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THE HERZ–SCHUR MULTIPLIER NORM OF
SETS SATISFYING THE LEINERT CONDITION

BY

ÉRIC RICARD and ANA-MARIA STAN (Besançon)

Abstract. It is well known that in a free group F, one has }χE}McbApFq ¨ 2, where E
is the set of all the generators. We show that the (completely) bounded multiplier norm
of any set satisfying the Leinert condition depends only on its cardinality. Consequently,
based on a result of Wysoczański, we obtain a formula for }χE}McbApFq.

1. Introduction. In this paper we are interested in finding the Herz–
Schur multiplier norm of the characteristic function of the set of generators
of a free group. It was shown in [3] that the Herz–Schur norm on a group
G is the same as the completely bounded multiplier norm of the Fourier
algebra ApGq. In a group, we actually make use of the notion of a subset
satisfying the Leinert condition, which is slightly weaker than freeness. Our
main result shows that the multiplier norm of the characteristic function of
such a set depends only on its cardinality. Thus, in order to obtain these
values we only need to compute them for specific examples. When n � 2p,
the set of generators and their inverses in Fp satisfies the Leinert condition
and has cardinality n. For all n, the set of generators of �n

i�1Z{2Z is another
example. We will use results of Haagerup, Steenstrup and Szwarc [10] and of
Wysoczański [17], which characterize the Herz–Schur multipliers for radial
functions on various discrete groups.

We use two methods of proof. One is algebraic, quick, elegant and very
general. The other one is combinatorial and we present it only for the groups
F2 and F8. Even if this second method is lengthier, we choose to present
it first, as it gives a good insight on what the corresponding matrices look
like. In this way, we also collect many small results that are related to the
particular question of computing the exact norm of multipliers.

The organization of the paper is the following: In the preliminary section,
we set up the general context and give the necessary definitions and results
we rely on. In the next section, we give the definition of the Leinert condition
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and describe one of its combinatorial characterizations. In Sections 4 and 5,
we present the combinatorial and the algebraic methods for calculating the
announced norm. In the last section, we end with some remarks on the
bounded multiplier norm.

2. Preliminaries. Our standard reference for details on operator spaces
and completely bounded maps is the book of Effros and Ruan [5]. Let G be
a discrete group. Denote by ApGq the Fourier algebra of G, which consists
of all coefficient functions

ϕpsq � xλpsqξ | ηy, s P G, ξ, η P `2pGq,
of the left regular representation λ on `2pGq. Multiplication in ApGq is point-
wise multiplication (hence commutative) and its norm is given by

}ϕ}ApGq � inft}ξ}}η} | ϕpsq � xλpsqξ | ηyu.
The Fourier–Stieltjes algebra BpGq is defined to be the space of all co-

efficient functions

ψpsq � xπpsqξ | ηy, s P G, ξ, η P Hπ,

where π : GÑ BpHπq is the universal representation of G. It is known that
BpGq is a commutative algebra and its norm is given by

}ψ}BpGq � inft}ξ} }η} | ψpsq � xπpsqξ | ηy, π : GÑ BpHπq
a unitary representationu.

The Fourier algebra ApGq can be isometrically identified with the predual
of VNpGq (the group von Neumann algebra) and thus it has a canonical
operator space structure which makes ApGq a completely contractive Banach
algebra. Let us recall it briefly: we consider G a discrete group and VNpGq
the von Neumann algebra on `2pGq generated by the left translations λpgq
for g P G. Furthermore, VNpGq is a type II1 von Neumann algebra and
its canonical normal faithful trace is given by the evaluation on e, that
is, τpλpgqq � δg,e. For any p © 1, the completion of VNpGq for the norm
pτp|x|pqq1{p is the Lp space associated to VNpGq, where |x| � px�xq1{2 (for
p � 8, we recover the norm on VNpGq). Of course, L2pG, τq � `2pGq and
L1pG, τq � ApGq.

A function ϕ : G Ñ C is called a multiplier of ApGq if ϕ.ψ P ApGq for
any ψ P ApGq. Then we consider the multiplication map mϕ : ApGq Ñ ApGq
defined as

mϕpψq � ϕ.ψ.

By the closed graph theorem, mϕ : ApGq Ñ ApGq is bounded on ApGq. We
denote by MApGq the space of all multipliers of ApGq, equipped with the
natural norm }ϕ}MApGq � }mϕ}. A multiplier ϕ is called completely bounded
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if }mϕ}cb   8. We denote by McbApGq the space of all completely bounded
multipliers of ApGq equipped with the completely bounded norm. When mϕ

is bounded, its adjoint is well defined on VNpGq, weak-� continuous, and is
given by m�

ϕλpgq � ϕpgqλpgq. Of course, }m�
ϕ}cbpVNpGq,VNpGqq � }mϕ}cb. We

refer to [5] for more details.
Let G be an (infinite) discrete group and A � rAps, tqss,tPG and B �

rBps, tqss,tPG be two (infinite) matrices indexed by G. Then we can define
the Schur multiplication of A and B by rA �Bps, tqs � rAps, tq �Bps, tqs and
we call a function A : G � G Ñ C a Schur multiplier if there exists α ¡ 0
such that }A�K} ¨ α}K} for any finite matrix K. Here, the norm } � } is the
operator norm on Bp`2pGqq. We denote by ||| � ||| the Schur multiplier norm
defined as follows:

|||A||| � supt}A � k} | k P Bp`2pGqq with }k} ¨ 1u.
Bounded Schur multipliers are automatically continuous for the weak opera-
tor topology. Hence by Russo–Dye’s theorem, we can restrict the supremum
to the finite unitary matrices.

Given a function ϕ : GÑ C, we define Mϕ : G�GÑ C by Mϕps, tq �
ϕps�1tq and we can regard Mϕ � rMϕps, tqss,tPG as an (infinite) matrix
indexed by G.

Using an (unpublished) result of Gilbert [7], Bożejko and Fendler [3]
showed that McbApGq is isometrically isomorphic to B2pGq, the space of all
Herz–Schur multipliers on G. Then the completely bounded multiplier norm
is exactly the Herz–Schur multiplier norm, so it is given by

(1) }ϕ}McbApGq � |||Mϕ||| � supt}Mϕ � k} | k a finite unitary matrixu
This result also shows that a function ϕ : G Ñ C is in McbApGq with

}ϕ}McbApGq ¨ 1 if and only if there exist a Hilbert space K and two bounded
maps α, β : GÑ K such that

(2) ϕps�1tq � xβptq |αpsqy @s, t P G
and

(3) sup
sPG

t}αpsq}Ku sup
tPG

t}βptq}Ku ¨ 1.

A short and elegant proof of this result can be found in [11] or [15].
For any group G, we have BpGq � McbApGq � MApGq and equalities

hold if G is amenable. When G is the free group on at least two generators
(hence non-amenable), all the above inclusions are strict ([12], [2], [6]).

As usual, we will use the notation χE for the characteristic function of
a subset E.

The general problem of computing the exact norms of multipliers is dif-
ficult to address. In a remarkable work, Haagerup, Steenstrup and Szwarc
gave an answer for some multipliers on free groups, that we describe below.
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As usual, we denote by FN the free group with finitely or infinitely many
generators N © 2, denoted by g1, g2, . . . . A function ϕ : FN Ñ C is said
to be radial if there exists 9ϕ : N Ñ C such that ϕpxq � 9ϕp|x|q, where | � |
represents the usual length function on the free group. We also define the
translation τpAq of a matrix A � raijsi,jPN in the following way:

τpaqij �
"
ai�1,j�1 if i, j © 1,
0 if i � 0 or j � 0.

Of course, τ is a contraction on Bp`2pGqq, so that for any t P C with
|t|   1, p1� tτq�1 is well defined on Bp`2pGqq as a Neumann series.

The following is Theorem 4.2 of [10]:

Theorem 1. Consider a free group FN with finitely or infinitely many
generators N © 2. Let ϕ : FN Ñ C be a radial function with its corresponding
function 9ϕ : N Ñ C. Let H � rhijsi,jPN be the Hankel matrix given by
hij � 9ϕpi� jq � 9ϕpi� j � 2q for i, j P N. The following are equivalent:

(i) ϕ is a completely bounded multiplier of the Fourier algebra of FN .
(ii) H is of trace class.

If these two equivalent conditions are satisfied, then there exist unique con-
stants c1, c2 P C and a unique 9ψ : N Ñ C such that

9ϕpnq � c1 � c2p�1qn � 9ψpnq, n P N, lim
nÑ8

9ψpnq � 0.

Moreover, if we let q � 2N � 1, then

}ϕ}McbApFq �
" |c1| � |c2| � }H}1 when q � 8,
|c1| � |c2| � p1� 1{qq}pI � τ{qq�1H}1 when 2 ¨ q   8.

As E � tg�1
1 , g�1

2 , . . .u is a radial set, this theorem gives a closed for-
mula for the completely bounded norm of χE . The main motivation of this
paper is to answer a question of M. Bożejko: is there any such formula for
E � tg1, g2, . . .u consisting only of generators? And also, do we have a good
understanding of the shape of the corresponding Schur multipliers that yield
this formula?

The above theorem has been extended in several ways. We will need its
adaptation by Wysoczański [17] to arbitrary free products. Before stating
it, we give the definition of the block length of an element in a group G of
the form G � �n

i�1Gi. Recall that any g P G can be either the identity or of
the form g � g1g2 . . . gn for some gk P Gikzteu, where i1, . . . , in P t1, . . . , nu
with i1 � i2 � � � � � in. The block length of an element g P G is denoted by
}g} and is defined as:

(i) }e} � 0 if g � e,
(ii) }g} � n if g is expressed as above.
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Note that this length is different from the one considered above on FN . A
block radial function on G is a function φ : G Ñ C so that ϕpgq � 9ϕp}g}q
for some function 9ϕ on N. We will only need a particular example, i.e. the
characterization when Gi � Z{2Z:

Theorem 2. Consider the group G � �n
i�1Z2 where n © 2, and a radial

function ϕpgq � 9ϕp}g}q on G. Then ϕ is a Herz–Schur multiplier if and only
if the Hankel matrix H � rhijsi,jPN given by hij � 9ϕpi� jq� 9ϕpi� j� 2q for
i, j P N is of trace class. Moreover, there exist unique constants c1, c2 P C
and a unique 9ψ : N Ñ C vanishing at infinity such that

ϕpgq � c1 � c2p�1q}g} � ψpgq, n P N,

and

}ϕ}McbApGq �

$'&'% |c1| � |c2| � n� 2
n� 1

�����I � τ

n� 1


�1

H

����
1

when n   8,

|c1| � |c2| � }H}1 when n � 8.

3. Sets which satisfy the Leinert condition

Definition 3. A set Λ � G satisfies the Leinert condition if for all
n P N and for all txiu2n

i�1 � Λ with xi � xi�1 we have

x1x
�1
2 x3x

�1
4 � � �x2n�1x

�1
2n � e.

When Λ satisfies the Leinert condition, we call it a Lc-set .

Note that if |Λ| © 2 then x1x
�1
2 (x1 � x2 P Λ) has infinite order, so G is

infinite.

Definition 4. A matrix A � raijs, i � 1, . . . ,m and j � 1, . . . , n, with
entries 0 and 1 is called chainable if

(a) it has no zero rows or columns, and
(b) for any pair of entries art � 1 and apq � 1, there exists a sequence

of entries ai1j1 � � � � � aisjs � 1 such that i1 � r, j1 � t, is � p,
js � q and ik � ik�1 or jk � jk�1 for k � 1, . . . , s� 1.

This sequence of elements is called a chain. A closed chain is called a cycle.
The length of a chain between pr, tq and pp, qq is the smallest integer s

so that (b) holds.

Let us note that all the cycles have even lengths.
We also have the following property:

Property 5. If an m�n matrix A with only 0 and 1 entries has neither
zero rows nor zero columns, then there exist permutation matrices P and Q
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such that

PAQ �

����
A1

. . .

AN

���� ,
where A1, , . . . , AN are chainable matrices.

If we regard A as the adjacency matrix of some bipartite graph, the sub-
matrices A1,. . . ,AN correspond to the connected components of the graph.

To make a link between these notions, assume that A is an n�n subma-
trix of MχΛ that contains a cycle of length 2k. Then there are indices psiq2ki�1

and ptiq2ki�1 so that as1,t1 � as2,t1 � as2,t2 � � � � � as1,t2k � 1. This exactly
means that the words x1 � s�1

1 t1, x2 � s�1
2 t1, x3 � s�1

2 t2 . . . , x2k � s�1
1 t2k

belong to Λ. But then

x1x
�1
2 x3x

�1
4 � � �x2n�1x

�1
2n � s�1

1 t1ps�1
2 t1q�1 . . . ps�1

1 t2kq�1 � e.

The definition of length implies that xi � xi�1. Hence, if Λ is a Lc-subset
of G then there is no cycle in any submatrix of MχΛ.

The following lemma is a part of Theorem 8.3 in [14].

Lemma 6. Let G be a group and let Λ � G with |Λ| © 2. Then the
following are equivalent:

(i) Λ satisfies the Leinert condition.
(ii) No n�m submatrix A of MχΛ contains a cycle.

Proof. We have just explained (i)ñ(ii). Now suppose that Λ is not a
Lc-set. Then we can find an even number of elements, say txiu2k

i�1 P Λ with
xi � xi�1, such that

x1x
�1
2 x3 . . . x2k�1x

�1
2k � e.

We can assume that k is the smallest integer with this property. Then, for
i � 1, . . . , k, let

si � px1x
�1
2 q � � � px2i�1x

�1
2i q and ti � px1x

�1
2 q � � � px2i�3x

�1
2i�2qx2i�1.

First, if si � sj with i   j, then px2i�1x
�1
2i�2q � � � px2j�1x

�1
2j q � e, which

contradicts the minimality of k. The same holds for the ti’s. Our hypothesis
is that sk � e.

We compute

@i�1, . . . , k, s�1
i ti�x2i, @i�1, . . . , k�1, s�1

i ti�1�x2i�1, s�1
k t1�x1.

Hence, we constructed s1, . . . , sk, t1, . . . , tk such that the matrix indexed by
them has a cycle. This contradicts our hypothesis, therefore (ii) implies (i).

Remark 7. It was shown in Theorem 8.1 in [14] that an n�m matrix
A does not contain any cycle if and only if any k � l submatrix of A has at
most k � l � 1 non-zero entries.
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4. The Herz–Schur norm calculation—the combinatorial me-
thod. Let FN be the free group with a finite or infinite number N of gen-
erators and let E be the set of all these generators. We are interested in
finding the exact value of the completely bounded multiplier norm of the
characteristic function χE , or equivalently, the Herz–Schur multiplier norm
of χE . In this section, we use a combinatorial approach to deal with the two
extreme cases: when N is 2 or 8. For a subset A of a group G, we have

}χA}McbApGq � |||MχA||| � supt}MχA �K} | K a finite unitary matrixu
� lim

n
psupt}MχA �K} | K a finite n� n unitary matrixuq.

To prove that the completely bounded multiplier norms of χA and χB co-
incide if |A| � |B|, it suffices to prove that MχA and MχB have the same
submatrices. This is the core of the combinatorial argument.

We start with the case G � F2, the free group with two generators
g1 and g2. Then E � tg1, g2u. We restrict our attention to a sequence of
submatrices An � rasts P Mn of MχE obtained by selecting the columns
and rows indexed respectively by

tpg�1
1 g2qk | k � 0, . . . , n� 1u, tpg�1

1 g2

�k
g�1

1 | k � 0, . . . , n� 1u.
These matrices are of the following form:

ast �
"

1 if s � t or t � s� 1,
0 otherwise,

that is, An �

������
1 1

1
. . .
. . . 1

1

������
n�n

.

Note that if Λ � ta1, a2u satisfies the Leinert condition, then as a1a
�1
2 has

infinite order, An is a submatrix of MχΛ.

Lemma 8. Let An be the n� n matrix defined above. Then

lim
nÑ8

|||An||| � 4
π
.

Proof. We first show that limnÑ8 |||An||| © 4{π. Note that

|||An||| � sup
UU��1

}An � U} © sup
UU��1

|trpAn � Uq|
n

� tr |An|
n

where |An| � pA�nAnq1{2. Observe that A�nAn is the tridiagonal matrix������
1 1

1 2
. . .

. . . . . . 1
1 2

������
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and its eigenvalues are given by

λk � 2� 2 cos
�

2kπ
2n� 1



� 4 cos2

�
kπ

2n� 1



for k � 1, . . . , n.

Thus

tr |An| � trppA�nAnq1{2q �
ņ

k�1

a
λk �

ņ

k�1

2 cos
�

kπ

2n� 1



��1� sin

�
2n�1
4n�2π

�
sin
�

π
4n�2

� .
Passing to the limit, we get

lim
nÑ8

|||An||| © lim
nÑ8

tr |An|
n

� 4
π
.

Next, we show that limnÑ8 |||An||| ¨ 4{π. The idea of the proof is to
twiddle An by throwing in an extra 1 at the lower left corner. More precisely,
we will construct for each n a new matrix Bn � rbsts P Mn which is defined
through

bst�
$&%

1 if s� t or s� t�1,
1 s � n and t � 1,
0 otherwise,

that is, Bn�

������������

1 1 0 0 � � � 0
0 1 1 0 � � � 0

0 1
. . . . . .

...

0 0
. . . . . . . . . 0

...
...

. . . . . . 1 1
1 0 � � � � � � 0 1

������������
.

Let us observe that

Bn�1 �

�����
0

An
...
1

1 0 � � � 1

����� .
It is a very general fact on multipliers that if A is a submatrix of B then
the multiplier norm of A is smaller than the one of B.

In what follows, we will show that limnÑ8 |||Bn||| � 4{π. We mention
that this calculation has also been done by Donsig and Davidson in [4],
using the result [13, Theorem 2.6] of Mathias, but we include it here for the
sake of completeness. Let G� Z{nZ; then Bn �Mχt 90, 91u. As G is abelian,
|||Mχt 90, 91u|||�}{χt 90, 91u}L1pĜq

, so

|||Bn||| � 1
n

n�1̧

k�0

|1� ei2kπ{n|

� 4
sin
�X
n�1

2

\
π
n � π

2n

�
sin
�
π
2n

�
n
�
1� cos

�
π
n

�� nÑ8ÝÝÝÑ
1�

0

|1� ei2πt| dt � 4
π
.
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And finally

lim
nÑ8

|||An||| � 4
π
.

This concludes the proof of the lemma.

Remark 9. Let Λ � ta1, a2u � G be a Lc-set. Note that in the full
matrix representation of Mχta1,a2u, there are exactly two 1’s in each column
and each row.

Lemma 10. Let Λ � ta1, a2u � G be a Lc-set. If a matrix A P Mn,m

is a submatrix of Mχta1,a2u and is chainable then |m � n| ¨ 1, and up to
row and column operations, A can be recovered from An�1 by taking the first
n rows and m columns or the last n rows and m columns. Hence |||An||| ¨
|||A||| ¨ |||An�1|||.

Proof. Note that by Lemma 6, A has no cycle. Moreover, by the previous
remark, there are also at most two 1’s in each column and row.

Consider the longest chain in A, say ai1,j1 � ai2,j2 � � � � � aik,jk with
pil, jlq � pil�1, jl�1q but il � il�1 or jl � jl�1.

Up to permutations, we can assume that j1 � i1 � 1, and also that
i2 � i1. Up to a row permutation, we have j2 � 2. As there are at most
two 1’s in each row and column, we cannot have i3 � 1, so say i3 � 2 and
then j3 � 2. Then, as there are two 1’s in the second column, we must
have j4 � 2, so i4 � 2. Next, as there is no cycle we must have i4 � 1, so
say i4 � 3. Continuing this procedure, we find that the chain has the same
shape as the one from the first l rows and p columns of the matrix Al�1

with |p � l| ¨ 1 and it goes from p1, 1q to pl, pq. We then look at the other
possible pi, jq with ai,j � 1. First, i ¨ l and j ¡ p is impossible as it would
contradict either the maximality of the chain (if i � l) or the fact that there
are at most two 1’s in each row. Secondly, it cannot be pi, 1q or pi, pq with
i ¡ l as the chain starts at p1, 1q and we choose it maximal. Finally, because
of the number of 1’s or the cycle condition, we must have i ¡ l and j ¡ p,
which is impossible because A is chainable. Hence, we have exhausted all
the 1’s in A, and by chainability, we must have m � p and n � l and we are
done.

We are now ready to prove a particular case of the main result of this
paper:

Theorem 11. Assume Λ � ta1, a2u � G satisfies the Leinert condition.
Then

}χta1,a2u}McbApGq � }Mχtg1,g2u}McbApF2q �
4
π
.

Proof. Let A be a submatrix of Mχta1,a2u. Then by Property 5, A is, up
to permutations, a block diagonal matrix whose blocks are chainable. Since



264 É. RICARD AND A.-M. STAN

each of these blocks must be of the form in Lemma 10, this gives us 4{π
as the upper bound (recall that the Schur norm of a block diagonal matrix
is the supremum of the Schur norm of the blocks). To show the reverse
inequality, it is enough to note that each An, whose norm goes to 4{π, is a
submatrix of Mχta1,a2u.

In what follows, we present the combinatorial method for finding the
Herz–Schur norm of χE , where E is the infinite set of all the generators
of F8.

Lemma 12. Let Λ � G be an infinite set which satisfies the Leinert
condition. Then the following are equivalent:

(i) A is an n�m submatrix of MχΛ.
(ii) A contains no cycle.

Proof. Note that (i)ñ(ii) is exactly (i)ñ(ii) in Lemma 6. To prove
(ii)ñ(i), we let Λ � tλ1, λ2, . . .u be an infinite set and consider a ma-
trix A � raijsn,mi,j�1 with no cycle. We want to construct ts1, . . . , snu and
tt1, . . . , tmu with si, tj P G for any i, j P t1, . . . , nu � t1, . . . ,mu such that

aij �
"

1 if s�1
i tj P Λ,

0 otherwise.
Step 1. Suppose that A is chainable. To find the index sets ts1, . . . , snu

and tt1, . . . , tmu, we will first transform A into a more manageable matrix,
by permuting rows and columns if necessary. In what follows, we will give a
block form of A. To fix notation, we decompose A into block matrices as A �
rXi,j

yi,xj s, where pi, jq denotes the position of the block Xi,j
yi,xj in A and pyi, xjq

represents its size (if one of them is 0, this means that there is no block).
Also, we will use the notation C for a matrix that has exactly one 1 in each of
its columns and 0’s elsewhere, R for the matrix that has exactly one 1 in each
of its rows and 0’s elsewhere, and X for a general matrix with 0’s and 1’s.

For simplicity, we assume n ¡ m, otherwise we can add rows to A.
As a first step, we use permutations to put a 1 at the p1, 1q position. We

let x1 � y1 � 1 and we obtain

A �
�

1 X1,2
y1,m�x1

X2,1
n�y1,x1

X2,2
n�y1,m�x1

�
.

Here, � stands for equality up to a permutation of rows and columns.
We start by separating the columns of X1,2

y1,m�x1
containing one 1 from

those with 0’s and put them on the left hand side. Let us suppose that there
are k columns, each with exactly one 1.

Similarly, for X2,1
n�y1,x1

, we separate the rows containing a 1 and we put
them in the top part of the matrix. Let us suppose that there are l rows,
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each with exactly one 1. We obtain

(4) A �

����
1 C1,2

y1,k
O

R2,1
l,x1

X2,2
l,k X2,3

l,m�x1�k

O X3,2
n�y1�l,k

X3,3
n�y1�l,m�x1�l

����
where O represents the zero matrix of the appropriate size.

Observe now that k and l cannot be 0 simultaneously. Suppose that
k � l � 0. Then

A �
�

1 O1,m�1

On�1,1 �

�
.

which is not chainable (unless m � n � 1). Hence we can assume that
k ¡ 0 (by permuting rows and columns in all arguments if necessary). We
set x2 � k and y2 � l. The next step is to notice that X2,2

l,k in (4) must
be the zero matrix (or, if x2y2 � 0, the matrix will not appear in the
decomposition), otherwise we again have a cycle. Hence,

(5) A �

����
1 C1,2

y1,x2 O

R2,1
y2,x1 O X2,3

y2,m�x1�x2

O X3,2
n�y1�y2,x2

X3,3
n�y1�y2,m�d�x2

���� .
We continue the procedure by looking at X2,3, and since we are not allowing
cycles in the matrix, we see that each column has at most one 1. By the
same argument, X3,2 has at most one 1 in each row. The blocks X2,3 and
X3,2 cannot both be zero. We keep decomposing A into blocks of type C
and R, until we exhaust all the 1’s. Eventually,

(6) A �

���������������

1 C1,2
y1,x2 O O O � � � O

R2,1
y2,x1 O C2,3

y2,x3 O O � � � O

O R3,2
y3,x2 O C3,4

y3,x4 O � � � O

O O
. . . . . . . . . � � � O

� � � � � � � � � . . . . . . . . . O

� � � � � � � � � O Ck�1,k
yk�1,xk

� � � � � � � � � Rk,k�1
yk,xk�1 O

���������������
where xi, yi © 0, xi � yi ¡ 0,

°k
i�1 yi � n and

°k
i�1 xi � m.

Next, we will select columns tj and rows si from MχΛ to get A. For con-
venience, we use double indices to denote the elements of Λ, more precisely
Λ � tλi,j | i © 1, j P Zu.
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We begin with the 1 in the top left corner of A � pai,jq, which is indexed
by t1 � e and s1 � λ�1

1,1. Obviously χΛps�1
i tjq � ai,j for i ¨ y1 and j ¨ x1.

Let us assume that t1, . . . , tx1�����xl and s1, . . . , sy1�����yl have been
constructed. Then, for the next xl�1 columns, we choose tx1�����xl�k �
sy1�����yl�1�αkλl�1,k for k � 1, . . . , xl�1 where αk is the unique index such
that the block pl, l � 1q of A has a 1 at position pαk, kq. For the next yl�1

rows, set sy1�����yl�k � tx1�����xl�1�βkλ
�1
l�1,�k for k � 1, . . . , yl�1 where βk is

such that the block pl � 1, lq of A has a 1 at position pk, βkq.
By construction, s�1

i tj P Λ if ai,j � 1. Conversely, s�1
i tj is a product

of the form λα1λ
�1
α2
� � �λα2l�1

. According to the Leinert condition, this can
reduce to some λp if and only if we have trivial simplifications (i.e. α1 � p
and α2u � α2u�1, or α2l�1 � p and α2u � α2u�1). One can easily check that
this occurs only when ai,j � 1. In order to illustrate this technique, we give
an example (where the index of each 1 stands for the number of the new
generator used): ��������

11 12 13 14

15 18

16 17

19

110

�������� .

The indexing sets are, for the columns:

te, λ�1
1 λ2, λ

�1
1 λ3, λ

�1
1 λ4, λ

�1
6 λ7, λ

�1
5 λ8u,

and for the rows:

tλ�1
1 , λ�1

5 , λ�1
6 , λ�1

1 λ3λ
�1
9 , λ�1

1 λ4λ
�1
10 u.

Step 2. If A is not chainable, then by Property 5 there exist permutation
matrices P and Q such that

PAQ �

�����
A1

. . .
AN

O

����� ,
where A1, . . . , AN are chainable matrices and O is a rectangular zero matrix.

We apply the argument from Step 1 to the chainable matrices A1, . . . , AN
with indices coming from different disjoint subsets of Λ and choose other
different elements from Λ for row and columns of O. The conclusion then
follows.

To sum up, when Λ � G is an infinite Lc-set, then MχΛ and MχE have
the same submatrices. The formula (1) implies the following:



HERZ–SCHUR MULTIPLIER NORM 267

Corollary 13. If Λ � G is infinite and satisfies the Leinert condition,
then

}χΛ}McbApGq � }χE}McbApFq.

Thus to estimate the multiplier norm of the characteristic function of
an infinite Lc-set, one only needs to compute it for one concrete example.
Actually, E � tg�1

1 , . . . , g�1
n , . . .u is such an example and to calculate its

norm, we may rely on Theorem 4.2 of [10], which is Theorem 1 above. Note
that the radial multiplier χE corresponds to the projection onto words of
length one. We obtain H � �0

1
1
0

�
and the following corollary:

Corollary 14. Let Λ � G be an infinite Lc-set. Then

}χΛ}McbApGq � 2.

For completeness, we will explain how to obtain this value directly. We
first show that the norm is at most 2, by using the pattern of Lemma 12. Note
that a similar argument can be found in [9]. Then we show this inequality
is in fact an equality.

Proof. Let A be any submatrix of MχΛ. Since the Schur norm of a
matrix with blocks on the diagonal is the maximum of the Schur norms of
the blocks, we can focus on the case where A is chainable. By the proof of
Lemma 12, A is of the form (6). We can write A � X�Y , where X contains
only the blocks of A of type R and Y those of type C and a 1 at the top left
corner. Since both matrices Y and X have at most one 1 in each column
and at most one 1 in each row respectively, we see that the Schur norm of
each matrix is less than 1. Hence,

}χΛ}McbApGq ¨ 2.

To prove equality, we use duality and the corresponding multiplier on
the group algebra. Since we can choose a particular Lc-set, we take Λ �
tg�1
i | i © 1u � F8.

LetOn be the Cuntz algebra with n generators, which is the universal C�-
algebra generated by isometries puiqni�1 satisfying the relation

°n
i�1 uiu

�
i � 1.

Fix n © 1, and consider S P On bVNpF8q given by

Sn � 1?
n

ņ

i�1

ui b λpgiq.

This is an isometry as S�nSn � 1, but it is not unitary since Idb τpSnS�nq �
p1{nq1 (with τ the trace on VNpF8q). Let Un � Snp1�SnS�nq�p1�SnS�nqS�n.
It is easily checked that Un is self-adjoint and U2

n is a projection. Hence
}Un}OnbVNpF8q � 1.
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Next, we compute Idb χEpUnq. First,

SnSnS
�
n �

1
n3{2

ņ

i,j,k�1

uiuju
�
k b λpgigjg�1

k q

� 1
n3{2

ņ

i�1

1b λpgiq � 1
n3{2

ņ

i,j,k�1
j�k

uiuju
�
k b λpgigjg�1

k q,

which gives

Idb χEpSnSnS�nq �
1
n3{2

ņ

i�1

1b λpgiq.

Hence }Id b χEpSnSnS�nq} ¨ 1{?n and similarly for its adjoint. Of course,
Id b χEpSn � S�nq � Sn � S�n. To conclude, recall that for any non-unitary
isometry, }Sn � S�n} � 2, which implies

}Idb χEpUnq} © }Sn � S�n} �
2?
n
� 2� 2?

n
,

and we are done.

Actually, using all the Sk’s one can easily derive the lower bound in
Theorem 1 (for n � 8).

We briefly indicate the shape of matrices A on which the Schur multiplier
norm is almost achieved. For d, l ¡ 0, let Cd,l � pcpi1,...,il�1q,pj1,...,jlqq be the
dl�1�dl matrix with cpi1,...,il�1q,pj1,...,jlq � δpi1,...,il�1q,pj1,...,jl�1q and Rd,l � C�

d,l.
With the notation (6), one can choose k � d, Ci,i�1 � Cd,i, Ri�1,i � Rd,i
and let dÑ 8 (one does not need the 1 at the p1, 1q position). In terms of
Fock spaces, the description of the shift Sd is not as nice as the one above
(unless we go to the completely bounded side).

One can extend this combinatorial method to finite Lc-sets, but the
statements and their proofs become really heavy.

5. The Herz–Schur norm calculation—the algebraic method.
We start with the following well known properties of the Herz–Schur multi-
plier norm:

Proposition 15. Let G be a discrete group.

(i) If E � G and x P G, then }χE}McbApGq � }χxE}McbApGq.
(ii) If H is a subgroup of G and E � H, then }χE}McbApGq �

}χE}McbApHq.

Proof. For x in G let τx be translation by x on ApGq; it is a complete
isometry. Then (i) follows from τxχEτx�1 � χxE .
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It is well known (see [5]) that for any subgroup H of G, the extension
map

ι : ApHq Ñ ApGq, ιpφqpgq �
"
φpgq if g P H,
0 otherwise,

is a complete embedding. Moreover, the restriction map ρ is a left inverse
for ι and is a complete contraction. Then χGE � ρχHE ι, which gives the
estimates.

Now, let F2 be the free group on two generators g1 and g2. Then it is
trivial to see that the set te, g�1

1 g2u satisfies the Leinert condition. (In fact,
it can be verified that any set of cardinality 2 satisfies the Leinert condition
if g�1

1 g2 has infinite order.) Let Z be the group generated by g�1
1 g2. We have

}χtg1,g2u}McbApF2q � }χg1te,g�1
1 g2u

}McbApF2q � }χte,g�1
1 g2u

}McbApF2q

� }χte,g�1
1 g2u

}McbApZq � }χte,g�1
1 g2u

}BpZq
� }χte,g�1

1 g2u
}ApZq � } {χte,g�1

1 g2u
}L1pẐq

� } {χte,g�1
1 g2u

}L1pTq,

where pχte,g�1
1 g2u

pzq � 1� z. Hence

}χtg1,g2u}McbApF2q �
1

2π

2π�

0

|1� eiθ| dθ � 4
π
.

A key ingredient in this section is the following characterization of the
Leinert condition:

Proposition 16. Let G be a discrete group. Then Λ � G satisfies the
Leinert condition if and only if uΛ is free in G � Z, where u is a generator
of Z.

Proof. Let Λ � ta1, a2, . . .u be a Lc-subset of G. We have to show that
uΛ � tua1, ua2, . . .u is free. To this end, we analyze the form of a product

w � puai1qε1puai2qε2 � � � puainqεn
with εk � �1 and we assume that there is no trivial simplification, that is,
εkεk�1 � �1 or ik � ik�1.

We describe the resulting word w in letters ai’s and u after all possi-
ble cancellations of u’s. We will write E (resp. E) for a word of the form
aila

�1
il�1

� � � ail�2pp�1q
a�1
il�2p�1

(resp. a�1
il
ail�1

� � � a�1
il�2pp�1q

ail�2p�1
). Note that

our assumption is exactly that such elements in G are different from the
identity. Similarly for odd products, we write O (resp. O) for a word of the
form aila

�1
il�1

� � � ail�2pp�1q
(resp. a�1

il
ail�1

� � � a�1
il�2pp�1q

). Hence puOqk means a
word of the form uO1 � � �uOk. If ε1 � 1, after all possible cancellations of
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u’s, w will have one of the following forms:

w1 �
p¹
s�1

�puOqkspuEu�1qpOu�1qlsE� with p © 1,

w2 �
� p�1¹
s�1

�puOqkspuEu�1qpOu�1qlsE�	puOqkp with p © 1, kp © 1,

w3 �
� p�1¹
s�1

�puOqkspuEu�1qpOu�1qlsE�	puOqkppuEu�1qpOu�1qlp
with p © 1, kp, lp © 0.

This can be checked by induction on n. When n � 1, w � uai1 so it is of the
form w2. Then we have the following rules for multiplication on the right:

w1uain�1 Ñ w2, w1puain�1q�1 Ñ w3, w2uain�1 Ñ w2,

w2puain�1q�1 Ñ w3, w3uain�1 Ñ w2 if lp � 0,

w3uain�1 Ñ w1 if lp ¡ 0, w3puain�1q�1 Ñ w3.

Now assume that w is the identity. Then, as all u must cancel,
°
εi � 0, in

particular n is even. As xy � 1 implies yx � 1, conjugating w if necessary,
we may assume that ε1 � 1. Taking into account that some words of the
form O may cancel, but those of the form E are different from e, we see from
the above description that w has block length greater than 3. Consequently,
w � e and uΛ is free.

To prove the other implication, we note that uΛ being free implies that
uΛ satisfies the Leinert condition, which further implies that Λ � u�1puΛq
also does.

Let G be any discrete group and Λ � H a Lc-subset, say Λ � ta1, a2, . . .u.
Let Γ � G � Z with u a generator of Z. By the above proposition, the
set tua1, ua2, . . .u is the set of generators of a copy of the free group F|Λ|
in Γ . As usual, we denote by gi the generators of the free group. Now, by
Proposition 15,
}χta1...,a|Λ|u}McbApGq � }χta1,...,a|Λ|u}McbApΓ q � }χtua1,...,ua|Λ|u}McbApΓ q

� }χtua1,...,ua|Λ|u}McbApF|Λ|q � }χtg1,...,g|Λ|u}McbApF|Λ|q.

This leads us to the following theorem:

Theorem 17. Let G be a discrete group and Λ be a Lc-subset. Then

}χΛ}McbApGq � }χtg1,...,g|Λ|u}McbApF|Λ|q.

Hence, the norm }χΛ}McbApGq depends only on |Λ|. To compute it, we
only need to do so on a particular example. But the set of generators of
�n
i�1Z2 is an Lc-set of cardinality n; according to Theorem 2, these values

can be evaluated using the following:
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Corollary 18. Let Fn be the free group with n generators and E be a
subset of all its generators. Then

}χE}McbApFnq �
n� 2
n� 1

�����I � τ

n� 1


�1

H

����
1

,

where H � �0
1

1
0

�
.

6. Remarks on the multiplier norm. In this section we will focus
on the multiplier norm. The algebraic method also works in this case:

Theorem 19. Let G be a discrete group and Λ be a subset satisfying the
Leinert condition. Then

}χΛ}MApGq � }χtg1,...,g|Λ|u}MApF|Λ|q.

It is obvious that }χtg1,...,g|Λ|u}MApF|Λ|q ¨ }χtg1,...,g|Λ|u}McbApF|Λ|q ¨ 2. Un-
like in the completely bounded case, we have no nice formula in this setting.
We can however prove the following estimate:

Theorem 20. Let E be an infinite set of generators of F. Then
16
3π

¨ }χE}MApFq   2.

Consequently, the bounded and completely bounded norms of χE on ApFq
are different.

For convenience, we turn to the dual notion and look at the multiplier
norm on VNpFq.

Let H be the subspace of VNpFq generated by the λpgiq’s. It has been
shown in [1] that on H, the L2 and L8 norms are equivalent. More precisely,
for α1, . . . , αn P C,� ņ

i�1

|αi|2
	1{2

¨
��� ņ

i�1

αiλpgiq
���
VNpFq

� min
!

2t�
ņ

i�1

p
a
t2 � |αi|2 � tq

��� t © 0
)
¨ 2

� ņ

i�1

|αi|2
	1{2

and 2 is the best possible constant. Moreover, this formula holds for any
family satisfying the Leinert condition.

Lemma 21. We have

}χE}MApFq ¨ sup
xPH, }x}2�1

}x}1}x}8.

Proof. This is a very general fact as χE is an orthogonal projection on L2.
Take y P VNpFq; then y � λx � z with x in H, }x}2 � 1 and z orthogonal
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to x and }χEpyq}8 � |λ| � }x}8. But thanks to Hölder’s inequality we have

|λ| � |τpyx�q| ¨ }x}1}y}8.
Proof of the upper bound in Theorem 20. It suffices to prove that

supxPH, }x}2�1 }x}1}x}8   2. Assume that this is not true. Let ε ¡ 0 and
x P H with }x}2 � 1 so that }x}1}x}8 ¡ 2�ε. Using the Akemann–Ostrand
estimate, we have 2τp|x|q © 2 � ε and }x}8 © 2 � ε as }x}1 ¨ }x}2 � 1.
Hence, �� |x| � 1

��2
2
� τpx�xq � 2τp|x|q � 1 ¨ ε.

On the one hand,�� |x|2��
2
¨ �� |x| ��

2
� �� |x|p|x| � 1q��

2
¨ 1� }x}8

�� |x| � 1
��
2
¨ 1� 2

?
ε.

But with x � °n
i�1 αiλpgiq,

|x|2 � x�x �
� ņ

i�1

|αi|2
	
λpeq �

ņ

i�j�1

αiαjλpg�1
i gjq.

Hence�� |x|2��2
2
�
� ņ

i�1

|αi|2
	2
�

ņ

i�j�1

|αi|2|αj |2 � 2
� ņ

i�1

|αi|2
	2
�

ņ

i�1

|αi|4.

Putting everything together, as
°n
i�1 |αi|2 � 1, with δ � p1� 2

?
εq2 � 1 we

get

max
i
|αi|2 ©

ņ

i�1

|αi|4 © 1� δ.

For simplicity, we can assume that |α1|2 © 1 � δ. Taking t � 1{2 in the
Akemann–Ostrand formula and using

a
1{4� u2 � 1{2 ¨ u2, we have

2� ε ¨ }x}8 ¨ 1�
c

1
4
� |α1|2 � 1

2
�

ņ

i�2

|αi|2 � �|α1|2 �
c

1
4
� |α1|2 � 3

2
.

As ε Ñ 0, |α1| goes to 1, and we obtain 3{2 ¨ ?
5{2 which is false. This

completes the proof of the upper bound.

Proof of the lower bound in Theorem 20. First, we know that we can re-
place E by any infinite Lc-set. We choose E to be the set of all the generators
and their inverses. Fix an integer n © 0 and let

sn � 1?
2n

ņ

i�1

pλpgiq � λpg�1
i qq.

This is a self-adjoint element which generates a commutative von Neumann
algebra Mn in VNpFq. It is easy to see that sn is the only element in
VNpFnqXH that is invariant under the automorphisms of VNpFnqXH corre-
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sponding to permutations of the generators and their inverses (i.e. gi ÞÑ g�1
i ).

Consequently, for any element x PMn, we have χEpxq P Csn. Recall that on
L2, χE is an orthogonal projection. Restricting to Mn, χE is the rank one
operator p given by ppxq � τpxsnq.sn. So }χE}Mn � }sn}1}sn}8.

We note that the density of sn with respect to the Lebesgue measure can
be computed explicitly using the R-transform (see [16]). However, our proof
does not make use of this formula. Next, by the non-commutative central
limit theorem, sn tends to a semicircle random variable s in moments and
in distribution. Hence,

}sn}1 Ñ 1
2π

2�

�2

|t|
a

4� t2 dt � 8
3π
.

Also }sn}8 Ñ 2 � }s}8 by [1]. Finally

}χE}MApFq © }s}1}s}8 � 16
3π
.

It has been shown in [1] that supxPHXVNpFnq, }x}2�1 }x}8 is achieved for
x � sn. It is likely that this is also true for supxPHXVNpFnq, }x}2�1 }x}1}x}8,
but we do not know how to prove it. For a general x � °n

i�1 αiλpgiq, its
1-norm coincides with that of

°n
i�1 αiεi, where εi are free Bernoulli variables.

Unfortunately, the R-transform of this type of random variable is hard to
invert (except when all αi’s are equal), and it is difficult to compute its
1-norm.
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[3] M. Bożejko and G. Fendler, Herz–Schur multipliers and completely bounded multi-
pliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3
(1984), 297–302.

[4] K. R. Davidson and A. P. Donsig, Norms of Schur multipliers, Illinois J. Math. 51
(2007), 743–766.

[5] E. G. Effros and Z.-J. Ruan, Operator Spaces, London Math. Soc. Monogr. 23,
Oxford Univ. Press, New York, 2000.
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