VOL. 124

2011

NO. 2

AN UNCOUNTABLE PARTITION CONTAINED IN THE ATOMLESS σ-FIELD

ΒY

RADOSŁAW DRABIŃSKI (Gdańsk)

Abstract. This short note considers the question of whether every atomless σ -field contains an uncountable partition. The paper comments the situation for a couple of known σ -fields. A negative answer to the question is the main result.

Definitions and basic facts. Throughout the note the very basic settheoretical notation is used. A natural number *i* is understood to be equal to $\{0, 1, \ldots, i-1\}$. The set of finite sequences of natural numbers is denoted by $\mathbb{N}^{<\aleph_0}$. If $s, k \in \mathbb{N}^{<\aleph_0}$ then $s \prec k$ means that there exists $i \in \mathbb{N}$ such that $k \upharpoonright_i = s$ (simply, *k* is extension of *s*). The predecessor of $s \in \mathbb{N}^{<\aleph_0}$ is denoted by \hat{s} .

If $\mathcal{G} \subseteq \mathcal{P}(X)$ then $\sigma(\mathcal{G})$ stands for the smallest σ -field on X containing \mathcal{G} (called the σ -field generated by \mathcal{G}). If \mathcal{G} is countable then $\sigma(\mathcal{G})$ is said to be countably generated.

Let \mathcal{A} be a σ -field on X. A nonempty set $A \in \mathcal{A}$ is an *atom* of \mathcal{A} if $A \subseteq B$ or $A \cap B = \emptyset$ for any $B \in \mathcal{A}$. If no element of \mathcal{A} is an atom of \mathcal{A} then \mathcal{A} is said to be *atomless*. If all the atoms of \mathcal{A} form a partition of X, then \mathcal{A} is *atomic*. For a reference on σ -fields see [1] and [2].

1. The problem. It is well known that every atomless σ -field contains an uncountable subfamily of nonempty and pairwise disjoint sets. A simple construction of such a subfamily can be found in [1]. The family constructed there does not, however, cover the whole space. The following question appeared during the Set Theory seminar at IM UG and was open for some time: Does every atomless σ -field contain an uncountable subfamily which is a partition of the space? The answer turns out to be negative (see Section 3). The next section exhibits complicated atomless σ -fields that do contain an uncountable partition, which contrasts with the final result.

2010 Mathematics Subject Classification: Primary 28A05.

Key words and phrases: σ -independent, atomless, σ -field, σ -algebra.

2. Examples of σ -fields

EXAMPLE 1. $\mathcal{F} \subset \mathcal{P}(X)$ is a σ -independent family if for distinct $F_0, F_1, \ldots \in \mathcal{F}$ and disjoint $I, J \subset \mathbb{N}$ (not both empty) the intersection $(\bigcap_{i \in I} F_i) \cap (\bigcap_{j \in J} X \setminus F_j)$ is not empty. The σ -field generated by an uncountable σ -independent family is the simplest and most common example of an atomless σ -field ([1]).

LEMMA 2.1. If $\mathcal{A} \subseteq \mathcal{P}(X)$ is a σ -field that contains an infinite σ -independent family \mathcal{F} then \mathcal{A} also contains an uncountable partition of X.

Proof. Let F_0, F_1, \ldots be distinct members of \mathcal{F} . For $I \subset \mathbb{N}$, define A_I as $(\bigcap_{i \in I} F_i) \cap (\bigcap_{j \in \mathbb{N} \setminus I} X \setminus F_j)$. Of course, every A_I is in \mathcal{A} . Note that A_I and A_J are disjoint if $I, J \subseteq \mathbb{N}$ are different. Indeed, if $i \in I$ and $i \notin J$ then $A_I \subset F_i$ and $A_J \subset X \setminus F_i$. One can also see that for every $x \in X$, there exists I (defined as $\{i \in \mathbb{N} : x \in F_i\}$) such that $x \in A_I$. These two facts mean that $\{A_I : I \subset \mathbb{N}\}$ is an uncountable partition of X.

Example 2 (CH). Let

$$X = \{ a \in [0, 1]^{\omega} : |a[\omega]| < \aleph_0 \}.$$

Define $A_t = \{a \in X : t \in a[\omega]\}$ for $t \in [0, 1]$. It is shown in [1] that $\mathcal{A} = \sigma(\{A_t\}_{t \in [0,1]})$ is an atomless σ -field that does not contain an infinite σ -independent family. If the Continuum Hypothesis is assumed, [0, 1] may be represented as $\{t_\alpha : \alpha \in \omega_1\}$. Set $B_\alpha = A_{t_\alpha} \setminus \bigcup_{\beta < \alpha} A_{t_\beta}$ for $\alpha \in \omega_1$. It is evident that $\{B_{t_\alpha} : \alpha \in \omega_1\}$ is a partition of X and is contained in \mathcal{A} .

EXAMPLE 3. The previous example can be generalized as follows. Let κ be any cardinal. Define

$$Z = \{ z \in \mathcal{P}(\kappa) : 0 < |z| < \aleph_0 \}.$$

Define $G_{\alpha} = \{z \in Z : \alpha \in z\}$ for $\alpha \in \kappa$. Let $\mathcal{C} = \sigma(\{G_{\alpha} : \alpha \in \kappa\})$. We now recall some known general properties of σ -fields.

LEMMA 2.2. Let $\mathcal{G} \subset \mathcal{P}(X)$ and $\mathcal{A} = \sigma(\mathcal{G})$. For any $A \in \mathcal{A}$:

- (i) There exists a countable $\mathcal{G}_0 \subset \mathcal{G}$ such that $A \in \sigma(\mathcal{G}_0)$.
- (ii) For \mathcal{G}_0 as above, A is a union of sets of the form

$$\bigcap_{i\in I} G_i \cap \bigcap_{j\in\mathbb{N}\setminus I} G_j^c$$

for G_0, G_1, \ldots being all elements of \mathcal{G}_0 and $I \subset \mathbb{N}$.

Proof. Let \mathcal{Z} be the subfamily of \mathcal{A} consisting of all elements satisfying (i). Note that $\mathcal{G} \subset \mathcal{Z}$, since $G \in \sigma(\{G\})$ for every $G \in \mathcal{G}$. It is easy to check that \mathcal{Z} is closed under complements and countable unions. Hence \mathcal{Z} is a σ -field. Since \mathcal{A} is the smallest σ -field that contains \mathcal{G} , we have $\mathcal{Z} = \mathcal{A}$, which proves (i). Similarly, to prove (ii), define \mathcal{W} as the subfamily of \mathcal{A} of all elements satisfying (ii). Again, one can easily prove that $\mathcal{G} \subset \mathcal{W}$ and \mathcal{W} is a σ -field, which means $\mathcal{W} = \mathcal{A}$.

We will now show that the above σ -field C has the same properties as A in the previous example. The proof of the fact below is similar to the proof for A in [1].

PROPOSITION 2.3. C does not contain an infinite σ -independent family. If κ is uncountable, then C is atomless.

Proof. Suppose that there exists an infinite, countable σ -independent family $\mathcal{F} = \{F_1, F_2, \ldots\}$ contained in \mathcal{C} . By Lemma 2.2, for every $n \in \mathbb{N}$, there exists a countable $\mathcal{G}_n \subset \{G_\alpha : \alpha \in \kappa\}$ such that $F_n \in \sigma(\mathcal{G}_n)$. Clearly, $\mathcal{G} = \bigcup_{n \in \mathbb{N}} \mathcal{G}_n$ is countable and $\mathcal{F} \subset \sigma(\mathcal{G})$. By Lemma 2.1, $\sigma(\mathcal{G})$ contains an uncountable family \mathcal{R} with pairwise disjoint elements.

By Lemma 2.2(ii), all elements of \mathcal{R} are unions of sets of the form $A_I = \bigcap_{i \in I} G_{\alpha_i} \cap \bigcap_{j \in \mathbb{N} \setminus I} G_{\alpha_j}^c$, where $G_{\alpha_0}, G_{\alpha_1}, \ldots$ are all elements of \mathcal{G} and $I \subset \mathbb{N}$. Note that if I is infinite then A_I is empty since each of its elements has to be infinite and so cannot be in Z. Thus $|\{A_I : I \in \mathbb{N}\}|$ is not greater than $|\mathbb{N}^{<\aleph_0}| = \aleph_0$. It is not possible to write each element of the uncountable \mathcal{R} as a union of some subfamily of $\{A_I : I \in \mathbb{N}\}$ because the elements of \mathcal{R} are pairwise disjoint. This contradiction means that \mathcal{C} does not contain any infinite σ -independent family.

Assume that κ is uncountable. Suppose A is an atom of \mathcal{C} . By Lemma 2.2, A equals $\bigcap_{i \in I} G_{\alpha_i} \cap \bigcap_{j \in \mathbb{N} \setminus I} G_{\alpha_j}^c$ for some $\alpha_0, \alpha_1, \ldots \in \kappa$ and $I \subset \mathbb{N}$. There exists $\beta \in \kappa$ that is not in $\{\alpha_0, \alpha_1, \ldots\}$ because κ is uncountable. Note that G_β and A are not disjoint since $\{\alpha_i : i \in I\} \cup \{\beta\}$ is in both of these sets. The element $\{\alpha_i : i \in I\}$ is in A but not in G_β , so G_β does not contain A. Hence, A is not an atom of \mathcal{C} , and \mathcal{C} is an atomless σ -field.

If $\kappa = \omega_1$ then, as in Example 2, the family $\{G_{t_\alpha} \setminus \bigcup_{\beta < \alpha} G_{t_\beta}\}_{\alpha \in \omega_1}$ is an uncountable partition of Z. Note that this example works without the Continuum Hypothesis. We do not know if such a partition exists for $\kappa > \omega_1$.

3. The counter-example. For an uncountable cardinal κ let us define

$$X = \{ f \in 2^{\kappa} : \operatorname{supp}(f) < \aleph_0 \};$$

supp(f) stands for $\{\alpha \in \kappa : f(\alpha) \neq 0\}$, the support of f. For $\alpha \in \kappa$ define $G_{\alpha} = \{f \in X : f(\alpha) = 1\}$. Let $\mathcal{G} = \{G_{\alpha} : \alpha \in \kappa\}$ and $\mathcal{A} = \sigma(\mathcal{G})$. It is shown in [1] that \mathcal{A} is an atomless σ -field that does not contain any infinite σ -independent family.

For $E \subset F \in [\kappa]^{\leq \aleph_0}$ define

$$A(E,F) = \{ f \in X : f[E] = \{1\} \land f[F \setminus E] = \{0\} \}.$$

If $G_{\alpha_0}, G_{\alpha_1}, \ldots \in \mathcal{G}$ and $I \subset \mathbb{N}$, the set $\bigcap_{i \in I} G_{\alpha_i} \cap \bigcap_{j \in \mathbb{N} \setminus I} G_{\alpha_j}^c$ can be represented as $A(\{\alpha_i\}_{i \in I}, \{\alpha_j\}_{j \in \mathbb{N}})$. Using Lemma 2.2(ii) one can conclude that every set in \mathcal{A} is a union of some $A(\cdot, \cdot)$ sets. Note that, by the definition of X, if E is infinite then $A(E, \cdot)$ is empty.

THEOREM 3.1. For every family $\mathcal{F} \subset \mathcal{A}$ which covers X there exists a countable $\mathcal{F}_0 \subset \mathcal{F}$ that also covers X.

Proof. Without losing generality it can be assumed that every set in \mathcal{F} is an $A(\cdot, \cdot)$ set. By induction we now construct countable set $B_s, D_s \subset \omega_1$ and finite $A_s, C_{s \sim 0}, C_{s \sim 1}, \ldots \subset \omega_1$ for every $s \in \mathbb{N}^{<\aleph_0}$.

Define $C_{\emptyset} = \emptyset$. There exists $B_{\emptyset} \in [\omega_1]^{\leq \aleph_0}$ such that $A(\emptyset, B_{\emptyset}) \in \mathcal{F}$ and the constant zero function is in $A(\emptyset, B_{\emptyset})$. Let $C_{\langle 0 \rangle}, C_{\langle 1 \rangle}, \ldots$ be all the finite subsets of $D_{\emptyset} = B_{\emptyset}$. Define $A_{\emptyset} = \emptyset$.

Assume that the following sets are defined for given $s \in \mathbb{N}^{\langle \aleph_0 \rangle}$: finite C_s and for every $k \prec s$, countable B_k , D_k , and finite C_k , A_k .

Let $a_s \in 2^{\omega_1}$ be such that $\operatorname{supp}(a_s) = \bigcup_{k \leq s} C_k$. The set $\operatorname{supp}(a_s)$ is finite so $a_s \in X$. Thus, there exists a countable $B_s \subset \omega_1$ and finite $A_s \subset \omega_1$ such that $a_s \in A(A_s, B_s) \in \mathcal{F}$. Define $D_s = B_s \setminus \bigcup_{k \leq s} D_k$. The set D_s is countable. Let $\{C_{s \frown n}\}_{n \in \mathbb{N}}$ be all the finite subsets of D_s . The construction is finished.

To sum up, the constructed sets have the following properties for any $s \in \mathbb{N}^{<\aleph_0}$:

- (i) $A_s \subset B_s \in [\omega_1]^{\leq \aleph_0}$ are such that $A(A_s, B_s) \in \mathcal{F}$, the set $D_s = B_s \setminus \bigcup_{k \prec s} D_k$ is countable and $\{C_{s \frown n}\}_{n \in \mathbb{N}}$ is the set of all finite subsets of D_s .
- (ii) $D_k \cap D_s = \emptyset$ for $k \prec s$.
- (iii) $A_s = (\bigcup_{k \prec s} C_k) \cap B_s.$

Properties (i) and (ii) are immediate consequences of the construction. Each a_s is in $A(A_s, B_s)$, so $A_s = \operatorname{supp}(a_s) \cap B_s = (\bigcup_{k \leq s} C_k) \cap B_s$. Hence, (iii) is true.

Note that $\mathcal{R} = \{A(A_s, B_s) : s \in \mathbb{N}^{\langle \aleph_0 \rangle}\}$ is countable, being indexed by finite sequences of natural numbers. All of its nonempty elements are in \mathcal{F} . It is sufficient to show that \mathcal{R} covers X.

Suppose that $x \in X$ is not in $\bigcup \mathcal{R}$. We will now construct by induction two sequences, $i_0, i_1, \ldots \in \mathbb{N}$ and $\alpha_0, \alpha_1, \ldots \in \kappa$.

 $x \notin \bigcup \mathcal{R}$ means that $x \notin \mathcal{A}(A_{\emptyset}, B_{\emptyset})$. There exists $\alpha_0 \in D_{\emptyset} = B_{\emptyset}$ for which $x(\alpha_0) = 1$ because $A_{\emptyset} = \emptyset$. Let $i_0 \in \mathbb{N}$ be such that $\operatorname{supp}(x \upharpoonright_{D_{\emptyset}}) = C_{\langle i_0 \rangle}$.

Assume that $s = \langle i_0, i_1, \dots, i_{l-1} \rangle$ is such that

(*)
$$\operatorname{supp}(x) \cap \bigcup_{k \prec s} D_k = \bigcup_{k \preceq s} C_k.$$

Since $x \notin \bigcup \mathcal{R}$, we have $x \notin A(A_s, B_s)$, so $\operatorname{supp}(x) \cap B_s \neq A_s$. By (iii), $A_s = \bigcup_{k \leq s} C_k \cap B_s$ and hence $\operatorname{supp}(x) \cap B_s \neq \bigcup_{k \leq s} C_k \cap B_s$. Together with (*), this yields

$$\operatorname{supp}(x) \cap D_s \neq \bigcup_{k \leq s} C_k \cap D_s.$$

By (*) and (ii), the right hand side above is an empty set. Therefore, $\operatorname{supp}(x) \cap D_s \neq \emptyset$. There exists $\alpha_l \in D_s$ such that $x(\alpha_l) = 1$. Let $i_l \in \mathbb{N}$ be such that $\operatorname{supp}(x) \cap D_s = C_{s \sim i_l}$. This ends the construction.

 $\alpha_0, \alpha_1, \ldots \in \kappa$ are distinct because they are in $D_{\emptyset}, D_{\langle i_0 \rangle}, D_{\langle i_0, i_1 \rangle}, \ldots$ respectively and these sets are pairwise disjoint. We have $x(\alpha_n) = 1$ for all $n \in \mathbb{N}$, hence $\operatorname{supp}(x)$ is infinite, which contradicts $x \in X$.

This implies that every partition contained in \mathcal{A} has to be countable, which gives a negative answer to the question considered in this note. The theorem is equivalent to the statement that X with the topology generated by the $A(\cdot, \cdot)$ sets is a Lindelöf space. And rzej Nowik has recently given a topological proof of the above fact for $\kappa = \omega_1$ using Fodor's lemma.

REFERENCES

[1] K. P. S. Bhaskara Rao and B. V. Rao, *Borel spaces*, Dissertationes Math. 190 (1981).

[2] K. P. S. Bhaskara Rao and R. M. Shortt, Borel spaces 2, ibid. 372 (1998).

Radosław Drabiński Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland E-mail: radoslaw.drabinski@mat.ug.edu.pl, r.drabinski@gmail.com

> Received 22 March 2011; revised 4 May 2011

(5480)