0$. Now, suppose that $x \in \mathcal{I} \cap \mathcal{Z}$ and choose $y \in \mathcal{I}$ such that $y \notin \mathcal{Z}$. Then $t x+y \in \mathcal{I} \backslash \mathcal{Z}$ for every integer $1 \leq t \leq n$ and

$$
\begin{aligned}
0 & =\tau(t x+y)=t^{n} \tau(x)+\tau(y)+\sum_{k=1}^{n-1} t^{k}\binom{n}{k} D_{k}(x, y) \\
& =t^{n} \tau(x)+\sum_{k=1}^{n-1} t^{k}\binom{n}{k} D_{k}(x, y)
\end{aligned}
$$

Again using Lemma 1, we get $\tau(x)=0$, as desired. So, we have proved that

$$
\begin{equation*}
\tau(x)=0, \quad x \in \mathcal{I} \tag{4}
\end{equation*}
$$

Next, we show that for any integer $k$ with $1 \leq k \leq n$,

$$
D(x_{1}, \ldots, x_{k}, \underbrace{x, \ldots, x}_{n-k \text { times }})=0
$$

for all $x, x_{1}, \ldots, x_{k} \in \mathcal{I}$. We use induction on $k$.
Let $1 \leq t \leq n-1$ be an integer and $x, x_{1} \in \mathcal{I}$. Then, by (4), we have

$$
\begin{aligned}
0 & =\tau\left(t x+x_{1}\right)=t^{n} \tau(x)+\tau\left(x_{1}\right)+\sum_{j=1}^{n-1} t^{j}\binom{n}{j} D_{j}\left(x, x_{1}\right) \\
& =\sum_{j=1}^{n-1} t^{j}\binom{n}{j} D_{j}\left(x, x_{1}\right)
\end{aligned}
$$

and, by Lemma 1 ,

$$
D(\underbrace{x, \ldots, x}_{n-1 \text { times }}, x_{1})=D(x_{1}, \underbrace{x, \ldots, x}_{n-1 \text { times }})=0
$$

for all $x, x_{1} \in \mathcal{I}$. So, we proved our claim for $k=1$.
Now, let $k \geq 1$ and assume that $D(x_{1}, \ldots, x_{k}, \underbrace{x, \ldots, x}_{n-k \text { times }})=0$ for all $x, x_{1}, \ldots, x_{k} \in \mathcal{I}$. Furthermore, let $1 \leq t \leq n-k-1$ be an integer and $x_{k+1} \in \mathcal{I}$. Then, according to the induction hypothesis,

$$
\begin{aligned}
0 & =D(\underbrace{t x+x_{k+1}, \ldots, t x+x_{k+1}}_{n-k \text { times }}, x_{1}, \ldots, x_{k}) \\
& =t^{n-k} D(\underbrace{x, \ldots, x}_{n-k \text { times }}, x_{1}, \ldots, x_{k})+D(\underbrace{x_{k+1}, \ldots, x_{k+1}}_{n-k \text { times }}, x_{1}, \ldots, x_{k})
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j=1}^{n-k-1} t^{j}\binom{n-k}{j} D(\underbrace{x, \ldots, x}_{j \text { times }}, \underbrace{x_{k+1}, \ldots, x_{k+1}}_{n-k-j \text { times }}, x_{1}, \ldots, x_{k}) \\
= & \sum_{j=1}^{n-k-1} t^{j}\binom{n-k}{j} D(\underbrace{x, \ldots, x}_{j \text { times }}, \underbrace{x_{k+1}, \ldots, x_{k+1}}_{n-k-j \text { times }}, x_{1}, \ldots, x_{k})
\end{aligned}
$$

and, by Lemma 1 ,

$$
D(\underbrace{x, \ldots, x}_{n-k-1 \text { times }}, x_{k+1}, x_{1}, \ldots, x_{k})=D(x_{1}, \ldots, x_{k}, x_{k+1}, \underbrace{x, \ldots, x}_{n-k-1 \text { times }})=0
$$

for all $x, x_{1}, \ldots, x_{k}, x_{k+1} \in \mathcal{I}$, as desired. In particular, $D\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in \mathcal{I}$. Therefore, by Lemma $4, D\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in \mathcal{R}$.

The next result concerns semiprime rings.
TheOrem 2. Let $\mathcal{R}$ be a noncommutative $n$ !-torsion free semiprime ring, $\alpha$ an automorphism of $\mathcal{R}$, and $D: \mathcal{R}^{n} \rightarrow \mathcal{R}$ a symmetric skew $n$-derivation associated with $\alpha$. Suppose that the trace function $\tau$ is commuting on $\mathcal{R}$ and

$$
\begin{equation*}
[\tau(x), \alpha(x)] \in \mathcal{Z} \tag{5}
\end{equation*}
$$

for all $x \in \mathcal{R}$. Then $[\tau(x), \alpha(x)]=0$ for all $x \in \mathcal{R}$.
Proof. Let $t$ be an integer with $1 \leq t \leq n$, and $x, y \in \mathcal{R}$. Substituting $x+t y$ for $x$ in (5), we obtain

$$
\begin{aligned}
\mathcal{Z} \ni & t\left([\tau(x), \alpha(y)]+\binom{n}{n-1}\left[D_{n-1}(x, y), \alpha(x)\right]\right) \\
& +t^{2}\left(\binom{n}{n-1}\left[D_{n-1}(x, y), \alpha(y)\right]+\binom{n}{n-2}\left[D_{n-2}(x, y), \alpha(x)\right]\right) \\
& \vdots \\
& +t^{n}\left(\binom{n}{1}\left[D_{1}(x, y), \alpha(y)\right]+[\tau(y), \alpha(x)]\right)
\end{aligned}
$$

Thus, by Lemma 2 ,

$$
\begin{equation*}
[\tau(x), \alpha(y)]+n\left[D_{n-1}(x, y), \alpha(x)\right] \in \mathcal{Z} \tag{6}
\end{equation*}
$$

for all $x, y \in \mathcal{R}$.
Substituting $x y$ for $y$ in (6), we get

$$
\begin{aligned}
\mathcal{Z} \ni & {[\tau(x), \alpha(x y)]+n\left[D_{n-1}(x, x y), \alpha(x)\right] } \\
= & {[\tau(x), \alpha(x)] \alpha(y)+\alpha(x)[\tau(x), \alpha(y)]+n\left[\tau(x) y+\alpha(x) D_{n-1}(x, y), \alpha(x)\right] } \\
= & \alpha(x)\left([\tau(x), \alpha(y)]+n\left[D_{n-1}(x, y), \alpha(x)\right]\right)+(\alpha(y)+n y)[\tau(x), \alpha(x)] \\
& +n \tau(x)[y, \alpha(x)] .
\end{aligned}
$$

Commuting with $\alpha(x)$, we obtain

$$
\begin{aligned}
0= & {\left[\alpha(x)\left([\tau(x), \alpha(y)]+n\left[D_{n-1}(x, y), \alpha(x)\right]\right), \alpha(x)\right] } \\
& +[(\alpha(y)+n y)[\tau(x), \alpha(x)]+n \tau(x)[y, \alpha(x)], \alpha(x)] \\
= & {[\alpha(y)+2 n y, \alpha(x)][\tau(x), \alpha(x)]+n \tau(x)[[y, \alpha(x)], \alpha(x)] }
\end{aligned}
$$

for all $x, y \in \mathcal{R}$. Replacing $y$ by $\tau(x)[\tau(x), \alpha(x)]$, we obtain

$$
\begin{aligned}
0= & {[\alpha(\tau(x)[\tau(x), \alpha(x)])+2 n \tau(x)[\tau(x), \alpha(x)], \alpha(x)][\tau(x), \alpha(x)] } \\
& +n \tau(x)[[\tau(x)[\tau(x), \alpha(x)], \alpha(x)], \alpha(x)] \\
= & {[\alpha(\tau(x)[\tau(x), \alpha(x)]), \alpha(x)][\tau(x), \alpha(x)]+2 n[\tau(x), \alpha(x)]^{3} } \\
= & {[\alpha(\tau(x)), \alpha(x)] \alpha([\tau(x), \alpha(x)])[\tau(x), \alpha(x)]+2 n[\tau(x), \alpha(x)]^{3} } \\
= & 2 n[\tau(x), \alpha(x)]^{3} .
\end{aligned}
$$

Therefore,

$$
[\tau(x), \alpha(x)]^{3}=0
$$

and consequently

$$
[\tau(x), \alpha(x)]^{2} \mathcal{R}[\tau(x), \alpha(x)]^{2}=0
$$

for all $x \in \mathcal{R}$. Since $\mathcal{R}$ is semiprime, it follows that

$$
[\tau(x), \alpha(x)]^{2}=0, \quad x \in \mathcal{R}
$$

Note that zero is the only nilpotent element in the center of a semiprime ring. Thus, $[\tau(x), \alpha(x)]=0$ for all $x \in \mathcal{R}$.

The last result is an analogue of Posner's theorem [8, Theorem 2].
Corollary 1. Let $\mathcal{R}$ be an $n$ !-torsion free prime ring and $\alpha$ an automorphism of $\mathcal{R}$. Suppose that there exists a nonzero symmetric skew $n$ derivation $D: \mathcal{R}^{n} \rightarrow \mathcal{R}$ associated with $\alpha$ such that the trace function $\tau$ is commuting on $\mathcal{R}$ and $[\tau(x), \alpha(x)] \in \mathcal{Z}$ for all $x \in \mathcal{R}$. Then $\mathcal{R}$ is commutative.

Proof. Suppose that $\mathcal{R}$ is not commutative. Then, according to Theo$\operatorname{rem} 2$, $[\tau(x), \alpha(x)]=0$ for all $x \in \mathcal{R}$ and, by Theorem 1 , $D=0$, a contradiction.

Let us point out that in Theorem 2 we assumed that the trace function $\tau$ of a skew $n$-derivation $D$ is commuting on $\mathcal{R}$. If we drop this assumption, we do not know whether the statement holds true as well. Even for $n=3$ this is still an open question. So, let us end this paper with the following conjecture.

Conjecture. Let $\mathcal{R}$ be a prime ring with suitable torsion restrictions and $\alpha$ an automorphism of $\mathcal{R}$. Suppose that there exists a nonzero symmetric skew $n$-derivation $D: \mathcal{R}^{n} \rightarrow \mathcal{R}$ associated with $\alpha$ such that $[\tau(x), \alpha(x)] \in \mathcal{Z}$ for all $x \in \mathcal{R}$. Then $\mathcal{R}$ is commutative.

Acknowledgements. The author is sincerely thankful to the referee for careful reading of the manuscript and for comments and suggestions which helped the author to improve the paper.

## REFERENCES

[1] M. Brešar, On certain pairs of functions of semiprime rings, Proc. Amer. Math. Soc. 120 (1994), 709-713.
[2] M. Brešar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), 361-397.
[3] M. Brešar, W. S. Martindale III and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), 342-357.
[4] L. O. Chung and J. Luh, Semiprime rings with nilpotent derivations, Canad. Math. Bull. 24 (1981), 415-421.
[5] A. Fošner, Prime and semiprime rings with symmetric skew 3-derivations, Aequationes Math. 87 (2014), 191-200.
[6] Y.-S. Jung and K.-H. Park, On prime and semiprime rings with permuting 3derivations, Bull. Korean Math. Soc. 44 (2007), 789-794.
[7] K.-H. Park, On prime and semiprime rings with symmetric n-derivations, J. Chungcheong Math. Soc. 22 (2009), 451-458.
[8] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 10931100.
[9] J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math. 38 (1989), 245-254.
[10] J. Vukman, Two results concerning symmetric bi-derivations on prime rings, Aequationes Math. 40 (1990), 181-189.

Ajda Fošner
Faculty of Management
University of Primorska
Cankarjeva 5
SI-6104 Koper, Slovenia
E-mail: ajda.fosner@fm-kp.si

Received 27 July 2013;
revised 16 December 2013

