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THE GEOMETRIC REDUCTIVITY OF THE
QUANTUM GROUP SLq(2)

BY

MICHAŁ KĘPA and ANDRZEJ TYC (Toruń)

Abstract. We introduce the concept of geometrically reductive quantum group which
is a generalization of the Mumford definition of geometrically reductive algebraic group.
We prove that if G is a geometrically reductive quantum group and acts rationally on
a commutative and finitely generated algebra A, then the algebra of invariants AG is
finitely generated. We also prove that in characteristic 0 a quantum group G is geometri-
cally reductive if and only if every rational G-module is semisimple, and that in positive
characteristic every finite-dimensional quantum group is geometrically reductive. Both the
concept of geometrically reductive quantum group and the above mentioned theorems are
formulated in the language of Hopf algebras and generalize the results of Borsai and Ferrer
Santos. The main theorem of the paper says that in positive characteristic the quantum
group SLq(2) is geometrically reductive for any parameter q.

1. Introduction and a generalization of the Borsari–Ferrer San-
tos results. Throughout the paper K denotes a fixed field which will serve
as the ground field for all vector spaces, algebras, bialgebras, Hopf algebras
and algebraic groups under consideration. All tensor products are supposed
to be defined over K. Given vector spaces V and W , Hom(V,W ) stands for
the vector space of all linear maps V →W . As usual, V ∗ and End(V ) denote
the space dual to V and the space Hom(V, V ), respectively.

Let H be a fixed Hopf algebra with comultiplication ∆ : H → H ⊗ H,
counit ε : H → K, and antipode S : H → H; for basic facts concern-
ing Hopf algebras and their (co)actions, see [7]. We use the following no-
tation:

∑
h1 ⊗ h2 = ∆(h), and inductively,

∑
h1 ⊗ · · · ⊗ hn+1 =

∑
h1 ⊗

· · · ⊗ hn−1 ⊗∆(hn). By an H-comodule we mean a right H-comodule. The
field K will be viewed as an H-comodule, via ρ(α) = α ⊗ 1 for α ∈ K.
For any H-comodules V , W the vector space V ⊗W will be viewed as an
H-comodule, via ρ : V ⊗ W → (V ⊗ W ) ⊗ H with ρ(v ⊗ w) =

∑
vi ⊗

wj ⊗ hih′j for v ∈ V , w ∈ W , where
∑
vi ⊗ hi = ρ(v) and

∑
j wj ⊗ h′j =

ρ(w).
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Given an H-comodule (V, ρ), we denote by V coH the space of coinvari-
ants, that is, V coH = {v ∈ V | ρ(v) = v⊗1}. If A is an H-comodule algebra,
then AH is a subalgebra of A called the algebra of coinvariants. A graded
H-comodule algebra is meant to be an H-comodule algebra A together with
an algebra grading A =

⊕
i≥0Ai such that all Ai’s are subcomodules of A.

Recall that a graded algebra A =
⊕

iAi is called connected if A0 = K. If
(A, ρ) is an H-comodule algebra, then an ideal I in A is called a comodule
ideal if ρ(I) ⊂ I ⊗H. Observe that if H is commutative (as an algebra) and
(V, ρ) is an H-comodule, then the map ρ : V → V ⊗H induces a morphism
of algebras ρ : S(V )→ S(V )⊗H which makes the symmetric algebra S(V )
a graded H-comodule algebra. If G is an affine algebraic group and K[G]
is the Hopf algebra of all regular functions G → K, then it is well known
that a K[G]-comodule is nothing other than a rational (left) G-module, and
a K[G]-comodule algebra is an algebra A endowed with a rational action of
the group G on A. Moreover, AcoK[G] = AG. So, of interest is the following
generalization of the fundamental problem of classical invariant theory.

Problem. Assume that A is a commutative and finitely generated H-
comodule algebra. When is the algebra of coinvariants AcoH also finitely
generated?

As is known, in some cases the algebra of coinvariants is not finitely
generated. For instance, if char(K) = 0, H = K[T ] with T primitive, and
A = K[X1, . . . , X5], then the (locally nilpotent) derivation d = X2

1
∂

∂X3
+

(X1X3 + X2) ∂
∂X4

+ X4
∂

∂X5
makes A an H-comodule algebra (via ρ(a) =∑

i≥0 d
i(a) ⊗ T i/i!) such that the algebra of coinvariants AcoH (= ker d) is

not finitely generated [2].
In order to formulate our positive results recall (see [4, V-8], [1]) that

an algebraic group is geometrically reductive (in the sense of Mumford) if
for each epimorphism of rational G-modules λ : V → K there are r > 0
and f ∈ Sr(V )G with λ̃(f) 6= 0, where λ̃ : S(V ) → K is the algebra
morphism induced by λ. If λ(v) 6= 0 for some v ∈ V G, then G is linearly
reductive. It is known that G is linearly reductive if and only if every ratio-
nal G-module is semisimple, and that in characteristic 0 each geometrically
reductive algebraic group is linearly reductive. Examples of geometrically re-
ductive algebraic groups are finite groups and the classical groups GL(n,K),
SL(n,K), O(n,K) and Sp(2n,K). All the algebraic tori Tn are linearly re-
ductive.

H. Borsari and W. Ferrer Santos [1] carried over the above definition of
geometric reductivity to all commutative Hopf algebras.

Definition ([1, Def. 1.1]). A commutative Hopf algebra H is said to
be geometrically reductive (for coactions) if for every epimorphism of H-
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comodules λ : V → K there are r > 0 and f ∈ Sr(V )coH with λ̃(f) 6= 0. If
λ(v) 6= 0 for some v ∈ V coH , then H is called linearly reductive.

Remark. Throughout the paper we write “geometrically coreductive”
(resp., “linearly coreductive”) instead of “geometrically reductive for coac-
tions” (resp., “linearly reductive for coactions”).

Notice that if G is an algebraic group, then the Hopf algebra K[G] is
geometrically coreductive (resp., linearly coreductive) if and only if G is
geometrically reductive (resp., linearly reductive). The following results are
proved in [1] (for commutative H).

Theorem 1.1. If the Hopf algebra H is geometrically coreductive and A
is a commutative H-comodule algebra, then the algebra of coinvariants AcoH

is finitely generated provided so is A.

Theorem 1.1 is a generalization of the Nagata theorem [8] for geometri-
cally reductive algebraic groups.

Theorem 1.2. The Hopf algebra H is linearly coreductive if and only if
H is cosemisimple, i.e., if every H-comodule is semisimple.

Theorem 1.3. If char(K) = 0, then H is geometrically coreductive if
and only if H is linearly coreductive.

Furthermore, Ferrer Santos proved in [3] the following result.

Theorem 1.4. If char(K) > 0, then every finite-dimensional (commuta-
tive) Hopf algebra is geometrically coreductive.

The first objective of this paper is to extend the concept of geometrically
coreductive Hopf algebra to all Hopf algebras (i.e., not necessarily commu-
tative), and then to generalize Theorems 1.1–1.4 to this case.

Notice that the Borsari–Ferrer Santos definition of geometrically coreduc-
tive Hopf algebra cannot be repeated for an arbitrary Hopf algebra, because,
if V is an H-comodule, then the symmetric algebra S(V ) does not, in gen-
eral, admit any natural H-comodule algebra structure (“natural” means here
that V = S1(V ) is a subcomodule of S(V )).

Example 1.5. Let H be the group algebra kG, where G is an (abstract)
group with g1g2 6= g2g1 for some g1, g2 ∈ G, and let V be a vector space
with a basis v1, v2. Then ρ : V → V ⊗H, ρ(vi) = vi ⊗ gi, i = 1, 2, makes V
an H-comodule. Suppose that S(V ) admits a natural H-comodule algebra
structure ρ : S(V ) → S(V ) ⊗ H. Then 0 = v1v2 − v2v1 ∈ S(V ), whence
0 = ρ(v1v2 − v2v1) = v1v2 ⊗ (g1g2 − g2g1) 6= 0, which is impossible.

In order to overcome this difficulty, we proceed as follows. Given an H-
comodule W and an element w ∈ W , we denote by H(w) the smallest
subcomodule of W containing w. Now let (V, ρ) be an H-comodule. Recall
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that the tensor algebra T (V ) =
⊕

i≥0 T
i(V ) is a (connected) graded H-

comodule algebra, via

ρ(v1 ⊗ · · · ⊗ vn) = ρ(v1) · · · ρ(vn) ∈ T (V )⊗H, vi ∈ V.
It is easy to see that the ideal IH(V ) in T (V ) generated by the set⋃
v,v′∈V H(v ⊗ v′ − v′ ⊗ v) is a homogeneous comodule ideal, so that we

have the quotient connected graded H-comodule algebra

SH(V ) = T (V )/IH(V ) =
⊕
i≥0

SiH(V ).

Also it is easy to verify that SH(V ) has the following properties.

Lemma 1.6.

(1) SH(V ) is a commutative algebra with S1
H(V ) = V . Furthermore, if H

is commutative, then SH(V ) is the ordinary symmetric algebra S(V ).
(2) If V is finite-dimensional, then the algebra SH(V ) is finitely gener-

ated.
(3) If A is a commutative H-comodule algebra and λ : V → A is a

morphism of H-comodules, then there exists a unique morphism of
H-comodule algebras λ̃ : SH(V ) → A (called the induced morphism)
such that λ̃|V = λ. In particular, for any morphism of H-comodules
f : V → W we have the induced morphism of graded H-comodule
algebras SH(f) : SH(V ) → SH(W ) such that SH(f)(v) = f(v) for
v ∈ V .

In view of the above properties, SH(V ) can be called the symmetric
H-comodule algebra of the comodule V .

Now we introduce the main concept of the paper.

Definition. The Hopf algebra H is called geometrically coreductive if
for any epimorphism of H-comodules j : V → K there exist r > 0 and
f ∈ SrH(V )coH such that j̃(f) 6= 0, where j̃ : SH(V ) → K is the mor-
phism of comodule algebras induced by j. If λ(v) 6= 0 for some v ∈ V coH

(= S1
H(V )coH), then H is called linearly coreductive.

Notice that for commutative Hopf algebras this definition and that of
Borsari–Ferrer Santos coincide. It is clear that each linearly coreductive Hopf
algebra is geometrically coreductive. For later use, observe also that the
Hopf algebra H is geometrically coreductive if for any epimorphism of finite-
dimensional H-comodules λ : V → K there exist r > 0 and f ∈ SrH(V )coH

such that λ̃(f) 6= 0.
Now we show that Theorems 1.1–1.4 hold for all Hopf algebras. Theorem

1.1 can be proved similarly to [1, Theorem 4.3], replacing S(V ) by SH(V )
(also it can be deduced by duality from the proof of Theorem 3.1 in [5]).
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Theorem 1.2 can be proved in the same way as [1, Observation 2.1], using
the following well known facts.

Lemma 1.7. Let V be a finite-dimensional H-comodule and let v1, . . . , vn
be a basis of V with ρ(vi) =

∑
j vj ⊗hji. Moreover, let v∗1, . . . , v

∗
n be the dual

basis of the dual vector space V ∗.

(i) The map ρ : V ∗ → V ∗ ⊗ H, ρ(v∗i ) =
∑

t v
∗
t ⊗ S(hit), i = 1, . . . , n,

makes V ∗ an H-comodule (and does not depend on the choice of a
basis). Moreover, if S2 = Id, then the evaluation map e : V → V ∗∗

is an isomorphism of H-comodules.
(ii) For any H-comodule W the vector space Hom(V,W ) admits a unique

H-comodule structure such that the natural map Φ : W ⊗ V ∗ →
Hom(V,W ), Φ(w ⊗ v∗)(v) = v∗(v)w, is an isomorphism of H-co-
modules. If {wj | j ∈ J} is a basis of W with ρ(wj) =

∑
s∈J ws⊗h′sj

and {xij | i = 1, . . . , n, j ∈ J} is the basis of Hom(V,W ) de-
fined by xij(vr) = δirwj, then the structure map ρ : Hom(V,W ) →
Hom(V,W )⊗H is given by

ρ(xij) =
∑
t,s

xts ⊗ h′sjS(hit).

Furthermore, Hom(V,W )coH = HomH(V,W ), where HomH(V,W ) is the
vector space of all morphisms of H-comodules V →W.

Theorem 1.3 is proved below. As for Theorem 1.4, its proof is a simple
modification of the proof of [5, Theorem 5.12], applying the main results
of [9]. Observe that Theorem 1.4 is not true if char(K) = 0, because, in
characteristic 0, not all finite-dimensional Hopf algebras are cosemisimple.

Proof of Theorem 1.3. Suppose that char(K) = 0 and let λ : V → K
be an epimorphism of H-comodules. By assumption, there are r > 0 and
f ∈ SrH(V )coH such that λ̃(f) 6= 0. It suffices to construct a morphism of
H-comodules γ′ : S+

H(V ) =
⊕

i≥1 S
i
H(V )→ V such that λγ′(y) = nλ̃(y) for

y ∈ SnH(V ), n ≥ 1. To this end, we define as in [1, Observation 1.3] a linear
map γ : T+(V ) =

⊕
i≥1 T

i(V )→ V by γ(v) = v and

γ(v1 ⊗ · · · ⊗ vn) =
n∑
i=1

[∏
j 6=i

λ(vj)
]
vi, n ≥ 2,

where v, v1, . . . , vn ∈ V . Notice that for each n ≥ 1 and 1 ≤ i ≤ n the
map γ

(n)
i : Tn(V ) → V given by γ

(n)
i (v1 ⊗ · · · ⊗ vn) = [

∏
j 6=i λ(vj)]vi is

a morphism of H-comodules, because it can be identified with the map
λ⊗· · ·⊗λ⊗IdV ⊗λ⊗· · ·⊗λ, where IdV is at the ith position. As γ|Tn(V ) =∑n

i=1 γ
(n)
i , this implies that γ : T+(V )→ V is a morphism of H-comodules.

Now we show that IH(V ) ⊂ ker γ. Recall that the ideal IH(V ) is gener-
ated by the set X =

⋃
v,v′∈V H(v ⊗ v′ − v′ ⊗ v) and observe that γ(X) = 0,
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because γ(v ⊗ v′ − v′ ⊗ v) = 0 for all v, v′ ∈ V and γ is a morphism of H-
comodules. Hence IH(M) ⊂ ker γ provided γ(u ⊗ x) = 0 = γ(x ⊗ u) for all
x ∈ ker γ∩V ⊗n, n ≥ 2, and u ∈ V . Let x =

∑
vi1⊗· · ·⊗vin ∈ ker γ, vij ∈ V .

Then

γ(x⊗ u) =
∑

γ(vi1 ⊗ · · · ⊗ vin ⊗ u)

=
∑(

λ(u)
n∑
k=1

[∏
j 6=k

λ(vij )
]
vik + λ(vi1) . . . λ(vin)u

)
= λ(u)γ(x) +

1
n
λ(γ(x))u = 0.

Similarly, γ(u ⊗ x) = 0. Thus we have shown that there exists a morphism
of H-comodules γ′ : S+

H(V ) → V such that γ′(v1 ⊗ · · · ⊗ vn + IH(V )) =
γ(v1⊗· · ·⊗vn) for vi ∈ V and n ≥ 1. Certainly λγ′(y) = nλ̃(y) for y ∈ SnH(V ).
The theorem follows.

Remark 1.8. In [5] the authors introduced the notion of a geometrically
reductive Hopf algebra L (geometrically reductive for actions) in which the
category of L-modules is used. It is not difficult to see that a Hopf algebra
L is geometrically reductive if and only if its finite dual L0 is geometrically
coreductive and that Theorems 2–4 in [5, Introduction] are consequences of
the above mentioned Theorems 1.1, 1.3, 1.4.

In the following section, we study the natural question when the Hopf
algebra K[SLq(2)] of the quantum group SLq(2) = SLq(2,K) is geometri-
cally coreductive. Since the algebraic group SL(2) = SL1(2) is geometrically
reductive, we know that the Hopf algebra K[SL1(2)] is geometrically core-
ductive. Further, it follows from [11] that the Hopf algebra K[SLq(2)] is
cosemisimple (= linearly coreductive) whenever the parameter q ∈ K is not
a root of unity or if q = 1 and char(K) = 0. Our main result is the following
theorem.

Theorem 1.9. If char(K) > 0, then the Hopf algebra K[SLq(2)] is geo-
metrically coreductive for each parameter q ( 6= 0). Moreover, the Hopf algebra
K[SL−1(2)] is geometrically coreductive in any characteristic.

2. On the geometric coreductivity of K[SLq(2)]. We begin with
some auxiliary results.

Let f : H → D be a morphism of Hopf algebras. It is clear that every
H-comodule (V, ρ) can be considered as a D-comodule, via (1 ⊗ f)ρ : V →
V ⊗D (and then every morphism of H-comodules becomes a morphism of
D-comodules). In particular, we have the space of coinvariants V coD which
will be denoted by V f . If (A, ρ) is an H-comodule algebra, then (1 ⊗ f)ρ
makes A a D-comodule algebra and we have the algebra of coinvariants Af .
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In particular, we have the algebra Hf = {h ∈ H | (1 ⊗ f)∆(h) = h ⊗ 1}.
Recall that for a given H-comodule U and u ∈ U we denote by H(u) the
smallest subcomodule of U containing u.

Lemma 2.1. With the above notation, if (U, ρ) is an H-comodule, then
ρ(Uf ) ⊂ U⊗Hf . Moreover, if Hf is a Hopf subalgebra of H, then ρ(H(u)) ⊂
H(u)⊗Hf for each u ∈ Uf .

The proof of the lemma is an easy calculation and we omit it.
The following theorem (and its proof) is similar to [1, Theorem 2.3].

Theorem 2.2. Assume that f : H → D is a morphism of Hopf algebras
such that Hf is a Hopf subalgebra of H. Furthermore, assume that D and
Hf are geometrically coreductive (resp., linearly coreductive). Then the Hopf
algebra H is geometrically coreductive (resp., linearly coreductive).

Proof. Let λ : V → K be an epimorphism of H-comodules, and let
λH : SH(V ) → K and λD : SD(V ) → K denote the induced morphisms
of H-comodule and D-comodule algebras, respectively. Obviously the nat-
ural inclusion V ⊂ SH(V ) viewed as a morphism of D-comodules induces
a morphism of graded D-comodule algebras π : SD(V ) → SH(V ). Since
λHπ(v) = λ(v) = λD(v) for v ∈ V , we have λHπ = λD. By the geometric
coreductivity of D, there are r > 0 and ζ ∈ SrD(V )coD such that λD(ζ) = 1.
Let x = π(ζ). Then x ∈ SrH(V )f and λH(x) = λH(π(ζ)) = λD(ζ) = 1.
Now set U = H(x) ⊂ SrH(V ) and L = Hf . In view of Lemma 2.1, if
ρ : SrH(V ) → SrH(V ) ⊗ H is the structure map, then ρ(U) ⊂ U ⊗ L, so
that (U, ρ′) with ρ′(u) = ρ(u) is an L-comodule. Let ω = λH |U : U → K.
Then ω(x) = 1 and by the geometric coreductivity of L, there are l > 0
and y ∈ SlL(U)coL with ω̃(y) = 1, where ω̃ : SL(U) → K is the induced
morphism of L-comodule algebras. Furthermore, the inclusion U ⊂ SH(V )
induces a morphism of H-comodule algebras

g : SL(U)→ SH(V )

such that g(StL(U)) ⊂ SrtH (V ) for all t ≥ 0. Hence g(y) ∈ SrlH(V )coH and
λH(g(y)) = ω(y) = 1. Consequently, the Hopf algebra H is geometrically
coreductive. Moreover, if Hf and D are linearly coreductive, then so is H.

Now observe that if the antipode S : H → H is involutive, i.e., S2 =
Id, and if V is a finite-dimensional H-comodule, then by Lemma 1.7, the
evaluation map e : V → V ∗∗ is a morphism of H-comodules and for any
v ∈ V coH the map e(v) : V ∗ → K is a morphism of H-comodules. In
particular, we can take the induced morphism of H-comodule algebras ẽ(v) :
SH(V ∗)→ K. Hence one easily obtains the following theorem.

Theorem 2.3. If S2 = Id, then the Hopf algebra H is geometrically
coreductive if and only if for any finite-dimensional H-comodule V and
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any nonzero v0 ∈ V coH there exist r > 0 and T ∈ SrH(V ∗)coH such that
ẽ(v0)(T ) 6= 0.

Remark 2.4. If G is an affine algebraic group, then the above theo-
rem applies to the (commutative) Hopf algebra K[G] and amounts to the
well known fact that G is geometrically reductive if and only if for any
finite-dimensional, rational G-module V and any nonzero v0 ∈ V G there
is a nonconstant and G-invariant regular function T : V → K such that
T (v0) 6= 0 (see, e.g., [10]).

For later use we also need the following theorem.

Theorem 2.5. Let V be an H-comodule of dimension n > 0 and let
v1, . . . , vn be a basis of V with ρ(vi) =

∑
j vj ⊗ hji, i = 1, . . . , n. Moreover,

let E denote the H-comodule End(V ) (see Lemma 1.7) and let {xij | i, j =
1, . . . , n} be the basis of E given by xij(vr) = δirvj.

(i) ∆(hij) =
∑

s his ⊗ hsj and ε(hij) = δij for all i, j.
(ii) Suppose that the set {hij , S(hij) | i, j = 1, . . . , n} is contained in a

commutative subalgebra B of H. Then we have:
(a) The element F = det(xij) ∈ SH(E) is a homogeneous coinvari-

ant (of degree n) such that j̃(F ) = det(j(xij)) for any morphism
of H-comodules j : E → K.

(b) If S2 = Id, then the map Ψ : E → E∗ defined by Ψ(xij) = x∗ji is
an isomorphism of H-comodules. Furthermore, F ∗ = det(x∗ij) ∈
SH(E∗) is a homogeneous coinvariant (of degree n2) such that
for any f ∈ EcoH the map e(f) : E∗ → K is a morphism of
H-comodules and ẽ(f)(F ∗) = det(f).

Proof. Part (i) is a (well known) simple exercise. For (ii), if A denotes
the matrix (hij) ∈ Mn(H) and S(A) = (S(hij)), then AS(A) = I, by (i)
(I = (δij)). Furthermore, from Lemma 1.7 we deduce that

ρ(xij) =
∑
t,s

xts ⊗ hsjS(hit) =
∑
s,t

xts ⊗ S(hit)hsj .

In particular, all ρ(xij)’s belong to the commutative subalgebra SH(E)⊗B
of SH(E)⊗H. Further, the matrix (ρ(xij)) equals (1⊗S(A))(X⊗1)(1⊗A),
where X = (xij) and 1 ⊗ C = (1 ⊗ crs), C ⊗ 1 = (crs ⊗ 1) for any matrix
C = (crs). Hence

ρ(F ) = det(ρ(xij)) = det(1⊗ S(A)) det(X ⊗ 1) det(1⊗A)
= det(X ⊗ 1) det(1⊗ S(A)A) = det(X ⊗ 1) det(1⊗ I)
= det(X)⊗ 1 = F ⊗ 1,

which means that F ∈ SH(E)coH . The second statement of (ii)(a) is obvious.
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It remains to prove (ii)(b). Suppose that S2 = Id. By Lemma 1.7,

ρ(x∗ij) =
∑
t,s

x∗ts ⊗ S(hjsS(hti)) =
∑
t,s

x∗ts ⊗ htiS(hjs) =
∑
s,t

x∗st ⊗ hsiS(hjt).

It follows that the map Ψ : E → E∗, Ψ(xij) = x∗ji, is an isomorphism of H-
comodules, which in turn implies that F ∗ = SH(Ψ)(F ) is a coinvariant. Now
let f ∈ EcoH . Then e(f) : E∗ → K is a morphism of H-comodules, again by
Lemma 1.7, so that we have the induced morphism of H-comodule algebras
ẽ(f) : SH(E∗) → K. Furthermore, f =

∑
i,j αijxij for some αij ∈ K,

which means that f(vt) =
∑

j αtjvj for t = 1, . . . , n. Hence ẽ(f)(F ∗) =
det(e(f)(x∗ij)) = det(x∗ij(f)) = det(αij) = det(f).

Remark 2.6. Part (ii)(a) of the above theorem and its proof are a simple
generalization of [3, Lemma 2.1].

Now let 0 6= q ∈ K be a fixed parameter. Following [6, Section IV], we
denote by K[Mq(2)] the algebra generated by the symbols a, b, c, d subject
to the relations

ba = qab, db = qbd, ca = qac, dc = qcd,

bc = cb, ad− da = (q−1 − q)bc.

Observe that the algebra K[Mq(2)] has a natural grading such that the
degree of the generators a, b, c, d is equal to 1. Furthermore, the following
lemma holds.

Lemma 2.7 ([6, Theorem IV.4.1]). The set {an0bn1cn2dn3 | ni ≥ 0} is a
(linear) basis of the algebra K[Mq(2)].

As is known, the algebra K[Mq(2)] is a bialgebra with comultiplication
and counit defined by

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d
∆(c) = c⊗ a+ d⊗ c, ∆(d) = c⊗ b+ d⊗ d,

ε(a) = 1 = ε(d), ε(b) = 0 = ε(c).

It is easy to verify that the element detq = ad − q−1bc ∈ K[Mq(2)] (called
the quantum determinant) is in the center of K[Mq(2)] and that ∆(detq) =
detq ⊗detq, ε(detq) = 1. Hence we obtain the quotient bialgebra K[SLq(2)]
= K[Mq(2)]/(detq − 1), which turns out to be a Hopf algebra with antipode
S defined by

S(a) = d, S(b) = −qb, S(c) = −q−1c, S(d) = a.

K[SLq(2)] is called the Hopf algebra of the quantum group SLq(2).
An easy consequence of Lemma 2.7 is the following.
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Lemma 2.8. The set {anbicj , bicjdm | i, j, n ≥ 0, m ≥ 1} is a basis of
K[SLq(2)].

The above basis will be called the standard basis of K[SLq(2)].
Obviously the Hopf algebra K[SLq(2)] is geometrically coreductive for

q = 1, because the algebraic group SL(2) = SL1(2) is geometrically reduc-
tive. Moreover, the following result is due to M. Takeuchi.

Theorem 2.9 ([11]). The Hopf algebra K[SLq(2)] is linearly coreductive
(= cosemisimple) whenever q is not a root of unity.

Below we are going to prove that in positive characteristic the Hopf
algebra K[SLq(2)] is geometrically coreductive for any q. The idea of the
proof is as follows. Making use of Theorem 2.2, we will construct a morphism
of Hopf algebras f : K[SLq(2)]→ D such that D is a finite-dimensional Hopf
algebra and K[SLq(2)]f is a Hopf subalgebra of K[SLq(2)] isomorphic to
K[SLε(2)] for some ε ∈ {1,−1}. Then we prove that for both ε ∈ {1,−1} the
Hopf algebra K[SLε(2)] is geometrically coreductive (in any characteristic).
The conclusion will follow by Theorem 1.4.

Let us start by recalling the definition and properties of the Gauss poly-
nomials

(
n
r

)
t
. Denote by Q(t) the field of fractions of the polynomial ring

Z[t] and set

(n)t =
tn − 1
t− 1

, n ≥ 1, (0)t = 1,

(n)!t = (1)t(2)t . . . (n)t =
(t− 1)(t2 − 1) . . . (tn − 1)

(t− 1)n
, n ≥ 0,(

n

r

)
t

=
(n)!t

(r)!t(n− r)!t
∈ Q(t), 0 ≤ r ≤ n.

It is clear that
(
n
n

)
t

=
(
n
0

)
t

= 1 and
(
n
r

)
1

=
(
n
r

)
= n!

(n−r)!r! . The following
lemma lists the basic properties of

(
n
r

)
t
.

Lemma 2.10.

(i)
(
n

r

)
t

∈ Z[t].

(ii)
(
n

r

)
t

=
(

n

n− r

)
t

.

(iii)
(
n

r

)
t

=
(
n− 1
r − 1

)
t

+ tr
(
n− 1
r

)
t

=
(
n− 1
r

)
t

+ tn−r
(
n− 1
r − 1

)
t

for 0 < r ≤ n.
(iv) Assume that λ ∈ K is a primitive mth root of unity. Then

(
m
r

)
λ

= 0
for 0 < r < m. Moreover, (n)λ = 0 if and only m |n for n ≥ 1.
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Parts (i)–(iii) of the lemma are contained in [6, Proposition IV.2.1]. Part
(iv) is obvious.

Below we shall also need the following lemmas.

Lemma 2.11 ([6, Proposition IV.2.2]). Let A be an algebra and let x, y ∈
A be such that yx = λxy for some nonzero λ ∈ K. Then

(x+ y)n =
n∑
r=0

(
n

r

)
λ

xryn−r, n ≥ 0.

Lemma 2.12. The following equalities hold in K[SLq(2)]:

(i) We have

(1) asds =
s∑

k=0

(
s

k

)
q2
qk

2−2ks(bc)k, dsas =
s∑

k=0

(
s

k

)
q2
qk

2
(bc)k, s ≥ 0.

(ii) amdm = dmam and amdm−q−m2
bmcm = 1 whenever q2 is a primitive

mth root of unity.

Part (i) of the lemma easily follows by induction on s and by Lemma
2.10(iii). Part (ii) is a consequence of (i) and Lemma 2.10(iv), because qm2

=
q−m

2 .
Now assume that the parameter q is a root of unity and let

m = min{k ≥ 1 | (q2)k = 1}.
Moreover, let

ε = qm
2

= q−m
2
.

Note that ε ∈ {1,−1}.
Lemma 2.13. There exists a unique morphism of Hopf algebras

φ : K[SLε(2)]→ K[SLq(2)]

such that φ(u) = um for u ∈ {a, b, c, d}. Moreover, φ is injective.

Proof. By Lemma 2.12(ii), there exists a unique morphism of algebras

φ : K[SLε(2)]→ K[SLq(2)]

satisfying the above conditions. By Lemmas 2.10 and 2.11, φ is a morphism
of Hopf algebras. In view of Lemma 2.8, φ is injective.

Remark 2.14. The above lemma can be deduced from [12, Section 5].

Now let L = imφ and let H = K[SLq(2)] for simplicity. In view of
the above lemma, L is a Hopf subalgebra of H isomorphic to K[SLε(2)]
with ε ∈ {1,−1}. Furthermore, the Hopf ideal L+ = ker(ε : L → K) in
L is generated by the set {am − 1, bm, cm, dm − 1}. This implies that J =
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H(am−1, bm, cm, dm−1)H is a Hopf ideal in H, so that we have the quotient
Hopf algebra D = H/J and the natural projection

f : H → D.

This gives the algebra ofD-coinvariantsHf = {h ∈ H | (1⊗f)∆(h) = h⊗1}.
Of importance is the following theorem.

Theorem 2.15. In any characteristic we have Hf = L. In particular,
Hf is a Hopf subalgebra of H isomorphic to K[SLε(2)] for some ε ∈ {1,−1}.

Proof. If m = 1, that is, q2 = 1, then D = K, f = ε and Hf = H = L.
So we can assume that m ≥ 2. Observe that L ⊂ Hf , because

(Id⊗ f)∆(am) = am ⊗ f(am) + bm ⊗ f(cm) = am ⊗ 1

(see Lemmas 2.10 and 2.11), and similarly bm, cm, dm ∈ Hf .
For k = (k1, k2, k3), n = (n1, n2, n3) ∈ N3 we write k ≤ n when ki ≤ ni

for i = 1, 2, 3. Moreover, for λ ∈ K, by
(
n
k

)
λ
we mean

(
n1

k1

)
λ

(
n2

k2

)
λ

(
n3

k3

)
λ
.

Now let x =
∑

s∈N4 λsa
s1bs2cs3ds4 ∈ Hf (λs ∈ K). We are going to show

that x ∈ L. Set t = max{s1 | λs 6= 0} and choose an integer k ≥ 0 such
that mk ≥ t. Then clearly y = dmkx =

∑
n∈N3 λnb

n1cn2dn3 ∈ Hf for some
λn ∈ K, by (1). From Lemma 2.11 and (1) we infer that

(2) ∆(y) =
∑
n

λn
∑
k≤n

(
n

k

)
q2
ck2dn2−k2ak1bn1−k1ck3dn3−k3

⊗ ak2cn2−k2bk1dn1−k1bk3dn3−k3

=
∑
n

λn
∑
k≤n

τ1

(
n

k

)
q2
ak1bn1−k1ck2+k3dn2+n3−(k2+k3)

⊗ ak2bk1+k3cn2−k2dn1+n3−(k1+k3)

=
∑
n

λn
∑
k≤n

k1+k2+k3≤n1+n3

τ2

(
n

k

)
q2

k2∑
u=0

αua
k1bn1−k1ck2+k3dn2+n3−(k2+k3)

⊗ bk1+k3cn2−k2(bc)udn1+n3−(k1+k2+k3)

+
∑
n

λn
∑
k≤n

k1+k2+k3>n1+n3

τ2

(
n

k

)
q2

n1+n3−(k1+k3)∑
u=0

βua
k1bn1−k1ck2+k3dn2+n3−(k2+k3)

⊗ ak1+k2+k3−(n1+n3)bk1+k3+ucn2+u−k2

for some αu, βu ∈ K (depending on n, k) such that α0 = β0 = 1. Moreover,
τ1, τ2 ∈ K are some integral powers of the parameter q (also depending on
n, k).
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Now observe that all elements of H appearing in the above formula on
the right hand side of the tensor products belong to the standard basis

B1 = {asbicj , bicjdt | 0 ≤ i, j, s, 1 ≤ t}
of the Hopf algebra H. It is obvious that

B2 = {asbicj , bicjdt | 0 ≤ i, j, s ≤ m− 1, 1 ≤ t ≤ m− 1}
is a basis of D. Furthermore, if w ∈ B1 and f(w) 6= 0, then f(w) ∈ B2.
Consider the set

T = {asc, cdt | 0 ≤ s, 1 ≤ t ≤ m− 1} ⊂ B2

and notice that 1 /∈ T and f−1(T ) ∩B1 = S, where

S = {asc, cdt | 0 ≤ s, t} ⊂ B1.

Further, by (2), ∆(y) =
∑

γ∈B1
yγ ⊗ γ for some yγ ∈ H and

[(Id⊗ f)∆] (y) =
∑
γ∈S

yγ ⊗ f(γ) +
∑
γ 6∈S

yγ ⊗ f(γ) = y ⊗ 1,

because y ∈ Hf . But f(γ) ∈ T if and only if γ ∈ S for γ ∈ B1, whence∑
γ∈S yγ = 0. Again by (2), this implies that

0 =
∑
γ∈S

yγ =
∑

n, n2 6=0

λnτ2

(
n1

0

)
q2

(
n2

n2 − 1

)
q2

(
n3

0

)
q2
bn1cn2−1dn3+1.

Hence λn
(
n2

n2−1

)
q2

= λn
(
n2

1

)
q2

= λn(n2)q2 = 0 for n ≥ 0 with n2 6= 0.
Consequently, if λn 6= 0, then q2n2 = 1, which means that m |n2.

Now consider the sets

T = {di, ai | 1 ≤ i ≤ m− 1} ⊂ B2,

S = f−1(T ) ∩B1 = {di, ai | m - i} ⊂ B1.

Similarly to the above, f(γ) ∈ T if and only if γ ∈ S for γ ∈ B1. It follows
that

∑
γ∈S yγ = 0, whence∑

n,m-(n1−n2+n3)

λnτ2

(
n1

0

)
q2

(
n2

n2

)
q2

(
n3

0

)
q2
bn1cn2dn3 = 0.

Since we know that m |n2 for λn 6= 0, the above equality reduces to∑
n,m-(n1+n3)

λnτ2b
n1cn2dn3 = 0.

Therefore, if λn 6= 0, then n1 + n3 is divisible by m. Further, by considering
the sets

T = {aib, bdi | 0 ≤ i ≤ m− 1} ⊂ B2,

S = π−1(T ) ∩B1 = {aib, bdi | i ≥ 0} ⊂ B1,
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one can verify that

0 =
∑

n, n3 6=0

λnτ2

(
n1

0

)
q2

(
n2

n2

)
q2

(
n3

1

)
q2
bn1cn2+1dn3−1

+
∑

n, n1 6=0

λnτ2

(
n1

1

)
q2

(
n2

n2

)
q2

(
n3

0

)
q2
abn1−1cn2dn3 .

In view of the relation ad = 1 + q−1bc it follows that

0 =
∑

n1,n2≥0, n3≥1

λnτ2(n3)q2b
n1cn2+1dn3−1

+
∑

n2≥0, n1≥1

λ(n1,n2,0)τ2(n1)q2ab
n1−1cn2

+
∑

n2≥0, n1,n3≥1

λnτ3(n1)q2b
n1−1cn2dn3−1

+
∑

n2≥0, n1,n3≥1

λnτ4(n1)q2b
n1cn2+1dn3−1

=
∑

n1≥0, n2,n3≥1

λ(n1,n2−1,n3)τ2(n3)q2b
n1cn2dn3−1

+
∑

n2≥0, n1≥1

λ(n1,n2,0)τ2(n1)q2ab
n1−1cn2

+
∑

n1,n2≥0, n3≥1

λ(n1+1,n2,n3)τ3(n1 + 1)q2b
n1cn2dn3−1

+
∑

n1,n2,n3≥1

λ(n1,n2−1,n3)τ4(n1)q2b
n1cn2dn3−1.

where τ2, τ3, τ4 ∈ K are some integral powers of q. Suppose that λn 6= 0.
We already know that m | n2 and m | (n1 + n3). For the proof that y ∈ L
we have to show that m | n1 and m | n3. To this end, it clearly suffices to
check that m | n1. One can assume that n1, n3 ≥ 1. In the above sum the
coefficient of bn1−1dn3−1 equals τ3λ(n1,0,n3)(n1)q2 , whence m | n1 whenever
n2 = 0. So let n2 ≥ 1. But the coefficient of the monomial bn1−1cn2dn3−1

(again in the above sum) is equal to

λ(n1−1,n2−1,n3)τ2(n3)q2 +λ(n1,n2,n3)τ3(n1)q2 +λ(n1−1,n2−1,n3)τ4(n1−1)q2 = 0.

Hence λnτ3(n1)q2 = 0, because λ(n1−1,n2−1,n3) = 0 (m - (n1 − 1 + n3)).
Consequently, (n1)q2 = 0 and m |n1.

Thus we have proved that y = dmkx ∈ L for some k ≥ 0. In view of
Lemma 2.12(ii) it follows that
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amky = amkdmkx = (amdm)kx = (1± (bc)m)kx =
k∑
i=0

αi(bc)imx ∈ L

for some αi ∈ K with α0 = 1. Using the standard basis of H, we can write

x =
∑

j∈N4, j1j4=0

βja
j1bj2cj3dj4

for some βj ∈ K. Let T = {j ∈ N4 | βj 6= 0 ∧ ∃r=1,...,4m - jr}. If the
set T is not empty, choose a t ∈ T with t2 = min{j2 | j ∈ T}. Then the
element

∑k
i=0 αi(bc)

imx does not belong to L, because its presentation in the
standard basis contains the summand α0βta

t1bt2ct3dt4 . This contradiction
makes it clear that the set T is empty, and therefore x ∈ L. The theorem
follows.

Theorem 2.16. Suppose that char(K) > 0. Then the Hopf algebra
K[SLq(2)] is geometrically coreductive for each q, provided the Hopf alge-
bra K[SLε(2)] is geometrically coreductive for both ε ∈ {1,−1}.

Proof. In view of Theorem 2.9, we can assume that q is a root of unity.
In that case we have the natural morphism of Hopf algebras f : H → D,
where H = K[SLq(2)] and D = H/(am− 1, bm, cm, dm− 1) for some m ≥ 1.
By Theorem 2.15, Hf is a Hopf subalgebra of H isomorphic to K[SLε(2)]
for some ε ∈ {1,−1}. Furthermore, it is easy to see that the Hopf algebra
D is finite-dimensional. The conclusion now follows, using Theorems 1.4
and 2.2.

We are now going to prove that if ε2 = 1, then in any characteristic the
Hopf algebraK[SLε(2)] is geometrically coreductive (obviously only the case
ε = −1 requires proof). The proof given below is patterned on Springer’s
proof of the geometric reductivity of the algebraic group SL(2) presented
in [10]. Again some preparations are needed.

Let Kq[x, y] be the algebra generated by the symbols x, y subject to the
relation yx = qxy (the algebra Kq[x, y] is called the quantum plane). It is
easy to see that the algebra Kq[x, y] is a K[SLq(2)]-comodule algebra, via

ρ(x) = x⊗ a+ y ⊗ c, ρ(y) = x⊗ b+ y ⊗ d.

By Lemma 2.11 it follows that

ρ(xsyt) =
s∑
i=0

t∑
j=0

qj(s−i)
(
s

i

)
q2

(
t

j

)
q2
xi+jys+t−(i+j) ⊗ aibjcs−idt−j(3)

for any s, t ≥ 0. Given an n ≥ 0, we denote by Kq[x, y]n the subspace of
Kq[x, y] spanned by the set {xiyn−i | i = 0, 1, . . . , n}. By the above formula,
Kq[x, y]n is a subcomodule of Kq[x, y].
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Remark 2.17. If q = 1, then Kq[x, y] is nothing other than the symmet-
ric algebra S(K2) with the SL(2) action induced by the standard action of
the group SL(2) on K2 given by

[
a b
c d

]
(x, y) = (ax+ by, cx+ dy).

Let, as above, H = k[SLq(2)] and fix an n ≥ 0. Below ek = xkyn−k ∈
Kq[x, y]n for k = 0, . . . , n, and the elements {hsk | s, k = 0, . . . , n} ⊂ H are
defined by

ρ(ek) =
n∑
s=0

es ⊗ hsk, k = 0, . . . , n.

Furthermore, we set
(
n
i

)
λ

= 0 for λ ∈ K whenever i > n or i < 0. From (3)
we obtain

hsk =
n∑
i=0

q(s−i)(k−i)
(
k

i

)
q2

(
n− k
s− i

)
q2
aibs−ick−idn−k−s+i(4)

for s, k = 0, . . . , n. As ad− q−1bc = 1, it follows that

hsk =
n∑
i=0

i∑
r=0

τ1

(
i

r

)
q2

(
k

i

)
q2

(
n− k
s− i

)
q2
bs−i+rck−i+rdn−k−s(5)

whenever n− k − s ≥ 0, and similarly

(6) hsk =
n∑
i=0

n−k−s+i∑
r=0

τ2

(
n− k − s+ i

r

)
q2

(
k

i

)
q2

(
n− k
s− i

)
q2

· a−(n−k−s)bs−i+rck−i+r

whenever n− k − s < 0 (again τ1, τ2 ∈ K are some integral powers of q).

Lemma 2.18. Suppose that M is a nonzero subcomodule of the H-co-
module Kq[x, y]n. Then xn, yn ∈M .

Proof. Let 0 6= m =
∑n

k=0 αkek ∈M . By (5) and (6), we know that

ρ(m) =
n∑
k=0

αk

n∑
s=0

es ⊗ hsk

=
∑

k+s≤n
αkes ⊗

n∑
i=0

i∑
r=0

τ1

(
i

r

)
q2

(
k

i

)
q2

(
n− k
s− i

)
q2
bs−(i−r)ck−(i−r)dn−k−s

+
∑

k+s>n

αkes ⊗
∑

k−n+s≤i

n−k−s+i∑
r=0

τ2λ(k, s, i, r)a−(n−k−s)bs−(i−r)ck−(i−r),

where

λ(k, s, i, r) =
(
n− k − s+ i

r

)
q2

(
k

i

)
q2

(
n− k
s− i

)
q2
.
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Now set k0 = max{k | αk 6= 0 and write ρ(m) as the sum
∑

γ∈Γ xγ⊗yγ , where
Γ is the standard basis of H and xγ ∈M . If k0 = 0, i.e., m = α0e0 = α0y

n,
then it is easily seen that xγ = α0τ1x

n for γ = bn. Similarly, if k0 > 0, then
xγ = αk0τ1y

n for γ = ck0dn−k0 and xγ = αk0τ2x
n for γ = ak0bn−k0 . Hence

xn, yn ∈M .

Corollary 2.19.

(i) Suppose that q2 is a primitive mth root of unity. Then the Hopf
algebra H = K[SLq(2)] is not cosemisimple in the following cases:
(a) m ≥ 2, (b) m = 1 and char(K) > 0.

(ii) If q2 = 1, then the H-comoduleKq[x, y]n is simple whenever char(K)
= 0 or if char(K) > 0 and n = pr − 1 for some r ≥ 0.

(iii) If q is not a root of unity, then the H-comodule Kq[x, y]n is simple
for each n ≥ 0.

Proof. (i) Let T = Kxm +Kym. Then T is a subcomodule of Kq[x, y]m,
by Lemmas 2.10 and 2.11. If m ≥ 2, then clearly T 6= Kq[x, y]m. Sup-
pose that Kq[x, y]m = T ⊕M for some subcomodule M ⊂ Kq[x, y]m. Then
xm, ym ∈ M , by the above lemma, which is impossible. If p = char(K) > 0
and m = 1 (i.e., q2 = 1), then ρ(xp) = (x⊗ a+ y ⊗ c)p = xp ⊗ ap + yp ⊗ cp
and ρ(yp) = (x ⊗ b + y ⊗ d)p = xp ⊗ bp + yp ⊗ dp, because y ⊗ c commutes
with x⊗a and y⊗d commutes with x⊗ b. This means that T = Kxp+Kyp

is a proper subcomodule of Kq[x, y]p, and as above, we show that T is not
a direct summand of Kq[x, y]p. Therefore, in either case H is not cosemi-
simple.

(ii) Suppose that q2 =1 and letM be a nonzero subcomodule ofKq[x, y]n.
By the above lemma, xn ∈M . Since

ρ(xn) =
n∑
i=0

(
n

i

)
xiyn−i ⊗ aicn−i

and, under our assumption,
(
n
i

)
1K 6= 0 for i = 0, . . . , n, it follows that

xiyn−i ∈M for i = 0, . . . , n. Consequently, M = Kq[x, y]n. This means that
Kq[x, y]n is a simple H-comodule.

(iii) can be proved in the same way as (ii).

Lemma 2.20.

(i) We have(
n

k

)
q2
S(hsk) = (−q)s−k

(
n

s

)
q2
hn−k,n−s, 0 ≤ k, s ≤ n.

(ii) If
(
n
k

)
q2
6=0 for k=0, . . . , n, then the map f : Kq[x, y]n→(Kq[x, y]n)∗
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given by

f(ek) = (−q)k
(
n

k

)−1

q2
e∗n−k, k = 0, . . . , n,

is an isomorphism of H-comodules.

Proof. By (3),

S(hsk) =
n∑
i=0

q(s−i)(k−i)
(
k

i

)
q2

(
n− k
s− i

)
q2
S(aibs−ick−idn−k−s+i)

= (−q)s−k
∑
i

q(s−i)(k−i)
(
k

i

)
q2

(
n− k
s− i

)
q2
an−k−s+ibs−ick−idi.

Set i′ = n− k − s+ i, s′ = n− k, k′ = n− s. Then
s− i = n− k′ − (i′ + n− k′ − s′) = s′ − i′,
k − i = n− s′ − (i′ + n− k′ − s′) = k′ − i′

and (
n− k
s− i

)
q2

=
(

s′

s′ − i′

)
q2

=
(
s′

i′

)
q2
,(

k

i

)
q2

=
(

n− s′

n′ − s′ − (k′ − i′)

)
q2

=
(
n− s′

k′ − i′

)
q2
,

which implies that

S(hsk) = (−q)(s−k)
n∑

i′=0

q(s
′−i′)(k′−i′)

(
n− s′

k′ − i′

)
q2

(
s′

i′

)
q2

· ai′bs′−i′ck′−i′di
′+n−k′−s′ .

Further, one easily checks that(
n

s

)
λ

(
n− s
k − i

)
λ

(
s

i

)
λ

=
(
n

k

)
λ

(
n− k
s− i

)
λ

(
k

i

)
λ

for all λ ∈ K and s, k, i ≥ 0. Hence(
n

k

)
q2
S(hsk) =

(
n

s′

)
q2
S(hsk)

= (−q)s′−k′
(
n

k′

)
q2

∑
i′

q(s
′−i′)(k′−i′)

(
k′

i′

)
q2

(
n− k′

s′ − i′

)
q2

· ai′bs′−i′ck′−i′dn−k
′−s′+i′

= (−q)s′−k′
(
n

k′

)
q2
hs′k′ = (−q)s−k

(
n

s

)
q2
hn−k,n−s.
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Thus (i) is proved. Since

(ρf)(ek) = (−q)k
(
n

k

)−1

q2
ρ(e∗n−k) = (−q)k

(
n

k

)−1

q2

n∑
s=0

e∗s ⊗ S(hn−k,s)

= (−q)k
(
n

k

)−1

q2

n∑
s=0

e∗s ⊗ (−q)n−s−k
(

n

n− k

)
q2

(
n

s

)−1

q2
hn−s,k

=
n∑
s=0

(−q)n−se∗s ⊗
(
n

s

)−1

q2
hn−s,k =

n∑
s=0

(−q)s
(
n

s

)−1

q2
e∗n−s ⊗ hsk

=
∑
s

f(es)⊗ hsk = [(f ⊗ Id)ρ](ek)

for k = 0, . . . , n, also (ii) is true.

Corollary 2.21. Assume that q2 = 1. Moreover, assume that either
char(K) = 0 and n ≥ 0 is arbitrary, or char(K) = p > 0 and n = pr − 1 for
some r ≥ 0. Then

(
n
k

)
q2

=
(
n
k

)
1K 6= 0 for k = 0, . . . , n and the linear map

f : Kq[x, y]n → (Kq[x, y]n)∗, f(ek) = (−q)k
(
n

k

)−1

e∗n−k, k = 0, . . . , n,

is an isomorphism of H-comodules.

Proof. If char(K) = p > 0, then
(
n
k

)
1K 6= 0 since

(
pr−1
k

)
= (−1)k mod p.

Therefore, the corollary is a consequence of the above lemma.

Now fix an ε ∈ {1,−1} and set H = K[SLε(2)]. Note that the antipode
S of H has order 2, that is, S2 = Id. This will allow us to apply Theorem
2.2 to H. Also notice that the algebra H admits a Z-grading determined by
deg(a) = deg(b) = 1, deg(c) = deg(d) = −1. In particular,

H =
⊕
n∈Z

Hn,

where Hn is the vector subspace of H spanned by the set

{an1bn2cn3dn4 | n1 + n2 − (n3 + n4) = n}.
It is easy to see that each Hn is a subcomodule of the H-comodule (H,∆).

Lemma 2.22. The subalgebra B =
⊕

n∈ZH2n of H is commutative.

Proof. Let X = as1bs2cs3ds4 ∈ H2s and Y = at1bt2ct3dt4 ∈ H2t. Then
clearly

XY = εt1(s3+s2)+t2(s4+s1)+t3(s4+s1)+t4(s3+s2)Y X

= ε(t1+t4)(s3+s2)+(t2+t3)(s4+s1)Y X.

Since the numbers s1 + s4 + s2 + s3 and t1 + t4 + t2 + t3 are even, s1 + s4 is
even if and only if s2 + s3 is even, and t1 + t4 is even if and only if t2 + t3
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is even. Consequently, the number (t1 + t4)(s3 + s2) + (t2 + t3)(s4 + s1) is
even, whence XY = Y X.

For u ≥ n we define Hn,u to be the subspace of Hn spanned by the set

{an1bn2cn3dn4 | n1 + n2 − (n3 + n4) = n, 0 ≤ n1 + n2 ≤ u}.

Observe that Hn,u ⊂ Hn,u+1 and Hn =
⋃
u≥nHn,u. Moreover, Hn,u is a

subcomodule of Hn.

Lemma 2.23. The set Bu = {aibu−icjdu−n−j | 0 ≤ i ≤ u, 0 ≤ j ≤ u−n}
is a basis of Hn,u.

Proof. Let us assume that
∑

i,j αija
ibu−icjdu−n−j = 0 for some αij ∈ K.

As H = K[Mε(2)]/(ad− εbc− 1), it follows that in the algebra K[Mε(2)] we
have the equality ∑

0≤i≤u, 0≤j≤u−n
αija

ibu−icjdu−n−j = h(ad+ bc− 1)

(for some h ∈ K[Mε(2)]). This implies that h = 0, using the natural grading
in K[Mε(2)] given by deg(δ) = 1 for δ ∈ {a, b, c, d} ⊂ K[Mε(2)]. Therefore,∑

0≤i≤u, 0≤j≤u−n
αija

ibu−icjdu−n−j = 0

in K[Mε(2)], so that αij = 0 for all i, j, by Lemma 2.7. It remains to prove
that the set Bu spans the subspace Hn,u. Notice that given n1, n2, n3, n4 ≥ 0,

an1bn2cn3dn4 = an1bn2(ad− εbc)cn3dn4

= αan1+1bn2cn3dn4+1 + βan1bn2+1cn3+1dn4

for some α, β ∈ K. By induction on u−(n1+n2), it follows that an1bn2cn3dn4

∈ Hn,u is a linear combination of elements from Bu.

Lemma 2.24. For each n ≥ 0 the linear map g : H0,n → Kε[x, y]n ⊗
Kε[x, y]n given by

g(akbn−kcsdn−s) = ek ⊗ es, k = 0, . . . , n,

is an isomorphism of H-comodules.

The proof is straightforward computation, using (3) and Lemma 2.23.
Now we are ready to prove the announced theorem.

Theorem 2.25. The Hopf algebra H = K[SLε(2)] is geometrically core-
ductive for any field K.

Proof. Let (V, ρ) be a finite-dimensional H-comodule and let 0 6= v0 ∈
V coH . As S2 = Id, by Theorem 2.3, it suffices to find r > 0 and T ∈
SrH(V ∗)coH such that ẽ(v0)(T ) 6= 0. Choose a linear map l : V → K with
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l(v0) = 1. Then we have the morphism of H-comodules

ψ : V → H
π−→ H0, ψ(v) = π

(∑
l(vi)hi

)
,

where π : H → H0 is the projection on the 0-component of the grading H =⊕
n∈ZHn and

∑
vi ⊗ hi = ρ(v). Certainly ψ(v0) = 1. Since H0 =

⋃
nH0,n,

imψ ⊂ H0,n for some n ≥ 0, and we can assume that n = pm − 1 for some
m ≥ 0, provided char(K) = p > 0. By Lemmas 2.24, 1.7 and Corollary
2.21, it follows that the H-comodules H0,n and E = End(Kε[x, y]n) are
isomorphic. Therefore, there exists a morphism of H-comodules

ϕ : V → E

such that u = ϕ(v0) 6= 0. It is clear that u ∈ EcoH = EndH(Kε[x, y]n),
because v0 ∈ V coH . Furthermore, in view of Corollary 2.19, the H-comodule
Kε[x, y]n is simple. Hence, u is an isomorphism of H-comodules. The mor-
phism ϕ induces a morphism of graded H-comodule algebras

SH(ϕ∗) : SH(E∗)→ SH(V ∗)

(determined by SH(ϕ∗)(g) = gϕ for g ∈ E∗). By Theorem 2.5(ii)(b), we
know that there exists a coinvariant F ∗ ∈ SH(E∗) of degree r = dimV > 0
such that for any f ∈ EcoH the map e(f) : E∗ → K, e(f)(e∗) = e∗(f), is
a morphism of H-comodules and ẽ(f)(F ∗) = det(f). Set T = SH(ϕ∗)(F ∗).
Then T ∈ SrH(V ∗)coH and it is easily seen that ẽ(v0)(T ) = det(u) 6= 0,
because SH(ϕ∗)ẽ(v0) = ẽ(u).

The main result of the paper is the following theorem.

Theorem 2.26.

(i) If char(K) > 0, then the Hopf algebra K[SLq(2)] is geometrically
coreductive for any parameter q. Moreover, the Hopf algebra
K[SL−1(2)] is geometrically coreductive for any field K.

(ii) Assume that q is a primitive mth root of unity. Then K[SLq(2)] is
not linearly coreductive if m ≥ 2 or if m = 1 and char(K) > 0.

Part (i) is a consequence of Theorems 2.16 and 2.25. As for (ii), it follows
from Corollary 2.19.

Remark 2.27. From [11, Theorem 5.8] it follows that if q is not a root
of unity, then for any n ≥ 2 the Hopf algebra K[SLq(n)] of the quantum
group SLq(n,K) is cosemisimple (= linearly coreductive). Furthermore, if
char(K) > 0, then we know that the Hopf algebraK[SL1(n)] is geometrically
coreductive, because the algebraic group SL1(n) = SL(n) is geometrically
reductive. So it is natural to conjecture that if char(K) > 0 and q is a root
of unity, then the Hopf algebra K[SLq(n)] is geometrically coreductive for
each q and n ≥ 2.
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