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AN UNCOUNTABLE PARTITION CONTAINED
IN THE ATOMLESS σ-FIELD

BY

RADOSŁAW DRABIŃSKI (Gdańsk)

Abstract. This short note considers the question of whether every atomless σ-field
contains an uncountable partition. The paper comments the situation for a couple of
known σ-fields. A negative answer to the question is the main result.

Definitions and basic facts. Throughout the note the very basic set-
theoretical notation is used. A natural number i is understood to be equal to
{0, 1, . . . , i−1}. The set of finite sequences of natural numbers is denoted by
N<ℵ0 . If s, k ∈ N<ℵ0 then s ≺ k means that there exists i∈N such that k�i=s
(simply, k is extension of s). The predecessor of s ∈ N<ℵ0 is denoted by ŝ.

If G ⊆ P(X) then σ(G) stands for the smallest σ-field on X containing
G (called the σ-field generated by G). If G is countable then σ(G) is said to
be countably generated.

Let A be a σ-field on X. A nonempty set A ∈ A is an atom of A if A ⊆ B
or A ∩ B = ∅ for any B ∈ A. If no element of A is an atom of A then A is
said to be atomless. If all the atoms of A form a partition of X, then A is
atomic. For a reference on σ-fields see [1] and [2].

1. The problem. It is well known that every atomless σ-field contains
an uncountable subfamily of nonempty and pairwise disjoint sets. A simple
construction of such a subfamily can be found in [1]. The family constructed
there does not, however, cover the whole space. The following question ap-
peared during the Set Theory seminar at IM UG and was open for some
time: Does every atomless σ-field contain an uncountable subfamily which is
a partition of the space? The answer turns out to be negative (see Section 3).
The next section exhibits complicated atomless σ-fields that do contain an
uncountable partition, which contrasts with the final result.
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2. Examples of σ-fields

Example 1. F⊂P(X) is a σ-independent family if for distinct F0, F1, . . .
∈ F and disjoint I, J ⊂ N (not both empty) the intersection (

⋂
i∈I Fi) ∩

(
⋂
j∈J X \ Fj) is not empty. The σ-field generated by an uncountable σ-

independent family is the simplest and most common example of an atomless
σ-field ([1]).

Lemma 2.1. If A ⊆ P(X) is a σ-field that contains an infinite σ-indepen-
dent family F then A also contains an uncountable partition of X.

Proof. Let F0, F1, . . . be distinct members of F . For I ⊂ N, define AI
as (

⋂
i∈I Fi) ∩ (

⋂
j∈N\I X \ Fj). Of course, every AI is in A. Note that AI

and AJ are disjoint if I, J ⊆ N are different. Indeed, if i ∈ I and i /∈ J then
AI ⊂ Fi and AJ ⊂ X \ Fi. One can also see that for every x ∈ X, there
exists I (defined as {i ∈ N : x ∈ Fi}) such that x ∈ AI . These two facts
mean that {AI : I ⊂ N} is an uncountable partition of X.

Example 2 (CH). Let

X = {a ∈ [0, 1]ω : |a[ω]| < ℵ0}.
Define At = {a ∈ X : t ∈ a[ω]} for t ∈ [0, 1]. It is shown in [1] that
A = σ({At}t∈[0,1]) is an atomless σ-field that does not contain an infinite
σ-independent family. If the Continuum Hypothesis is assumed, [0, 1] may
be represented as {tα : α ∈ ω1}. Set Bα = Atα \

⋃
β<αAtβ for α ∈ ω1. It is

evident that {Btα : α ∈ ω1} is a partition of X and is contained in A.
Example 3. The previous example can be generalized as follows. Let κ

be any cardinal. Define

Z = {z ∈ P(κ) : 0 < |z| < ℵ0}.
Define Gα = {z ∈ Z : α ∈ z} for α ∈ κ. Let C = σ({Gα : α ∈ κ}). We now
recall some known general properties of σ-fields.

Lemma 2.2. Let G ⊂ P(X) and A = σ(G). For any A ∈ A:
(i) There exists a countable G0 ⊂ G such that A ∈ σ(G0).
(ii) For G0 as above, A is a union of sets of the form⋂

i∈I
Gi ∩

⋂
j∈N\I

Gcj

for G0, G1, . . . being all elements of G0 and I ⊂ N.

Proof. Let Z be the subfamily of A consisting of all elements satisfy-
ing (i). Note that G ⊂ Z, since G ∈ σ({G}) for every G ∈ G. It is easy to
check that Z is closed under complements and countable unions. Hence Z
is a σ-field. Since A is the smallest σ-field that contains G, we have Z = A,
which proves (i).
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Similarly, to prove (ii), define W as the subfamily of A of all elements
satisfying (ii). Again, one can easily prove that G ⊂ W and W is a σ-field,
which means W = A.

We will now show that the above σ-field C has the same properties as A
in the previous example. The proof of the fact below is similar to the proof
for A in [1].

Proposition 2.3. C does not contain an infinite σ-independent family.
If κ is uncountable, then C is atomless.

Proof. Suppose that there exists an infinite, countable σ-independent
family F = {F1, F2, . . .} contained in C. By Lemma 2.2, for every n ∈ N,
there exists a countable Gn ⊂ {Gα : α ∈ κ} such that Fn ∈ σ(Gn). Clearly,
G =

⋃
n∈N Gn is countable and F ⊂ σ(G). By Lemma 2.1, σ(G) contains an

uncountable family R with pairwise disjoint elements.
By Lemma 2.2(ii), all elements of R are unions of sets of the form AI =⋂

i∈I Gαi ∩
⋂
j∈N\I G

c
αj , where Gα0 , Gα1 , . . . are all elements of G and I ⊂ N.

Note that if I is infinite then AI is empty since each of its elements has to
be infinite and so cannot be in Z. Thus |{AI : I ∈ N}| is not greater than
|N<ℵ0 | = ℵ0. It is not possible to write each element of the uncountable R
as a union of some subfamily of {AI : I ∈ N} because the elements of R
are pairwise disjoint. This contradiction means that C does not contain any
infinite σ-independent family.

Assume that κ is uncountable. Suppose A is an atom of C. By Lemma 2.2,
A equals

⋂
i∈I Gαi ∩

⋂
j∈N\I G

c
αj for some α0, α1, . . . ∈ κ and I ⊂ N. There

exists β ∈ κ that is not in {α0, α1, . . .} because κ is uncountable. Note that
Gβ and A are not disjoint since {αi : i ∈ I} ∪ {β} is in both of these sets.
The element {αi : i ∈ I} is in A but not in Gβ , so Gβ does not contain A.
Hence, A is not an atom of C, and C is an atomless σ-field.

If κ = ω1 then, as in Example 2, the family {Gtα \
⋃
β<αGtβ}α∈ω1 is

an uncountable partition of Z. Note that this example works without the
Continuum Hypothesis. We do not know if such a partition exists for κ > ω1.

3. The counter-example. For an uncountable cardinal κ let us define

X = {f ∈ 2κ : supp(f) < ℵ0};
supp(f) stands for {α ∈ κ : f(α) 6= 0}, the support of f . For α ∈ κ define
Gα = {f ∈ X : f(α) = 1}. Let G = {Gα : α ∈ κ} and A = σ(G). It is
shown in [1] that A is an atomless σ-field that does not contain any infinite
σ-independent family.

For E ⊂ F ∈ [κ]≤ℵ0 define

A(E,F ) = {f ∈ X : f [E] = {1} ∧ f [F \ E] = {0}}.
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If Gα0 , Gα1 , . . . ∈ G and I ⊂ N, the set
⋂
i∈I Gαi ∩

⋂
j∈N\I G

c
αj can be repre-

sented as A({αi}i∈I , {αj}j∈N). Using Lemma 2.2(ii) one can conclude that
every set in A is a union of some A(·, ·) sets. Note that, by the definition
of X, if E is infinite then A(E, ·) is empty.

Theorem 3.1. For every family F ⊂ A which covers X there exists a
countable F0 ⊂ F that also covers X.

Proof. Without losing generality it can be assumed that every set in F
is an A(·, ·) set. By induction we now construct countable set Bs, Ds ⊂ ω1

and finite As, Csa0, Csa1, . . . ⊂ ω1 for every s ∈ N<ℵ0 .
Define C∅ = ∅. There exists B∅ ∈ [ω1]≤ℵ0 such that A(∅, B∅) ∈ F and

the constant zero function is in A(∅, B∅). Let C〈0〉, C〈1〉, . . . be all the finite
subsets of D∅ = B∅. Define A∅ = ∅.

Assume that the following sets are defined for given s ∈ N<ℵ0 : finite Cs
and for every k ≺ s, countable Bk, Dk, and finite Ck, Ak.

Let as ∈ 2ω1 be such that supp(as) =
⋃
k�sCk. The set supp(as) is finite

so as ∈ X. Thus, there exists a countable Bs ⊂ ω1 and finite As ⊂ ω1

such that as ∈ A(As, Bs) ∈ F . Define Ds = Bs \
⋃
k≺sDk. The set Ds is

countable. Let {Csan}n∈N be all the finite subsets of Ds. The construction
is finished.

To sum up, the constructed sets have the following properties for any
s ∈ N<ℵ0 :

(i) As ⊂ Bs ∈ [ω1]≤ℵ0 are such that A(As, Bs) ∈ F , the set Ds =
Bs \

⋃
k≺sDk is countable and {Csan}n∈N is the set of all finite

subsets of Ds.
(ii) Dk ∩Ds = ∅ for k ≺ s.
(iii) As = (

⋃
k�sCk) ∩Bs.

Properties (i) and (ii) are immediate consequences of the construction.
Each as is in A(As, Bs), so As = supp(as) ∩ Bs = (

⋃
k�sCk) ∩ Bs. Hence,

(iii) is true.
Note that R = {A(As, Bs) : s ∈ N<ℵ0} is countable, being indexed by

finite sequences of natural numbers. All of its nonempty elements are in F .
It is sufficient to show that R covers X.

Suppose that x ∈ X is not in
⋃
R. We will now construct by induction

two sequences, i0, i1, . . . ∈ N and α0, α1, . . . ∈ κ.
x /∈

⋃
R means that x /∈ A(A∅, B∅). There exists α0 ∈ D∅ = B∅ for which

x(α0) = 1 because A∅ = ∅. Let i0 ∈ N be such that supp(x�D∅) = C〈i0〉.
Assume that s = 〈i0, i1, . . . , il−1〉 is such that

(∗) supp(x) ∩
⋃
k≺s

Dk =
⋃
k�s

Ck.
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Since x /∈
⋃
R, we have x /∈ A(As, Bs), so supp(x) ∩ Bs 6= As. By (iii),

As =
⋃
k�sCk ∩ Bs and hence supp(x) ∩ Bs 6=

⋃
k�sCk ∩ Bs. Together

with (∗), this yields

supp(x) ∩Ds 6=
⋃
k�s

Ck ∩Ds.

By (∗) and (ii), the right hand side above is an empty set. Therefore,
supp(x) ∩Ds 6= ∅. There exists αl ∈ Ds such that x(αl) = 1. Let il ∈ N be
such that supp(x) ∩Ds = Csail . This ends the construction.

α0, α1, . . . ∈ κ are distinct because they are in D∅, D〈i0〉, D〈i0,i1〉, . . . re-
spectively and these sets are pairwise disjoint. We have x(αn) = 1 for all
n ∈ N, hence supp(x) is infinite, which contradicts x ∈ X.

This implies that every partition contained in A has to be countable,
which gives a negative answer to the question considered in this note. The
theorem is equivalent to the statement that X with the topology generated
by the A(·, ·) sets is a Lindelöf space. Andrzej Nowik has recently given a
topological proof of the above fact for κ = ω1 using Fodor’s lemma.
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