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PRIME AND SEMIPRIME RINGS WITH
SYMMETRIC SKEW n-DERIVATIONS

BY

AJDA FOŠNER (Koper)

Abstract. Let n ≥ 3 be a positive integer. We study symmetric skew n-derivations
of prime and semiprime rings and prove that under some certain conditions a prime ring
with a nonzero symmetric skew n-derivation has to be commutative.

1. Introduction. Throughout the paper, R will represent a ring with
a center Z and α an automorphism of R. For a positive integer n > 1, we
say that a ring R is n-torsion free if nx = 0, x ∈ R, implies x = 0. As usual,
the commutator xy − yx, x, y ∈ R, will be denoted by [x, y]. Recall that a
ring R is prime if xRy = 0, x, y ∈ R, implies x = 0 or y = 0, and it is
semiprime if xRx = 0, x ∈ R, implies x = 0.

An additive map d : R → R is called a derivation if d(xy) = d(x)y+xd(y)
for all x, y ∈ R and it is called a skew derivation (or an α-derivation) asso-
ciated with the automorphism α if d(xy) = d(x)y + α(x)d(y) for x, y ∈ R.
Of course, skew derivations are generalizations of the usual derivations (cor-
responding to α = id, the identity map on R). A map f : R → R is said
to be centralizing if [f(x), x] ∈ Z for all x ∈ R. In the special case when
[f(x), x] = 0 for all x ∈ R, the map f is said to be commuting.

The study of commuting mappings is closely connected with the notion
of biderivations. A biadditive map D : R×R → R is called a biderivation
if for all x, y ∈ R, the maps x 7→ D(x, y) and y 7→ D(x, y) are derivations.
In particular, D(xu, y) = D(x, y)u + xD(u, y) and D(x, yv) = D(x, y)v +
yD(x, v) for all x, y, u, v ∈ R. It turns out that every commuting map gives
rise to a biderivation. Namely, let f be a commuting map of R and let
D : R → R be a map defined by

D(x, y) = [f(x), y], x, y ∈ R.
By the linearization of [f(x), x] = 0, we get

[f(x), y] + [f(y), x] = 0, x, y ∈ R.
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Thus, we have

D(xu, y) = [f(xu), y] = [xu, f(y)] = [x, f(y)]u+ x[u, f(y)]

= [f(x), y]u+ x[f(u), y] = D(x, y)u+ xD(u, y)

for all x, y, u ∈ R. Similarly,

D(x, yv) = [f(x), y]v + y[f(x), v] = D(x, y)v + yD(x, v)

for all x, y, v ∈ R. Hence, D is a biderivation. Brešar, Martindale, and Miers
[3] proved that every biderivation D of a noncommutative prime ring R is
of the form D(x, y) = λ[x, y], x, y ∈ R, where λ is a fixed element from
the extended centroid of R. Using certain functional identities, Brešar [1]
extended this result to semiprime rings.

The famous result of Posner [8] states that the existence of a nonzero cen-
tralizing derivation on a prime ring implies that the ring is commutative. In
fact, this result initiated the study of centralizing and commuting mappings
in rings. In the last few decades a number of mathematicians have done a
great deal of work concerning commutativity of prime and semiprime rings
admitting different kind of mappings which are centralizing or commuting on
some appropriate subset of a ring (see [2] for further references). Moreover,
also biderivations and related mappings of prime and semiprime rings as
well as of some certain algebras have been studied a lot. Let us just mention
the work of Vukman [9, 10] who investigated symmetric bi-derivations on
prime and semiprime rings in connection with centralizing mappings. In [6],
Jung and Park studied symmetric 3-derivations and commutativity of prime
rings and in [7] Park generalized the results obtained in [6] to symmetric
n-derivations (n ≥ 3).

Recently we obtained similar results to Posner’s and Vukman’s for sym-
metric skew 3-derivations on prime and semiprime rings [5]. The main pur-
pose of this paper is to generalize these results and to apply Posner’s theorem
[8, Theorem 2] to symmetric skew n-derivations for n ≥ 3.

2. Preliminaries. In the following, n will be a positive integer. Before
stating our main theorems, let us recall some basic definitions and well-
known results which we will need.

LetRn = R×· · ·×R. A map D : Rn → R is n-additive if it is additive in
each argument, and it is symmetric if D(x1, . . . , xn) = D(xπ(1), . . . , xπ(n))
for all x1, . . . , xn ∈ R and every permutation π ∈ Sn. Now, let D be a
symmetric n-additive map. Then it is easy to see that

(1) D(−x1, x2, . . . , xn) = −D(x1, x2, . . . , xn)

for all x1, x2, . . . , xn ∈ R. Thus, for all elements x2, . . . , xn ∈ R, the map
D(·, x2, . . . , xn) : R → R is an endomorphism of the additive group of R.
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Furthermore, the map τ : R → R defined by

τ(x) = D(x, . . . , x), x ∈ R,
is called the trace of D. It is easy to compute that

τ(x+ y) = τ(x) + τ(y) +

n−1∑
k=1

(
n

k

)
D(x, . . . , x︸ ︷︷ ︸

k times

, y, . . . , y︸ ︷︷ ︸
n−k times

)

for all x, y ∈ R. Note also that, by (1), τ is an odd function if n is odd, and
an even function if n is even.

Motivated by the notion of n-derivations we introduce the following def-
inition.

Definition. An n-additive map D : Rn → R is called a skew n-deriva-
tion associated with the automorphism α if for every k = 1, . . . , n and all
x1, . . . , xk−1, xk+1, . . . , xn ∈ R, the mapx 7→D(x1, . . . , xk−1, x, xk+1, . . . , xn)
is a skew derivation of R associated with α. In particular, for all x, y, x1, . . . ,
xk−1, xk+1, . . . , xn ∈ R we have

D(x1, . . . , xk−1, xy, xk+1, . . . , xn)

= D(x1, . . . , xk−1, x, xk+1, . . . , xn)y + α(x)D(x1, . . . , xk−1, y, xk+1, . . . , xn).

The above definition covers the notion of skew derivations as well as
the notion of skew biderivations. Namely, a skew 1-derivation is a skew
derivation and a skew 2-derivation is a skew biderivation. Moreover, this
definition generalizes the notion of n-derivations (the case when α = id).

Let us end this section with two simple examples.

Example 1. Let R be a commutative ring, α an automorphism of R,
and d : R → R a skew derivation of R associated with α. Then the map
D : Rn → R defined by

D(x1, . . . , xn) = d(x1) · · · d(xn), x1, . . . , xn ∈ R,
is a symmetric skew n-derivation associated with α.

Example 2 ([7]). Let F be a field and

R =

{[
x y

0 0

]
: x, y ∈ F

}
.

It is easy to see that the set R with matrix addition and matrix multipli-
cation is a noncommutative ring. Let Ak =

[ xk yk
0 0

]
∈ R, k = 1, . . . , n, and

define a map D : Rn → R by

D(A1, . . . , An) =

[
0 x1 · · ·xn
0 0

]
.

Obviously, D is a symmetric skew n-derivation of R associated with id.
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3. The results. From now on we will always assume that n ≥ 3. For a
positive integer k with 1 ≤ k ≤ n and for x, y ∈ R, we will write

Dk(x, y) = D(x, . . . , x︸ ︷︷ ︸
k times

, y, . . . , y︸ ︷︷ ︸
n−k times

).

In the proofs of our results, we will use the following simple lemmas. The
first one was proved by Chung and Luh [4].

Lemma 1 ([4, Lemma 1]). Let R be an n!-torsion free ring and x1, . . . , xn
∈ R such that

tx1 + t2x2 + · · ·+ tnxn = 0

for all positive integers 1 ≤ t ≤ n. Then xi = 0 for all 1 ≤ i ≤ n.
The next lemma is an immediate consequence of Lemma 1.

Lemma 2. Let R be a n!-torsion free ring and x1, . . . , xn ∈ R such that

tx1 + t2x2 + · · ·+ tnxn ∈ Z
for all positive integers 1 ≤ t ≤ n. Then xi ∈ Z for all 1 ≤ i ≤ n.

Proof. Let y ∈ R. Then, according to our assumptions,

0 = [tx1 + t2x2 + · · ·+ tnxn, y] = t[x1, y] + t2[x2, y] + · · ·+ tn[xn, y]

for all positive integers 1 ≤ t ≤ n. By Lemma 1, it follows that [xk, y] = 0
for k = 1, . . . , n. Thus, x1, . . . , xn ∈ Z, as desired.

Lemma 3. Let R be a prime ring and a, b ∈ R. If a[x, b] = 0 for all
x ∈ R, then either a = 0 or b ∈ Z.

Proof. Note that

0 = a[xy, b] = ax[y, b] + a[x, b]y = ax[y, b]

for all x, y ∈ R. Thus, aR[y, b] = 0 for all y ∈ R, and, since R is prime,
either a = 0 or b ∈ Z.

Lemma 4. If I is a nonzero two-sided ideal of a prime ring R and D :
Rn → R a symmetric skew n-derivation associated with an automorphism
α such that D(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ I, then D(r1, . . . , rn) = 0
for all r1, . . . , rn ∈ R.

Proof. It is sufficient to show that for any integer k with 1 ≤ k ≤ n,

D(r1, . . . , rk, xk+1, . . . , xn) = 0

for all r1, . . . , rk ∈ R and xk+1, . . . , xn ∈ I. We use induction on k.
Let x1, . . . , xn ∈ I and r1 ∈ R. Then r1x1 ∈ I and

0 = D(r1x1, x2, . . . , xn) = D(r1, x2, . . . , xn)x1 + α(r1)D(x1, x2, . . . , xn)

= D(r1, x2, . . . , xn)x1.
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Thus, D(r1, x2, . . . , xn)I = 0 and, since R is prime, D(r1, x2, . . . , xn) = 0.
So, we proved our claim for k = 1.

Now, let k ≥ 1 and assume that D(r1, . . . , rk, xk+1, . . . , xn) = 0 for all
r1, . . . , rk ∈ R and xk+1, . . . , xn ∈ I. Replacing xk+1 by rk+1xk+1, where
rk+1 ∈ R, we get

0 =D(r1, . . . , rk, rk+1xk+1, . . . , xn)

=D(r1, . . . , rk, rk+1, xk+2, . . . , xn)xk+1+α(rk+1)D(r1, . . . , rk,xk+1, . . . , xn)

=D(r1, . . . , rk, rk+1, xk+2, . . . , xn)xk+1.

It follows that D(r1, . . . , rk, rk+1, xk+2, . . . , xn)I = 0 and, by primeness
of R, D(r1, . . . , rk, rk+1, xk+2, . . . , xn) = 0, as desired.

Our first theorem is a generalization of [5, Theorem 1] and [7, Theorem
2.3].

Theorem 1. Let R be a noncommutative n!-torsion free prime ring, I a
nonzero two-sided ideal of R, α an automorphism of R, and D : Rn → R
a symmetric skew n-derivation associated with α. Suppose that

(2) [τ(x), α(x)] = 0

for all x ∈ I. Then D = 0.

Proof. Let t be an integer with 1 ≤ t ≤ n and x, y ∈ I. Substituting
x+ ty for x in (2), we obtain

0 = t

(
[τ(x), α(y)] +

(
n

n− 1

)
[Dn−1(x, y), α(x)]

)
+ t2

((
n

n− 1

)
[Dn−1(x, y), α(y)] +

(
n

n− 2

)
[Dn−2(x, y), α(x)]

)
...

+ tn
((

n

1

)
[D1(x, y), α(y)] + [τ(y), α(x)]

)
.

Thus, by Lemma 1,

(3) [τ(x), α(y)] + n[Dn−1(x, y), α(x)] = 0

for all x, y ∈ I. Replacing y by xy in the above relation, we get

0 = α(x)[τ(x), α(y)] + n
(
τ(x)[y, α(x)] + α(x)[Dn−1(x, y), α(x)]

)
= α(x)

(
[τ(x), α(y)] + n[Dn−1(x, y), α(x)]

)
+ nτ(x)[y, α(x)]

and, according to (3), we have

τ(x)[y, α(x)] = 0, x, y ∈ I.
First we would like to prove that τ(x) = 0 for all x ∈ I.
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Recall that I is noncentral. Indeed, if I is central, then 0 = [RI,R] =
[R,R]I +R[I,R] = [R,R]I, and thus [R,R] = 0, i.e., R is commutative,
a contradiction. So, suppose that x ∈ I \ Z. Then α(x) /∈ Z and, according
to Lemma 3, τ(x) = 0. Now, suppose that x ∈ I ∩Z and choose y ∈ I such
that y /∈ Z. Then tx+ y ∈ I \ Z for every integer 1 ≤ t ≤ n and

0 = τ(tx+ y) = tnτ(x) + τ(y) +

n−1∑
k=1

tk
(
n

k

)
Dk(x, y)

= tnτ(x) +
n−1∑
k=1

tk
(
n

k

)
Dk(x, y).

Again using Lemma 1, we get τ(x) = 0, as desired. So, we have proved that

(4) τ(x) = 0, x ∈ I.

Next, we show that for any integer k with 1 ≤ k ≤ n,

D(x1, . . . , xk, x, . . . , x︸ ︷︷ ︸
n−k times

) = 0

for all x, x1, . . . , xk ∈ I. We use induction on k.

Let 1 ≤ t ≤ n− 1 be an integer and x, x1 ∈ I. Then, by (4), we have

0 = τ(tx+ x1) = tnτ(x) + τ(x1) +

n−1∑
j=1

tj
(
n

j

)
Dj(x, x1)

=
n−1∑
j=1

tj
(
n

j

)
Dj(x, x1)

and, by Lemma 1,

D(x, . . . , x︸ ︷︷ ︸
n−1 times

, x1) = D(x1, x, . . . , x︸ ︷︷ ︸
n−1 times

) = 0

for all x, x1 ∈ I. So, we proved our claim for k = 1.

Now, let k ≥ 1 and assume that D(x1, . . . , xk, x, . . . , x︸ ︷︷ ︸
n−k times

) = 0 for all

x, x1, . . . , xk ∈ I. Furthermore, let 1 ≤ t ≤ n − k − 1 be an integer and
xk+1 ∈ I. Then, according to the induction hypothesis,

0 = D(tx+ xk+1, . . . , tx+ xk+1︸ ︷︷ ︸
n−k times

, x1, . . . , xk)

= tn−kD(x, . . . , x︸ ︷︷ ︸
n−k times

, x1, . . . , xk) +D(xk+1, . . . , xk+1︸ ︷︷ ︸
n−k times

, x1, . . . , xk)
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+

n−k−1∑
j=1

tj
(
n− k
j

)
D(x, . . . , x︸ ︷︷ ︸

j times

, xk+1, . . . , xk+1︸ ︷︷ ︸
n−k−j times

, x1, . . . , xk)

=

n−k−1∑
j=1

tj
(
n− k
j

)
D(x, . . . , x︸ ︷︷ ︸

j times

, xk+1, . . . , xk+1︸ ︷︷ ︸
n−k−j times

, x1, . . . , xk)

and, by Lemma 1,

D( x, . . . , x︸ ︷︷ ︸
n−k−1 times

, xk+1, x1, . . . , xk) = D(x1, . . . , xk, xk+1, x, . . . , x︸ ︷︷ ︸
n−k−1 times

) = 0

for all x, x1, . . . , xk, xk+1 ∈ I, as desired. In particular, D(x1, . . . , xn) = 0
for all x1, . . . , xn ∈ I. Therefore, by Lemma 4, D(r1, . . . , rn) = 0 for all
r1, . . . , rn ∈ R.

The next result concerns semiprime rings.

Theorem 2. Let R be a noncommutative n!-torsion free semiprime ring,
α an automorphism of R, and D : Rn → R a symmetric skew n-derivation
associated with α. Suppose that the trace function τ is commuting on R and

(5) [τ(x), α(x)] ∈ Z

for all x ∈ R. Then [τ(x), α(x)] = 0 for all x ∈ R.

Proof. Let t be an integer with 1 ≤ t ≤ n, and x, y ∈ R. Substituting
x+ ty for x in (5), we obtain

Z 3 t
(

[τ(x), α(y)] +

(
n

n− 1

)
[Dn−1(x, y), α(x)]

)
+ t2

((
n

n− 1

)
[Dn−1(x, y), α(y)] +

(
n

n− 2

)
[Dn−2(x, y), α(x)]

)
...

+ tn
((

n

1

)
[D1(x, y), α(y)] + [τ(y), α(x)]

)
.

Thus, by Lemma 2,

(6) [τ(x), α(y)] + n[Dn−1(x, y), α(x)] ∈ Z

for all x, y ∈ R.

Substituting xy for y in (6), we get

Z 3 [τ(x), α(xy)] + n[Dn−1(x, xy), α(x)]

= [τ(x), α(x)]α(y) + α(x)[τ(x), α(y)] + n[τ(x)y + α(x)Dn−1(x, y), α(x)]

= α(x)([τ(x), α(y)] + n[Dn−1(x, y), α(x)]) + (α(y) + ny)[τ(x), α(x)]

+ nτ(x)[y, α(x)].
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Commuting with α(x), we obtain

0 =
[
α(x)([τ(x), α(y)] + n[Dn−1(x, y), α(x)]), α(x)

]
+
[
(α(y) + ny)[τ(x), α(x)] + nτ(x)[y, α(x)], α(x)

]
= [α(y) + 2ny, α(x)][τ(x), α(x)] + nτ(x)[[y, α(x)], α(x)]

for all x, y ∈ R. Replacing y by τ(x)[τ(x), α(x)], we obtain

0 =
[
α(τ(x)[τ(x), α(x)]) + 2nτ(x)[τ(x), α(x)], α(x)

]
[τ(x), α(x)]

+ nτ(x)
[
[τ(x)[τ(x), α(x)], α(x)], α(x)

]
=
[
α(τ(x)[τ(x), α(x)]), α(x)

]
[τ(x), α(x)] + 2n[τ(x), α(x)]3

= [α(τ(x)), α(x)]α([τ(x), α(x)])[τ(x), α(x)] + 2n[τ(x), α(x)]3

= 2n[τ(x), α(x)]3.

Therefore,

[τ(x), α(x)]3 = 0,

and consequently

[τ(x), α(x)]2R[τ(x), α(x)]2 = 0

for all x ∈ R. Since R is semiprime, it follows that

[τ(x), α(x)]2 = 0, x ∈ R.
Note that zero is the only nilpotent element in the center of a semiprime
ring. Thus, [τ(x), α(x)] = 0 for all x ∈ R.

The last result is an analogue of Posner’s theorem [8, Theorem 2].

Corollary 1. Let R be an n!-torsion free prime ring and α an au-
tomorphism of R. Suppose that there exists a nonzero symmetric skew n-
derivation D : Rn → R associated with α such that the trace function τ is
commuting on R and [τ(x), α(x)] ∈ Z for all x ∈ R. Then R is commuta-
tive.

Proof. Suppose that R is not commutative. Then, according to Theo-
rem 2, [τ(x), α(x)] = 0 for all x ∈ R and, by Theorem 1, D = 0, a contra-
diction.

Let us point out that in Theorem 2 we assumed that the trace function
τ of a skew n-derivation D is commuting on R. If we drop this assumption,
we do not know whether the statement holds true as well. Even for n = 3
this is still an open question. So, let us end this paper with the following
conjecture.

Conjecture. Let R be a prime ring with suitable torsion restrictions
and α an automorphism ofR. Suppose that there exists a nonzero symmetric
skew n-derivation D : Rn → R associated with α such that [τ(x), α(x)] ∈ Z
for all x ∈ R. Then R is commutative.
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