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ON THE STABLE EQUIVALENCE PROBLEM FOR k[z,y]

ROBERT DRYLO (Warszawa and Kielce)

Abstract. L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the
stable equivalence problem for the polynomial ring k[z,y] when k is a field of character-
istic 0. In this note we give an affirmative solution for an arbitrary field k.

1. Introduction. Let k be an arbitrary commutative field and k[ be
the polynomial ring in n variables over k. We say that two polynomials f, g €
k" are equivalent (resp. stably equivalent) if there exists a k-automorphism
¢ of k" such that o(f) = g (resp. f,g are equivalent in k™l for some
m > 0). The following problem was stated by Shpilrain and Yu [11]:

STABLE EQUIVALENCE PROBLEM. Is it true that two stably equivalent
polynomials in kl are equivalent?

An affirmative answer is known for a generic polynomial in k™ of degree
> n when k is algebraically closed of characteristic 0 (see [11},[5]). In general,
the problem remains open for n > 3. An affirmative solution in characteristic
zero for k12 was given by Makar-Limanov, van Rossum, Shpilrain and Yu [9].
The aim of this note is to give a solution for k2 and an arbitrary field k.
We prove the following:

THEOREM 1. Let fi, fo € kI \ k be two stably equivalent polynomials,
and ¢ be a k-automorphism of kBt such that o(f)) = fo. If there exist
coordinates ty,ty of k2! such that f; € k[t;], i = 1,2, then o(k[t1]) = k[ta];
otherwise go(k:m) = kB In particular, fi and fo are equivalent.

2. Proof. We start by summarizing some properties of exponential maps
(see [3] for more details) and next prove some analogue of Rentschler’s theo-
rem. Then for the proof of Theorem [I]we introduce an analogue of the Makar-
Limanov invariant, which will be an invariant of equivalent polynomials.

Let A be an integral finitely generated k-algebra and ¢ : A — Al be
a k-algebra homomorphism. We write ¢ = ¢; : A — A[t] to emphasize
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a variable t. We say that ¢ is an exponential map on A if it satisfies the
following two conditions:

(i) wo(a) =a for all a € A, where ¢y is evaluation at ¢ = 0,
(il) pst+t = wspr, where @ is extended by ¢4(t) = t to a homomorphism
o Alt] — Als, t].

If k is algebraically closed, then there exists a one-to-one correspondence
between exponential maps on A and algebraic k;-actions on an affine variety
with the coordinate ring A. Furthermore, in characteristic zero exponential
maps on A correspond to locally nilpotent derivations D on A, as follows:

1
pla) =3 = D" (a)e".

n=0 "

The ring of p-invariants is defined to be
A = {a € A pla) = a},
and the Makar-Limanov invariant of A is
(2.1) ML(A) = [) 4%,
p€EExp(A)
where Exp(A) is the set of all exponential maps on A.
We will need the following elementary properties of A%.

LEMMA 2 (|3, Lemmas 2.1 and 2.2|).

(1) A% is factorially closed in A (i.e., if ab € A® for a,b € A\ {0}, then
a,b € A¥). In particular, if A is a UFD, then so is A¥.
(ii) A¥ is algebraically closed in A.
(iii) If ¢ is nontrivial, then there exist ¢ € A¥\ {0} and x € A transcen-
dental over A% such that A C A®[c~Y[x].

Now we prove the following analogue of Rentschler’s theorem:

THEOREM 3. Let A = k12, © be an exponential map on A", and A% =
{a € A| p(a) =a}. If A # A, then either A¥ =k or A¥ = k[t], where t is
a coordinate in A.

To prove this fact we follow the idea of the proof of Rentschler’s theorem
given in [4, Th. 1.2]. We will need the following lemmas.

LEMMA 4 ([I0, Th. 2.4.2]). Let A be a finitely generated integral k-
algebra. Suppose that t € A satisfies the following conditions:
(1) As = k(t), where Ag is the localization of A at S = k[t] \ {0};
(i) k(t)NA=kl[t];
(iii) A is geometrically factorial over k (i.e., A®y K is a UFD for any
algebraic field extension K/k).

Then A = k[t]1.
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LEMMA 5. Let L C K be a finitely generated separable field extension
with trdeg; K = 1. Then there exist infinitely many discrete valuation rings
(R, M) of K/L such that the residue field R/M ‘s finite separable over L.

Proof. It is well-known that for any DVR (R, M) of K/L the residue field
R/M is finite over L (i.e., if z € R is transcendental over L and A is the
integral closure of L[z] in K, then A C R is a finitely generated L-algebra
of dimension 1 and R is equal to the localization of A at the maximal ideal
M N A, which implies that R/M = A/(M N A) is finite over L). If L is
finite, hence perfect, then R/M is always separable over L. Suppose that
L is infinite. Let z € K be a separable transcendental element over L, and
u € K be a primitive element of K over L(x) with the minimal polynomial
f over L(x). Since f has no multiple roots, gf + hf’ = 1 for some g,h €
L(x)!. Let A = L[x] and B be the integral closure of A in K. Since B is a
finitely generated L-algebra, there exists v € A such that A,[u] = B, for the
localizations at v, and all coefficients of f, g, h are in A,. Since L is infinite,
there exist infinitely many maximal ideals M in A such that A/M = L and
v & M. For each such M, let M’ be a maximal ideal in B, lying over M,,
which exists since the extension A, C B, is integral. Then the field extension
L = A,/M, C B,/M' = Llu] is separable, since gf + hf’ = 1, where the
bar denotes reduction modulo M,,. Clearly, the localization of B, at M’ is a
DVR of K/L with the residue field L[ua]. This completes the proof. =

The following lemma generalizes [I, (2.9)].

LEMMA 6. Let k C K be a separable field extension. If A ¢ KW is a
finitely generated normal k-algebra of dimension 1 such that A ¢ K, then
A =KW, where k' is the algebraic closure of k in A.

Proof. We will reduce the above fact to the case when K/k is finite and
separable, which was proved in [I]. Since A is finitely generated over k, we may
assume the same about K. Let t1,...,t, be a separable transcendence basis
of K/kand L = k(ty,...,tn_1). Let K[z] = KM and A = k[b(z), ..., bs(2)],
where b; € K[z]. If u € K\ 0, then u € R\ M for all but a finite number of
DVRs (R, M) of K/L (see [7, 11, Lem. 6.1]). Hence by Lemma [f| there exists
a DVR (R, M) of K/L such that all nonzero coefficients of by, ...,bs are in
R\ M and the residue field R/M is finite separable over L. Then A C R[z]
and the canonical homomorphism R[z] — (R/M)[x] restricted to A yields an
embedding A — (R/M)[x], because dim A = 1 and the image of A contains
an element which depends on z. Since the extension k C R/M is separable of
transcendence degree n — 1, the lemma follows by induction. =

Now we are in a position to prove Theorem . Let B = (A["})“". Since
A¥ = BN A, A¥ is factorially and algebraically closed in A by Lemma
It follows that A% is a UFD and trdeg;, A¥ < 1. This implies that either
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A¥Y = k or A = Kk[t] (see [I, Th. 4.1] for the latter case). To show that ¢
is a coordinate in A we apply Lemma . Obviously assumptions (ii) and
(iii) of that lemma are satisfied. For (i) we will show that the extension
k(t) C Frac(B) is separable. Assuming this fact we can complete the proof
as follows. By Lemma iii) there exists € A" transcendental over Frac(B)
such that Ag C Frac(B)[z], where S = k[t] \ 0. Obviously, As ¢ Frac(B),
trdegy;) As = 1, and k(t) is algebraically closed in Ag. This implies by
Lemma |§| that Ag = k(t)!Y). Therefore t is a coordinate in A.

It remains to show that the extension k(t) C Frac(B) is separable. Let
p = chark > 0 and k[x;,z2] = A. We will show that the partial deriva-
tions 0/0x1,0/0x2 do not vanish simultaneously at ¢, which implies by [8]
VIII, Cor. 5.6] that k(t) C Frac(A) is separable. Then k(t) C Frac(AM) is
separable, too, and hence so is k(t) C Frac(B).

Suppose that 0t/0x1 = 0t/0x2 = 0. One can extend ¢ to an exponential
© on E[xl,xg]m, where k is the algebraic closure of k. Then the ring of
p-invariants in k[xq, 2] is equal to k[t]. Since dt/0x1 = 0t/dxs = 0, we
have t = sP for some s € k[z1, 2] \ k[t], which contradicts the fact that k[t]
is algebraically closed in k[x1, 25]. This completes the proof of Theorem [3|

For the proof of Theorem [I| we introduce an analogue of the Makar-
Limanov invariant, which is an invariant of equivalent polynomials. Given a
k-algebra A and a € A, let

(2.2) ML(A,a)= (] 4%

pEExp(A)

p(a)=a
One easily checks that if v : A — B is a k-algebra isomorphism, then
w(ML(A,a)) = ML(B,¥(a)). Note that always

(2.3) ML(AM, a) € ML(A4, a),
which is a consequence of the following two facts:

(i) there exist exponential maps ¢; on A" = A[t;, ... t,] such that
@i(t) =t;+t and @;(f) = f for all f € Afty,... . ;... 1],

(ii) every exponential map on A can be extended on Al t6 be constant
on variables.

We apply the above invariant in the proof of Theorem [I|in an analogous
way as the Makar-Limanov invariant was used in [3] to prove the cancellation
theorem for curves of Abhyankar, Eakin and Heinzer [I]. First we show the
following:

LEMMA 7. If f € kPI\E, then either ML(ER+7 ) =kBl or ML(K2+7, £)
= k[t] whenever there exists a coordinate t of k2 such that k[f] C K[t].
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Proof. By we have ML(k?*™ f) c kP Suppose that this in-
clusion is proper. Then by Theorem 3| there exists a coordinate ¢ of k2
such that ML(k!>*™ f) c E[t]. Since the extension k[f] C k[t] is finite and
ML(k?*7, £) is algebraically closed, we have ML(k+™, f) = k[t]. w

Now we prove Theorem [l| as follows. Let ¢ be an automorphism of
ER+7) such that o(f1) = fo, where f1, fo € k2 \ k. Since p(ML(ERPT™, 1))
= ML(KR*7 f,), it follows from Lemma [7] that either ML(kP+7, f) =
MLk, ) = k2 or ML(KP4") 1) = k[t1] and ML(KRH™, fo) = kts],
where t1,ty are coordinates in k2. In the first case © induces the desired
automorphism of k2. In the second case © induces an isomorphism resy :
k[t1] — E[te], which takes fi to fo and can be extended to an automorphism
of k. This completes the proof.

REMARK 8. Note that if k is algebraically closed of characteristic 0, then
one can give an alternative simple geometric proof of Theorem 1 (see also [9]).
First we give some useful facts. For an isomorphism f : X x k" — Y x k",
where X, Y are algebraic sets, let

Zr={x e X | f(xxk") =y xk" for some y € Y}.
Note that Z¢ is closed, since if Y C k™ and f = (fi,..., fm+n), then

Zp = ﬂ ﬂ {z e X| fi(z,y) = fi(z,2)}.

1=1y,zek™

Clearly, if Zy = X, then f induces an isomorphism f : X — Y such that
my o f = f omx, where wx,my are the projections. This is always the case
in the following situation:

(2.4) Let X, Y be connected affine curves one of which is not isomorphic
tok. If f: X xk™ —Y x k™ is an isomorphism, then Zy = X.

Proof. Let us recall two well-known facts. If C' is an irreducible affine
curve such that there exists a dominant polynomial map k& — C, then every
such map is finite, hence surjective. Furthermore, if C' is additionally smooth,
then it easily follows from Liiroth’s theorem that C' = k. Therefore to prove
(2.4) it suffices to consider two cases: Y is not dominated by k and irreducible,
or Y has singularities.

In the former case, Zy = X, since otherwise we would have a dominant
map my o f 1 x X k" — Y for some x € X.

If Sing(Y") # (), then f(Sing(X) x k™) = Sing(Y") x k™ and for each irre-
ducible component X7 of X there exists an irreducible component Y; of Y
such that f(X7 x k™) = Y7 x k™. Obviously Sing(X) N X7 # (), so as above
we obtain Zy = X, since otherwise the map 7y, o f : z x k" — Y7 \ Sing(Y)
would be dominant for some = € X7 \ Sing(X).
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REMARK. Note that (2.4) implies that affine curves have the cancellation
property (see [I] for a more general result).

We will also need the following:

(2.5)  Let g € k& \ k and g71(0) = U5, li, where ; are connected com-
ponents of g~1(0). Then I; = k for i = 1,...,s if and only if there
exists a coordinate ¢ of k12 such that g € k[t].

Proof. Ifl; 2 k, i =1,...,s, then by the Abhyankar—-Moh—Suzuki the-
orem [2, [12] there exists a polynomial automorphism f of k% such that
f(ly) = 1 xk, 1 € k. Then f(l;) = x; x k for some x; € k, i =1,...,s,
since otherwise we would have a dominant map mx o f : l; — k\ {z1} for
some ¢ > 2. The second implication is obvious.

Now we prove Theorem as follows. Let fi, fo € k2 \ k be stably equiva-
lent polynomials and ¢ be an automorphism of k2*" such that ¢(f1) = fo.
Let f be the automorphism of k?*" induced by ¢. Then f(fz_l(/\) X k™) =
) x k™ for all A € k.

If fo & k[t] for every coordinate ¢ of k[?| then by (2.5) some connected
component of f L()\) is not isomorphic to k for all A € k. By (2.4) such
components are contained in Zy, which implies that Z; = k2, since Z [
is closed. Hence there exists an induced automorphism f of k? such that
fom2 =m0 f, which means that (k) = k2.

It remains to show that if there exist coordinates t1,to of k12l such that
fi € k[ti], i = 1,2, then @(k[t1]) = k[t2]. This follows from the fact that
elements of p(k[t1]) are integral over k[fa], hence over k[to], and similarly
elements of k[ta] are integral over ¢(k[t1]). Since k[t;] is algebraically closed
in k2t we have o(k[t1]) = k[ta].
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