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Abstract. Let X be a Banach space with a basis. We prove that X is reflexive if and
only if every power-bounded linear operator T satisfies Browder’s equalityn

x ∈ X : sup
n

‚‚‚ nX
k=1

T kx
‚‚‚ <∞

o
= (I − T )X.

We then deduce that X (with a basis) is reflexive if and only if every strongly continuous
bounded semigroup {Tt : t ≥ 0} with generator A satisfies

AX =
n

x ∈ X : sup
s>0

‚‚‚ s�

0

Ttx dt
‚‚‚ <∞

o
.

The range (I − T )X (respectively, AX for continuous time) is the space of x ∈ X for
which Poisson’s equation (I −T )y = x (Ay = x in continuous time) has a solution y ∈ X;
the above equalities for the ranges express sufficient (and obviously necessary) conditions
for solvability of Poisson’s equation.

1. Introduction. Let X be a (real or complex) Banach space. Pois-
son’s equation (which was considered originally for the Laplacian in certain
function spaces) has been abstracted to solving the equation Ay = x for a
given x ∈ X, where A is the infinitesimal generator of a strongly continuous
one-parameter bounded semigroup of linear operators {Tt : t ≥ 0} (see [9]).

In “discrete time”, solving Poisson’s equation for a power-bounded linear
operator T means solving (I − T )y = x for a given x ∈ X. In ergodic
theory, elements of (I − T )X are called coboundaries, and it is of interest to
find conditions for x to be a coboundary, i.e. for the solvability of Poisson’s
equation.

Obviously, since ‖n−1
∑n

k=1 T
kx‖ → 0 if and only if x ∈ (I − T )X (e.g.

[8, p. 73]), for any power-bounded operator T on X we have
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(I − T )X ⊂
{
x ∈ X : sup

n

∥∥∥ n∑
k=1

T kx
∥∥∥ <∞} ⊂ (I − T )X.

It was proved by F. Browder [2] (and rediscovered in [3]) that ifX is reflexive,
then for every power-bounded operator T on X we have

(1) (I − T )X =
{
x ∈ X : sup

n

∥∥∥ n∑
k=1

T kx
∥∥∥ <∞}.

Browder’s equality (1) means that a solution y to Poisson’s equation
(I − T )y = x exists if (and only if) supn ‖

∑n
k=1 T

kx‖ <∞.
In this paper we prove that if X is a Banach space with a basis such that

(1) holds for every power-bounded operator T on X, then X is reflexive. The
continuous time analogue of this result is then deduced in §4.

A bounded linear operator T on a (real or complex) Banach space X is
called mean ergodic if

E(T )x := lim
n→∞

1
n

n∑
k=1

T kx exists for all x ∈ X.

The general mean ergodic theorem, proved (independently) by Lorch, by
Kakutani and by Yosida, says that if X is a reflexive Banach space, then
every power-bounded linear operator T is mean ergodic (e.g. [8, p. 73]). In
[5] we proved that if X is a Banach space with a basis, then mean ergodicity
of all power-bounded operators implies reflexivity of X.

For a power-bounded operator T , mean ergodicity is equivalent to the
ergodic decomposition X = F (T ) ⊕ (I − T )X, where F (T ) is the space of
fixed points of T . In [10] it was shown that if (I − T )X is closed (without
assuming mean ergodicity), then T is mean ergodic, and ‖n−1

∑n
k=1 T

k −
E(T )‖ → 0 (i.e. T is uniformly ergodic).

We denote

G(T ) :=
{
x ∈ X : sup

n

∥∥∥ n∑
k=1

T kx
∥∥∥ <∞}.

It was shown in [4] that G(T ) is closed if and only if (I − T )X is closed,
which is equivalent to uniform ergodicity of T . If X is infinite-dimensional
and has a basis, then by [5, Corollary 3] it admits a power-bounded operator
T which is not uniformly ergodic, so in general G(T ) is not closed.

Browder’s equality (1) was proved in [11] for every contraction on L1(µ)
(and in [1] for certain power-bounded operators of L1), so this equality in
general does not imply mean ergodicity. This result of [11] also shows that
having (1) for every contraction is not sufficient to obtain reflexivity; see [6]
for an example of a non-reflexive X with a basis and separable dual, such
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that all contractions of X and all contractions of X∗ are mean ergodic and
satisfy (1).

2. Preliminary results

Proposition 2.1. A power-bounded operator T on a Banach space X is
mean ergodic if (and only if ) (I − T )(I − T )X = (I − T )X.

Proof. If T is mean ergodic, then X = F (T )⊕ (I − T )X, and the condi-
tion follows.

Assume now that T is not mean ergodic. Then there exists x ∈ X such
that n−1

∑n
k=1 T

kx does not converge; put y0 := (I − T )x. Define Y =
(I − T )X; then Y is T -invariant, and ‖n−1

∑n
k=1 T

ky‖ → 0 for any y ∈ Y ,
so (I − T )Y = Y . Hence (I − T )(I − T )X = (I − T )Y . If (I − T )X =
(I −T )Y , then there is y1 ∈ Y with (I −T )y1 = (I −T )x = y0, which yields
(I − T )(x− y1) = 0. Hence

x− y1 =
1
n

n∑
k=1

T k(x− y1) =
1
n

n∑
k=1

T kx− 1
n

n∑
k=1

T ky1 .

Since ‖n−1
∑n

k=1 T
ky1‖ → 0, the above yields n−1

∑n
k=1 T

kx → x − y1,
contradicting the choice of x. Hence (I − T )(I − T )X = (I − T )Y 6=
(I − T )X.

Combining Proposition 2.1 with [5, Corollary 2] we obtain our first result
(which is also a consequence of Theorem 3.1 below):

Theorem 2.2. The following assertions are equivalent for a Banach
space X:

(i) X is reflexive.
(ii) Every power-bounded operator T defined on a closed subspace Y ⊂ X

with TY ⊂ Y satisfies

(2) (I − T )Y =
{
y ∈ Y : sup

n

∥∥∥ n∑
k=1

T ky
∥∥∥ <∞}.

(iii) Every mean ergodic power-bounded operator T defined on a closed
subspace Y ⊂ X with TY ⊂ Y satisfies (2).

Proof. Assume first that X is reflexive. Then any closed subspace Y is
reflexive, and for any power-bounded operator T on a reflexive Banach space
Y the equality (2) follows from [2].

Clearly (ii) implies (iii).
Assume (iii). Let S be a power-bounded operator on a closed subspace Z,

and put Y = (I − S)Z. Then Y is S-invariant, and T = S|Y is mean ergodic,
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with (I − T )Y = Y . By (iii), (2) holds, so for z ∈ Z we have
(I − S)z ∈ Y ∩G(S) = G(T ) = (I − T )Y.

This yields (I − S)Z = (I − T )Y , so
(I − S)Z = (I − T )Y = (I − T )(I − S)Z = (I − S)(I − S)Z.

Applying Proposition 2.1 to S we conclude that S is mean ergodic on Z.
Thus every power-bounded operator S on a closed subspace Z ⊂ X is

mean ergodic, so by the ergodic characterization of [5, Corollary 2], X is
reflexive.

For any power-bounded operator T on a Banach space X we have

(3) (I − T )(I − T )X ⊂ (I − T )X ⊂
{
x ∈ X : sup

n

∥∥∥ n∑
k=1

T kx
∥∥∥ <∞}.

Equality in the second inclusion does not imply mean ergodicity—equality
holds for every contraction T on L1, even not mean ergodic [11]. It is easy
to construct a mean ergodic power-bounded operator T without equality in
the second inclusion above [11].

Theorem 2.3. Let X be a Banach space with a basis. Then X is reflexive
if and only if every power-bounded operator T on X satisfies

(4)
{
x ∈ X : sup

n

∥∥∥ n∑
k=1

T kx
∥∥∥ <∞} = (I − T )(I − T )X.

Proof. If X is reflexive, then every power-bounded operator T is mean
ergodic, so we have (I−T )(I − T )X = (I−T )X, and (4) holds by applying
(1) to T .

Assume now that a power-bounded operator T on X satisfies (4). Then
by (3) we have (I − T )(I − T )X = (I − T )X, and thus T is mean ergodic
by Proposition 2.1. If every power-bounded operator T satisfies (4), then
every power-bounded operator T is mean ergodic, so X is reflexive by the
characterization in [5] for Banach spaces with a basis.

Theorem 2.4. Let T be a power-bounded operator on a Banach space X.
If (I − T )X is reflexive, then T is mean ergodic, and Browder’s equality (1)
holds.

Proof. Since Y := (I − T )X is reflexive and T -invariant, by [2] we have

G(T|Y ) :=
{
y ∈ Y : sup

n

∥∥∥ n∑
k=1

T ky
∥∥∥ <∞} = (I − T )Y.

If T is not mean ergodic, Proposition 2.1 yields
(I − T )Y = (I − T )(I − T )X 6= (I − T )X ⊂ Y ∩G(T ) = G(T|Y ),

which is a contradiction.
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Remark. Reflexivity of (I − T )X is far from being necessary for mean
ergodicity of T .

3. The main result. In view of (3), equality (4) implies (1), and our
main result below improves Theorem 2.3. It also provides an improvement
of Theorem 2.2 when X has a basis.

Theorem 3.1. The following assertions are equivalent for a (separable)
Banach space X with a basis:

(i) X is reflexive.
(ii) Every power-bounded operator T onX satisfies Browder’s equality (1).
(iii) Every mean ergodic power-bounded operator T on X satisfies (1).

When X is reflexive, all power-bounded operators T satisfy (1) by [2], so
we only have to show that (iii) implies (i). The proof will use the following
simple lemma, suggested by the referee as a substitute to our original use of
[4, Theorem 2.3].

Lemma 3.2. Let U be the closed unit ball of a Banach space X, and T a
power-bounded operator on X. Then (I − T )U ⊂ G(T ).

Proof. Obviously (I−T )U ⊂ G(T ). Let y ∈ (I − T )U . Then there exists
{xj} ⊂ U with ‖y − (I − T )xj‖ = εj → 0. Denote M = supn≥0 ‖T k‖. Then
for n ≥ 1 we have∥∥∥ n∑

k=1

T ky
∥∥∥ ≤ ∥∥∥ n∑

k=1

T k[y − (I − T )xj ]
∥∥∥+

∥∥∥ n∑
k=1

T k(I − T )xj

∥∥∥
≤ nMεj + 2M −−−→

j→∞
2M.

To prove the theorem, we follow the strategy of [5]. If X is non-reflexive
and has a basis, then by [14] it has a non-shrinking basis. Therefore Theo-
rem 3.1 is a consequence of the following.

Theorem 3.3. Let X be a Banach space having a non-shrinking finite-
dimensional Schauder decomposition. Then there exists a mean ergodic
power-bounded operator T such that Browder’s equality (1) fails.

The first step is the following lemma of [5].

Lemma 3.4. Let X be a Banach space with a non-shrinking Schauder
decomposition. Then X has a Schauder decomposition X =

∑∞
k=1Xk with

the following property: there exist a functional h ∈ X∗ and a sequence {ek}
such that for every k ≥ 1 we have ek ∈ Xk, ‖ek‖ ≤ 1 and h(ek) = 1.

Furthermore, if the components of the original non-shrinking decomposi-
tion are finite-dimensional, so are all the Xk.
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The last part of the lemma follows from the construction in [5]—each Xk

is a finite sum of components of the original decomposition.
As noted at the beginning of the proof of [5, Theorem 1], we can change

the norm to an equivalent one so that in the decomposition obtained in the
above lemma the coordinate projections Qk : X → Xk and the partial sums
projections Pk : X →

∑k
j=1Xj (defined respectively by Qk(

∑∞
j=1 xj) = xk

and Pk =
∑k

j=1Qj) all have norm 1.
The lemma yields a decomposition Xk = (Xk ∩ kerh)⊕ span{ek}.

Lemma 3.5. Let X =
∑∞

k=1Xk be the Schauder decomposition with
coordinate projections Qk, obtained in Lemma 3.4, let e0 = 0, and put
un = en − en−1 for n ≥ 1. For k ≥ 1 define E2k = span{uk} and E2k−1 =
Xk ∩ kerh. Then X =

∑∞
m=1Em is a Schauder decomposition of X with

coordinate projections Q̄m given by

• Q̄2k−1 = RkQk, where Rk : Xk → E2k−1 is defined by Rkxk =
xk − h(xk)ek.
• Q̄2kx = (h−

∑k−1
j=0 Q

∗
jh)(x)uk, where Q0 = 0.

Proof. For x ∈ Xk we have x − h(x)ek ∈ E2k−1, and
∑k

j=1 uj = ek.
Hence

∑2n
m=1Em =

∑n
k=1Xk, so span{

⋃
m≥1Em} is dense in X.

We first show that each Q̄m as defined is a projection onto Em which
vanishes on El for l 6= m.

It is easily checked that Rk is a projection of Xk onto E2k−1, for any
k ≥ 1, so RkQkRkQk = RkRkQk = RkQk, and thus Q̄2k−1 is a projection
onto E2k−1. Since QkXj = {0} for j 6= k, we have Q̄2k−1E2j−1 = {0} for
j 6= k.

Since ul ∈ Xl−1 ⊕ Xl, we have QkE2l = {0} when k < l − 1 or k > l.
For l = k we have Qkul = ek and RkQkul = Rkek = 0 since h(ek) = 1. For
l = k + 1 we have Qkul = −ek and RkQkul = 0. Thus Q̄2k−1Em = {0} for
m 6= 2k − 1.

We now look at Q̄2k. By definition it takes X into E2k, so to show it is
a projection it is enough to check that Q̄2kuk = uk. We compute

Q̄2kuk =
(
h(uk)−

k−1∑
j=0

h(Qjuk)
)
uk = (h(ek)− h(ek−1)− h(Qk−1uk))uk

= (h(ek)− h(ek−1) + h(ek−1))uk = h(ek)uk = uk.

For x ∈ E2l−1 we have h(x) = 0, and Qjx = 0 for j 6= l, h(Qlx) = h(x) = 0.
Hence Q̄2kE2l−1 = {0}.
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For k = 1 we have Q̄2x = h(x)u1 = h(x)e1 so for l > 1 we obtain
Q̄2ul = h(ul)u1 = 0. For k > 1 and l 6= k we have

Q̄2kul =
(
h(ul)−

k−1∑
j=1

h(Qjul)
)
uk

=
(
h(el)− h(el−1)−

k−1∑
j=1

[h(Qjel)− h(Qjel−1)]
)
uk.

This is 0 for l > k since all terms in the sum are 0. For l ≤ k− 1 we have in
the sum only h(el)− h(el−1) = 0, so Q̄2kul = 0 for l 6= k.

We thus see that each Q̄m is a projection onto Em with Q̄mEj = {0} for
j 6= m. This also yields Em ∩ Ej = {0} for j 6= m.

Claim. Put P̄n =
∑n

j=1 Q̄j. Then supn ‖P̄n‖ <∞.

We denote Pn =
∑n

j=1Qj . Since {Xn} is a Schauder decomposition of X,
we have supn ‖Pn‖ <∞.

Fix n and let m > n. Using Qjx = RjQjx+ h(Qjx)ej , for x ∈
∑m

k=1Xk

we obtain

P̄2nx =
2n∑

j=1

Q̄jx =
n∑

k=1

RkQkx+
n∑

k=1

(
h(x)−

k−1∑
j=0

h(Qjx)
)

(ek − ek−1)

=
n∑

k=1

RkQkx+
n−1∑
j=0

h(Qjx)ej +
(
h(x)−

n−1∑
j=0

h(Qjx)
)
en

=
n∑

k=1

Qkx+
(
h(x)−

n∑
j=0

h(Qjx)
)
en

= Pnx+
(
h−

n∑
j=0

Q∗jh
)

(x)en = Pnx+ (h− P ∗nh)(x)en.

Since ‖en‖ = 1, we obtain ‖P̄2nx‖ ≤ ‖Pn‖ · ‖x‖+ ‖I − P ∗n‖ · ‖h‖ · ‖x‖, so

sup
n
‖P̄2n‖ ≤ sup

n
‖Pn‖+ ‖h‖(1 + sup

n
‖Pn‖).

We now have P̄2n+1 = P̄2n + Q̄2n+1, so the above yields

P̄2n+1 = Pnx+ (h− P ∗nh)(x)en +Rn+1Qn+1x.

But ‖Rn+1Qn+1x‖ ≤ ‖Qn+1x‖+‖h‖ · ‖Qn+1x‖, and supn ‖Qn‖ <∞, so we
obtain supn ‖P̄2n+1‖ <∞, and the Claim is proved.

Since lim P̄mx = x on a dense subset, the Claim implies that P̄mx → x
on all of X and

∑∞
m=1Em is a Schauder decomposition.
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Proposition 3.6. Let X =
∑∞

k=1Xk be a Schauder decomposition of X
with coordinate projections Qk. For a sequence a := {aj}∞j=1 with aj > 0 for
j ≥ 1 and

∑∞
j=1 aj = 1 put sk =

∑k
j=1 aj. Then for every x ∈ X the series∑∞

k=1 skQkx converges in norm, and the operator Tax :=
∑∞

k=1 skQkx is
power-bounded on X.

Proof. The proposition follows from the computations on pages 150–151
of [5] (with h = 0). In those computations it is assumed that the coordinate
projections Qk and the partial sums Pk =

∑k
j=1Qj all have norm 1 (and

then supn ‖Tn
a ‖ ≤ 2); the assumption is achieved by a change to an equivalent

norm.
The referee noted that the proposition has been known for some time.

For example, its proof can be found essentially in [13, Lemma 2.4].

Proof of Theorem 3.3. Let X =
∑∞

k=1Ek be the Schauder decomposition
of X obtained in Lemma 3.5 from the non-shrinking Schauder decomposition
X =

∑
k Xk with finite-dimensional components. By the definitions, also all

the Ek are finite-dimensional; let Q̄k be the coordinate projection onto Ek.
Choose a = {aj}∞j=1 with aj > 0 and

∑∞
j=1 aj = 1 such that the tails

bk =
∑∞

j=k+1 aj satisfy
∑∞

k=1 bk < ∞ (e.g. aj = 2−j), and put Tx = Tax =∑∞
k=1 skQ̄kx. By the proposition above, T is power-bounded. By the defini-

tions (I − T )x =
∑∞

m=1 bmQ̄mx, so I − T is a compact operator since the
Em are finite-dimensional. Since each Em is T -invariant finite-dimensional
and T is power-bounded, T is mean ergodic on X.

We assert that (1) fails, i.e. (I − T )X 6= G(T ). Towards a contradiction,
assume that (I − T )X = G(T ). From Lemma 3.2 we deduce that the unit
ball U of X satisfies (I − T )U ⊂ G(T ) = (I − T )X.

By the construction in Lemma 3.5, ‖
∑n

i=1 ui‖ = ‖en‖ ≤ 1 for every n,
so compactness of I − T implies that there is a subsequence {np} with
(I − T )enp = (I − T )(

∑np

i=1 ui) → z ∈ (I − T )U . Hence z ∈ (I − T )X
by the assumptions, so there is x ∈ X with (I − T )x = z.

Since Q̄kQ̄j = δj,kQ̄k, for every k we have TQ̄k = Q̄kT and Q̄k(I − T ) =
(1−sk)Q̄k. For m = 2k−1 we have Q̄men = 0 for all n by the definitions, so

(1− sm)Q̄mx = Q̄m(I − T )x = Q̄mz = lim
np→∞

(I − T )Q̄menp = 0.

Hence Q̄mx = 0 for m odd. For m = 2k and n ≥ k the definition of Q̄m

yields Q̄men = uk. Hence

(1− sm)Q̄mx = Q̄m(I − T )x = Q̄mz

= lim
np→∞

Q̄m(I − T )enp = lim
np→∞

(1− sm)Q̄menp = (1− sm)uk,
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which yields Q̄2kx = uk. Thus

x =
∞∑

m=1

Q̄mx =
∞∑

k=1

Q̄2kx =
∞∑

k=1

uk = lim
n→∞

en.

This implies that all the coordinate projections of the original Schauder
decomposition X =

∑∞
j=1Xj satisfy Qjx = 0, hence en → 0, a contradiction

to h(en) = 1 for every n. Thus (I−T )X = G(T ) cannot be true. This proves
Theorem 3.3.

Remark. The authors are grateful to the referee for simplifying their
original proof that (1) fails; the above proof follows the referee’s suggestions.

4. On Poisson’s equation for one-parameter semigroups. Orig-
inally, Poisson’s equation was considered for the Laplacian. This has been
abstracted to solving the equation Ay = x for a given x ∈ X, where A is
the infinitesimal generator of a strongly continuous one-parameter bounded
semigroup of linear operators {Tt : t ≥ 0} (see [9]). We use Theorem 3.1
to obtain a characterization of reflexivity by a condition for solvability of
Poisson’s equation, for all infinitesimal generators of bounded strongly con-
tinuous semigroups.

Theorem 4.1. The following assertions are equivalent for a Banach
space X with a basis:

(i) X is reflexive.
(ii) Every strongly continuous bounded semigroup {Tt : t ≥ 0} with

generator A satisfies

(5) AX =
{
x ∈ X : sup

s>0

∥∥∥ s�

0

Ttx dt
∥∥∥ <∞}.

(iii) Every uniformly continuous bounded semigroup {Tt : t ≥ 0} with
generator A satisfies (5).

Proof. (i) implies (ii) by Theorem 2.6 of [9] (since the dual semigroup is
also strongly continuous, by reflexivity and [7, Theorem 10.6.5]).

Obviously (ii) implies (iii). We show that (iii) implies (i).
Assume thatX (with a basis) is not reflexive. By Theorem 3.1 there exists

a power-bounded operator T such that (1) fails, which means that for some
x /∈ (I−T )X we have supn ‖

∑n
k=1 T

kx‖ <∞. We may assume, by changing
the norm to an equivalent one, that ‖T‖ = 1. For t ≥ 0 put St = et(T−I).
Then {St} is a uniformly continuous semigroup, with infinitesimal generator
A = T − I. The power series expansion yields

‖St‖ = e−t‖etT ‖ ≤ e−tet‖T‖ = 1.
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Since supn ‖
∑n

k=1 T
kx‖ <∞, Theorem 5 of [11] yields the existence of some

y∗∗ ∈ X∗∗ such that (I−T ∗∗)y∗∗ = x; hence x ∈ A∗∗X∗∗ (we have identified
X with its canonical image in X∗∗). The uniform continuity of {St} implies
that of {S∗∗t }, with generator A∗∗ = T ∗∗ − I, and for s > 0 we obtain∥∥∥ s�

0

Stx dt
∥∥∥ =

∥∥∥ s�

0

S∗∗t x dt
∥∥∥ = ‖−S∗∗s y∗∗ + y∗∗‖ ≤ 2‖y∗∗‖.

Since x /∈ (I − T )X = AX, the contraction semigroup {St} does not sat-
isfy (5). Hence X is reflexive when (iii) holds.

Remark. The idea of using the semigroup et(T−I) is due to Rainer Nagel,
in the context of characterizing reflexivity by mean ergodicity of all bounded
semigroups [12].
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