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THE HERZ-SCHUR MULTIPLIER NORM OF
SETS SATISFYING THE LEINERT CONDITION

BY

ERIC RICARD and ANA-MARIA STAN (Besancon)

Abstract. It is well known that in a free group F, one has |x e, a@r) < 2, where E
is the set of all the generators. We show that the (completely) bounded multiplier norm
of any set satisfying the Leinert condition depends only on its cardinality. Consequently,
based on a result of Wysoczanski, we obtain a formula for ||x |, am)-

1. Introduction. In this paper we are interested in finding the Herz—
Schur multiplier norm of the characteristic function of the set of generators
of a free group. It was shown in [3] that the Herz—Schur norm on a group
G is the same as the completely bounded multiplier norm of the Fourier
algebra A(G). In a group, we actually make use of the notion of a subset
satisfying the Leinert condition, which is slightly weaker than freeness. Our
main result shows that the multiplier norm of the characteristic function of
such a set depends only on its cardinality. Thus, in order to obtain these
values we only need to compute them for specific examples. When n = 2p,
the set of generators and their inverses in I, satisfies the Leinert condition
and has cardinality n. For all n, the set of generators of s ;Z/2Z is another
example. We will use results of Haagerup, Steenstrup and Szwarc [10] and of
Wysoczanski [17], which characterize the Herz—Schur multipliers for radial
functions on various discrete groups.

We use two methods of proof. One is algebraic, quick, elegant and very
general. The other one is combinatorial and we present it only for the groups
Fy and F,,. Even if this second method is lengthier, we choose to present
it first, as it gives a good insight on what the corresponding matrices look
like. In this way, we also collect many small results that are related to the
particular question of computing the exact norm of multipliers.

The organization of the paper is the following: In the preliminary section,
we set up the general context and give the necessary definitions and results
we rely on. In the next section, we give the definition of the Leinert condition
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and describe one of its combinatorial characterizations. In Sections 4 and 5,
we present the combinatorial and the algebraic methods for calculating the
announced norm. In the last section, we end with some remarks on the
bounded multiplier norm.

2. Preliminaries. Our standard reference for details on operator spaces
and completely bounded maps is the book of Effros and Ruan [5]. Let G be
a discrete group. Denote by A(G) the Fourier algebra of G, which consists
of all coefficient functions

p(s) = As)E[m),  seG, & nela(G),

of the left regular representation A on ¢5(G). Multiplication in A(G) is point-
wise multiplication (hence commutative) and its norm is given by

lelaey = mE{[Ellnl | (s) = ()€1}

The Fourier-Stieltjes algebra B(G) is defined to be the space of all co-
efficient functions

P(s) ={m(s)s|m),  se€G, & ne Hy,

where 7 : G — B(H) is the universal representation of G. It is known that
B(G) is a commutative algebra and its norm is given by

[y = mt{l€] Inl | ¥(s) = m(s)§ [m), w: G — B(Hxr)

a unitary representation}.

The Fourier algebra A(G) can be isometrically identified with the predual
of VN(G) (the group von Neumann algebra) and thus it has a canonical
operator space structure which makes A(G) a completely contractive Banach
algebra. Let us recall it briefly: we consider G a discrete group and VN(G)
the von Neumann algebra on /3(G) generated by the left translations A(g)
for g € G. Furthermore, VN(G) is a type II; von Neumann algebra and
its canonical normal faithful trace is given by the evaluation on e, that
is, 7(A(g)) = dg,e. For any p > 1, the completion of VN(G) for the norm
(7(]z|P))"P is the L, space associated to VN(G), where |z| = (z*2)Y? (for
p = o0, we recover the norm on VN(G)). Of course, La(G,7) = {2(G) and
Li(G,7) = A(G).

A function ¢ : G — C is called a multiplier of A(G) if ¢.¢) € A(G) for
any 1 € A(G). Then we consider the multiplication map my, : A(G) — A(G)
defined as

my (V) = .9
By the closed graph theorem, m,, : A(G) — A(G) is bounded on A(G). We

denote by M A(G) the space of all multipliers of A(G), equipped with the
natural norm || ara(q) = [my|. A multiplier ¢ is called completely bounded
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if |my e < 0. We denote by My A(G) the space of all completely bounded
multipliers of A(G) equipped with the completely bounded norm. When m,,
is bounded, its adjoint is well defined on VN(G), weak-# continuous, and is
given by mZA(g) = »(g)A(g). Of course, [[mlpvn(e),vna)) = Ml We
refer to [5] for more details.

Let G be an (infinite) discrete group and A = [A(s,t)]seq and B =
[B(s,t)]steq be two (infinite) matrices indexed by G. Then we can define
the Schur multiplication of A and B by [A« B(s,t)] = [A(s,t) - B(s,t)] and
we call a function A : G x G — C a Schur multiplier if there exists o > 0
such that |A* K| < af K|| for any finite matrix K. Here, the norm ||- | is the
operator norm on B({2(G)). We denote by || - || the Schur multiplier norm
defined as follows:

Al = sup{[[A « k| | k € B(¢2(G)) with [[k]| < 1}.

Bounded Schur multipliers are automatically continuous for the weak opera-
tor topology. Hence by Russo-Dye’s theorem, we can restrict the supremum
to the finite unitary matrices.

Given a function ¢ : G — C, we define My : G x G — C by My(s,t) =
¢(s7) and we can regard Mo = [My(s,t)]stec as an (infinite) matrix
indexed by G.

Using an (unpublished) result of Gilbert [7], Bozejko and Fendler [3]
showed that M, A(G) is isometrically isomorphic to B2(G), the space of all
Herz-Schur multipliers on G. Then the completely bounded multiplier norm
is exactly the Herz—Schur multiplier norm, so it is given by

(1) ngHMch(G) = ||Mep| = sup{||My * k| | k a finite unitary matrix}

This result also shows that a function ¢ : G — C is in M4»A(G) with
lllar,,a@) < 1if and only if there exist a Hilbert space K and two bounded
maps «, 3 : G — K such that

(2) p(s 't) = (B(t) |a(s)) Vs, ted

and

(3) sup{|a(s)|x} sup{[|B(t) |k} < 1.
seG teG

A short and elegant proof of this result can be found in [I1] or [I5].

For any group G, we have B(G) € M4A(G) € MA(G) and equalities
hold if G is amenable. When G is the free group on at least two generators
(hence non-amenable), all the above inclusions are strict ([12], [2], [6]).

As usual, we will use the notation yg for the characteristic function of
a subset E.

The general problem of computing the exact norms of multipliers is dif-
ficult to address. In a remarkable work, Haagerup, Steenstrup and Szwarc
gave an answer for some multipliers on free groups, that we describe below.
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As usual, we denote by Fy the free group with finitely or infinitely many
generators N > 2, denoted by ¢1,gs2,.... A function ¢ : Fy — C is said
to be radial if there exists ¢ : N — C such that ¢(z) = $(|z|), where | - |
represents the usual length function on the free group. We also define the
translation 7(A) of a matrix A = [a;;]; jen in the following way:

(a) a;—1j1 ifi,j>1,
D =
A ifi=0orj=0.

Of course, 7 is a contraction on B({2(G)), so that for any ¢ € C with
[t| <1, (1 —tr)~! is well defined on B(f2(G)) as a Neumann series.
The following is Theorem 4.2 of [10]:

THEOREM 1. Consider a free group Fy with finitely or infinitely many
generators N > 2. Let ¢ : Fy — C be a radial function with its corresponding
function ¢ : N — C. Let H = [hyj]ijen be the Hankel matriz given by
hij = @i+ j5) — p(i + j + 2) fori,jeN. The following are equivalent:

(i) ¢ is a completely bounded multiplier of the Fourier algebra of Fy.
(ii) H 1is of trace class.

If these two equivalent conditions are satisfied, then there exist unique con-
stants c1,co € C and a unique Y : N — C such that

¢(n) = c1 + co(—1)" +1(n), neN, lim_ d(n) = 0.
n—
Moreover, if we let ¢ = 2N — 1, then

ol | leal + ea| + [H|1 when q = o0,
PIMaAE = 1y 4 Jeal + (1= 1/q)|(T = 7/q) T H|y  when 2 < q < .

As FE = {gf—rl, gé—ﬂ, ...} is a radial set, this theorem gives a closed for-
mula for the completely bounded norm of xg. The main motivation of this
paper is to answer a question of M. Bozejko: is there any such formula for
E = {g1, 92, ...} consisting only of generators? And also, do we have a good
understanding of the shape of the corresponding Schur multipliers that yield
this formula?

The above theorem has been extended in several ways. We will need its
adaptation by Wysoczanski [I7] to arbitrary free products. Before stating
it, we give the definition of the block length of an element in a group G of
the form G' = %' ;G;. Recall that any g € G can be either the identity or of
the form g = g192. .. gn for some g; € G, \{e}, where iy,...,1, € {1,...,n}
with 41 # g # - -+ # iy. The block length of an element g € G is denoted by
lg|l and is defined as:

(i) fe| =0if g =e,
(ii) |lg| = m if g is expressed as above.
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Note that this length is different from the one considered above on Fy. A
block radial function on G is a function ¢ : G — C so that ¢(g) = &(|g])
for some function ¢ on N. We will only need a particular example, i.e. the
characterization when G; = Z/2Z:

THEOREM 2. Consider the group G = *%I' 7o where n > 2, and a radial
function o(g) = &(|gl)) on G. Then ¢ is a Herz-Schur multiplier if and only
if the Hankel matriz H = [hi;]i jen given by hij = (i +j) — (i + 7 +2) for
i,j € N is of trace class. Moreover, there exist unique constants ci,c2 € C
and a unique 1 : N — C vanishing at infinity such that

0(g) = a+ (-1l +y(g), neN,

and

_9 -1
|c1|+|62|+n_1‘<l— T ) H| whenn < o,

HSOHMch(G) = n n—1 1
lei]| + |ea| + [ H|1 when n = o0.

3. Sets which satisfy the Leinert condition

DEFINITION 3. A set A € @G satisfies the Leinert condition if for all
n € N and for all {xz}?zl c A with z; # x;,1 we have

xlmglxgmf .- -xgn_lx;nl # €.
When A satisfies the Leinert condition, we call it a Lc-set.

Note that if |A| > 2 then zj2, " (21 # 29 € A) has infinite order, so G is
infinite.

DEFINITION 4. A matrix A = [a;;],4=1,...,mand j = 1,...,n, with
entries 0 and 1 is called chainable if

(a) it has no zero rows or columns, and

(b) for any pair of entries a,; = 1 and a,, = 1, there exists a sequence
of entries a;,;, = -+ = a;,;, = 1 such that i1 = r, j1 =t, is = p,
js =qand i = igqq1 Or jp = jpyq for k=1,...,8 — 1.

This sequence of elements is called a chain. A closed chain is called a cycle.

The length of a chain between (r,t) and (p,q) is the smallest integer s
so that (b) holds.

Let us note that all the cycles have even lengths.
We also have the following property:

PROPERTY 5. If an m xn matriz A with only O and 1 entries has neither
zero rows nor zero columns, then there exist permutation matrices P and Q)
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such that
Ay

An
where A1,,...,An are chainable matrices.

If we regard A as the adjacency matrix of some bipartite graph, the sub-
matrices Aq,...,An correspond to the connected components of the graph.

To make a link between these notions, assume that A is an n x n subma-
trix of M4 that contains a cycle of length 2k. Then there are indices (s;)?*,
and (t;)?%, so that as, 4, = Gsyt, = Asyty = *** = Gy 1,, = 1. This exactly
means that the words z; = sfltl, Ty = sgltl, T3 = sgltg cen, Xop = sfltgk
belong to A. But then

$1$51$3$11 . -xzn,lxgnl = sfltl(sgltl)_l . (sfltgk)_l =e.

The definition of length implies that x; # x;.1. Hence, if A is a Lc-subset

of G then there is no cycle in any submatrix of My 4.
The following lemma is a part of Theorem 8.3 in [14].

LEMMA 6. Let G be a group and let A < G with |A| > 2. Then the
following are equivalent:

(i) A satisfies the Leinert condition.
(ii) No n x m submatriz A of M x4 contains a cycle.

Proof. We have just explained (i)=>(ii). Now suppose that A is not a
Le-set. Then we can find an even number of elements, say {z;}?%, € A with
T; # T;r1, such that

$1$51$3 .. .xgk_w;kl =e.

We can assume that k is the smallest integer with this property. Then, for
t1=1,...,k, let

8; = ($1x51) e (xgi,lxgil) and t; = (xlxgl) e (xgi,gmgil_Q)a:Qi,l.
First, if s; = s; with ¢ < j, then (inHiniQ)---(xgj,lx;jl) = e, which
contradicts the minimality of k. The same holds for the ¢;’s. Our hypothesis

is that s, = e.
We compute

: —1 ) —1 ~1
Vi=1,...,k, s; ti=z9, Vi=1l,....k=1, s; tiz1=2241, s, t1=m1.

Hence, we constructed sy, ..., sk, t1,...,t; such that the matrix indexed by
them has a cycle. This contradicts our hypothesis, therefore (ii) implies (i). =

REMARK 7. It was shown in Theorem 8.1 in [I4] that an n x m matrix
A does not contain any cycle if and only if any k x [ submatrix of A has at
most k£ + [ — 1 non-zero entries.
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4. The Herz—Schur norm calculation—the combinatorial me-
thod. Let Fy be the free group with a finite or infinite number N of gen-
erators and let E be the set of all these generators. We are interested in
finding the exact value of the completely bounded multiplier norm of the
characteristic function x g, or equivalently, the Herz—Schur multiplier norm
of xg. In this section, we use a combinatorial approach to deal with the two
extreme cases: when N is 2 or o0. For a subset A of a group G, we have

HXAHMch(G) = ||Mxal| =sup{|Mxa = K| | K a finite unitary matrix}
= lim(sup{||M x4 * K| | K a finite n x n unitary matrix}).
n

To prove that the completely bounded multiplier norms of x4 and xp co-
incide if |A| = |B|, it suffices to prove that M x4 and M xp have the same
submatrices. This is the core of the combinatorial argument.

We start with the case G = 9, the free group with two generators
g1 and go. Then E = {g1,g2}. We restrict our attention to a sequence of
submatrices A4,, = [as] € M,, of Mxg obtained by selecting the columns
and rows indexed respectively by

_ 1 Nk _
{(91192)k |k=0,...,n—1}, {(gllgg) 911 | k=0,...,n—1}.
These matrices are of the following form:

that is, A, =

1 ifs=tort=s+1, 1
Qgst = .
0 otherwise, S

nxn

Note that if A = {a1, as} satisfies the Leinert condition, then as aja, ! has
infinite order, A, is a submatrix of My 4.

LEMMA 8. Let A, be the n x n matriz defined above. Then
4

T 14, = 2.
Proof. We first show that lim,,_, ||A,| = 4/7. Note that

tr(A, = U tr|A
A = sup [Ay U] > sup 10Ol tridil
UU*=1 UU*=1 n n

where |A,| = (A*A,)"/2. Observe that A* A, is the tridiagonal matrix
1 1
1 2
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and its eigenvalues are given by

2k k
A =2+ 2cos T = 4 cos? T fork=1,...,n
2n +1 2n +1
Thus

i 2n+1
_ £ 4,)12) _ _ sin(F57)
tr|Ap| = tr((AF A Z\/ 22c0s< 1) 1+ :

Sm(4n+2)

Passing to the limit, we get

A 4
Tim |4, > lim Al _ 4

n—0 n 71'.

Next, we show that lim, , ||A,[ < 4/7. The idea of the proof is to
twiddle A,, by throwing in an extra 1 at the lower left corner. More precisely,
we will construct for each n a new matrix B,, = [bs] € M,, which is defined
through

(11 0 0 - 0]
01 1 o --- 0
1 ifs=tors=t+1, 0 1
bst=<1 s=nandt=1, that is, B,=
. 00 0
0 otherwise,
: 1
1 0 - 0
Let us observe that
0
Bn+1— An :
1
1 0 1

It is a very general fact on multipliers that if A is a submatrix of B then
the multiplier norm of A is smaller than the one of B.

In what follows, we will show that lim,_, || By|| = 4/7. We mention
that this calculation has also been done by Donsig and Davidson in [4],
using the result [13, Theorem 2.6] of Mathias, but we include it here for the
sake of completeness. Let G = Z/nZ; then B,, = MX{OJ}. As G is abelian,
1Mo 5,1 = umuh s 50

IBnll = 2 |1+ ef2hm/m)
k: 0
i

- o

1
(Qn) n— o0 S|1+ez’27rt|dt: %

) 0

PN %’\ﬂ

)



HERZ-SCHUR MULTIPLIER NORM 263

And finally
) 4
Tim 4, = .
- T
This concludes the proof of the lemma. =
REMARK 9. Let A = {a;,a2} < G be a Le-set. Note that in the full
matrix representation of MX (4, 4.}, there are exactly two 1’s in each column
and each row.

LEMMA 10. Let A = {a1,a2} < G be a Lc-set. If a matriz A € My,
is a submatriz of M X4, ay) and is chainable then |m —n| <1, and up to
row and column operations, A can be recovered from An+1 by taking the first
n rows and m columns or the last n rows and m columns. Hence || A,| <

AN < [l Ana]l-

Proof. Note that by Lemmal6] A has no cycle. Moreover, by the previous
remark, there are also at most two 1’s in each column and row.

Consider the longest chain in A, say a;, j, = Giyjo = =+ = Q4 j, With
(it, i) # (f141, J141) but i = g1 or Ji = jr41.
Up to permutations, we can assume that j; = 43 = 1, and also that

79 = i1. Up to a row permutation, we have jo = 2. As there are at most
two 1’s in each row and column, we cannot have i3 = 1, so say i3 = 2 and
then j3 = 2. Then, as there are two 1’s in the second column, we must
have j4 # 2, so i4 = 2. Next, as there is no cycle we must have iy # 1, so
say 14 = 3. Continuing this procedure, we find that the chain has the same
shape as the one from the first [ rows and p columns of the matrix A;q
with |[p — | < 1 and it goes from (1,1) to (I,p). We then look at the other
possible (7, 7) with a; ; = 1. First, i« <1 and j > p is impossible as it would
contradict either the maximality of the chain (if ¢ = [) or the fact that there
are at most two 1’s in each row. Secondly, it cannot be (i,1) or (i,p) with
i > [ as the chain starts at (1,1) and we choose it maximal. Finally, because
of the number of 1’s or the cycle condition, we must have ¢ > [ and j > p,
which is impossible because A is chainable. Hence, we have exhausted all
the 1’s in A, and by chainability, we must have m = p and n = [ and we are
done. m

We are now ready to prove a particular case of the main result of this
paper:

THEOREM 11. Assume A = {a1,a2} € G satisfies the Leinert condition.
Then A
HX{a1,a2}HMch(G) = HMX{Ql,gz}HMch(B) T
Proof. Let A be a submatrix of Mx(q, q,}- Then by Property 5, A is, up
to permutations, a block diagonal matrix whose blocks are chainable. Since
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each of these blocks must be of the form in Lemma this gives us 4/7
as the upper bound (recall that the Schur norm of a block diagonal matrix
is the supremum of the Schur norm of the blocks). To show the reverse
inequality, it is enough to note that each A,,, whose norm goes to 4/7, is a
submatrix of Mx(q; a,}- ®

In what follows, we present the combinatorial method for finding the
Herz—Schur norm of yg, where E is the infinite set of all the generators
of Fop.

LEMMA 12. Let A © G be an infinite set which satisfies the Leinert
condition. Then the following are equivalent:

(i) A is an n x m submatriz of Mx,.
(ii) A contains no cycle.

Proof. Note that (i)=(ii) is exactly (i)=>(ii) in Lemma [6] To prove
(ii)=(i), we let A = {A;,A2,...} be an infinite set and consider a ma-
trix A = [aij]?,}zl with no cycle. We want to construct {si,...,s,} and
{t1,...,tm} with s;,t; € G for any 4,5 € {1,...,n} x {1,...,m} such that

o {1 if 57t € A,
a;j =
0 otherwise.

STEP 1. Suppose that A is chainable. To find the index sets {s1,..., sy}
and {t1,...,ty}, we will first transform A into a more manageable matrix,
by permuting rows and columns if necessary. In what follows, we will give a
block form of A. To fix notation, we decompose A into block matrices as A =
[ Xy, ], where (4, j) denotes the position of the block X7, in A and (y;, ;)
represents its size (if one of them is 0, this means that there is no block).
Also, we will use the notation C for a matrix that has exactly one 1 in each of
its columns and 0’s elsewhere, R for the matrix that has exactly one 1 in each
of its rows and 0’s elsewhere, and X for a general matrix with 0’s and 1’s.

For simplicity, we assume n > m, otherwise we can add rows to A.

As a first step, we use permutations to put a 1 at the (1,1) position. We
let 1 = y1 = 1 and we obtain

1,2
A~ 1 thmfxl
X2,1 X2,2
n—yi,r1 n—yi,m—=x1

Here, ~ stands for equality up to a permutation of rows and columns.

We start by separating the columns of X;fm_zl containing one 1 from
those with 0’s and put them on the left hand side. Let us suppose that there
are k columns, each with exactly one 1.

Similarly, for Xflfyl 1> We separate the rows containing a 1 and we put

them in the top part of the matrix. Let us suppose that there are [ rows,
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each with exactly one 1. We obtain

1,2
1 Cyhk @)
2.1 2,2 2.3
(4) A~ Rl,xl Xl,k Xl,m—zl—k
3,2 3,3
@ Xn—yl—l,k Xn—yl—l,m—xl—l

where O represents the zero matrix of the appropriate size.

Observe now that k& and [ cannot be 0 simultaneously. Suppose that
k =1=0. Then
1 O1m-—1

On-1,1 *

A~

which is not chainable (unless m = n = 1). Hence we can assume that
k > 0 (by permuting rows and columns in all arguments if necessary). We
set zo = k and yo = [. The next step is to notice that Xﬁ}f in l) must
be the zero matrix (or, if zoys = 0, the matrix will not appear in the
decomposition), otherwise we again have a cycle. Hence,

1 Cyies 0
(5> A~ R22lél7$1 @ X273

Y2,m—a1—x2

0 X3,2 X3,3

n—yi1—y2,r2 n—y1—y2,m—d—zx2

We continue the procedure by looking at X 23, and since we are not allowing
cycles in the matrix, we see that each column has at most one 1. By the
same argument, X>2 has at most one 1 in each row. The blocks X?3 and
X32 cannot both be zero. We keep decomposing A into blocks of type C
and R, until we exhaust all the 1’s. Eventually,

1 Cyh, O o o - o ]
Ry O Cghy O O O
O  Rywm O Cgu O 0
6) A~] O O 0
. O
O Cyvh,
i Ryl 0|

where x;,y; > 0, x; +y; > 0, Zle y; = n and Zle T = m.
Next, we will select columns ¢; and rows s; from My 4 to get A. For con-

venience, we use double indices to denote the elements of A, more precisely
AZ{)\Z‘J |i>1, jeZ}.
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We begin with the 1 in the top left corner of A = (a; ;), which is indexed
by t1 = e and s1 = )\fi. Obviously XA(sjltj) = a;; for i <y and j < 2.

Let us assume that t1, -y toy4ega, and S1,..., 8y, 4.4y, have been
constructed. Then, for the next x;,1 columns, we choose tg, 4 ..4q+k =
Sy -ty +apN4+1,k for k= 1,..., 2,41 where oy is the unique index such
that the block (I, + 1) of A has a 1 at position (ag, k). For the next ;41
rows, set Sy, 1.1y 4k = tw1+~~~+xz_1+ﬂk)‘z;11,—k for k=1,...,y;11 where 3 is
such that the block (I + 1,1) of A has a 1 at position (k, Of).

By construction, si_ltj € Aif a;; = 1. Conversely, si_ltj is a product
of the form Ao, Ay, -+ Aagy, - According to the Leinert condition, this can
reduce to some A, if and only if we have trivial simplifications (i.e. aq = p
and agy = Qy+1, O (g1 = p and agy = agy—1). One can easily check that
this occurs only when a; ; = 1. In order to illustrate this technique, we give
an example (where the index of each 1 stands for the number of the new
generator used):

[ 11, 13 1y ]
15 Is
Lg 17

1o
| Lio i

The indexing sets are, for the columns:
{es AT A2, AT Aa, AT A, A5 M7, A s,
and for the rows:
DIEATE A AT AT AT AN )
STEP 2. If A is not chainable, then by Property [5]there exist permutation
matrices P and () such that

Ay
O

where Ay, ..., Ay are chainable matrices and O is a rectangular zero matrix.

We apply the argument from Step 1 to the chainable matrices A1,..., Ay
with indices coming from different disjoint subsets of A and choose other
different elements from A for row and columns of O. The conclusion then
follows. =

To sum up, when A < G is an infinite Le-set, then M, , and M, , have
the same submatrices. The formula implies the following:
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COROLLARY 13. If A c G is infinite and satisfies the Leinert condition,
then

Ixalla,a) = Ixelag,am)-

Thus to estimate the multiplier norm of the characteristic function of
an infinite Lc-set, one only needs to compute it for one concrete example.
Actually, £ = {gi—rl, ...,gxt ...} is such an example and to calculate its
norm, we may rely on Theorem 4.2 of [I0)], which is Theorem 1 above. Note
that the radial multiplier xg corresponds to the projection onto words of

length one. We obtain H = [? (1)] and the following corollary:

COROLLARY 14. Let A c G be an infinite Lc-set. Then

Ixallar,a) = 2

For completeness, we will explain how to obtain this value directly. We
first show that the norm is at most 2, by using the pattern of Lemmal[l2] Note
that a similar argument can be found in [9]. Then we show this inequality
is in fact an equality.

Proof. Let A be any submatrix of Mx4. Since the Schur norm of a
matrix with blocks on the diagonal is the maximum of the Schur norms of
the blocks, we can focus on the case where A is chainable. By the proof of
Lemma A is of the form @ We can write A = X +Y, where X contains
only the blocks of A of type R and Y those of type C and a 1 at the top left
corner. Since both matrices Y and X have at most one 1 in each column
and at most one 1 in each row respectively, we see that the Schur norm of
each matrix is less than 1. Hence,

Ixallar,a) <2

To prove equality, we use duality and the corresponding multiplier on
the group algebra. Since we can choose a particular Lc-set, we take A =
(g ]i> 1} € Fe.

Let O,, be the Cuntz algebra with n generators, which is the universal C*-
algebra generated by isometries (u;)!_; satisfying the relation » " ; u;uf =1.

Fix n > 1, and consider S € O,, ® VN(Fy,) given by

1 n
- = R Ma:).
NG Zzll u; @ A\(gi)
This is an isometry as S;.S,, = 1, but it is not unitary since Id ® 7(5,S5) =
(1/n)1 (with 7 the trace on VN(Fy,)). Let U,, = S,,(1-5,5%)+(1—5,5%)S*.
It is easily checked that U, is self-adjoint and U2 is a projection. Hence

Sn

1Unllo,@vNEs) = 1.
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Next, we compute Id ® xg(U,,). First,

1 < _
SpSpSy = 3 Z uiujuy @ N9igigy Y
i,5,k=1

1 < 1 & ~
PETE) Z 1@ Agi) + mEYES 2 wiujuy @ Ngigigr ),
i=1 i,5,k=1
o
which gives
Id ® xg(SnSnSy) =

n3/2 «

1 n
=1

Hence [Id ® xg(SnSn5)|| < 1/4/n and similarly for its adjoint. Of course,
Id ® xe(Sn + S5) = Sp + 5. To conclude, recall that for any non-unitary
isometry, ||Sy, + S| = 2, which implies

2 2
I n)l £ n . _7:2_7a
4@ x5Vl |5, + 57l - —= = 2= —=

and we are done. =m

Actually, using all the Si’s one can easily derive the lower bound in
Theorem (1] (for n = o).

We briefly indicate the shape of matrices A on which the Schur multiplier
norm is almost achieved. For d, [ > 0, let Cyy = (¢(iy,....i;_1),(j1,....)) be the
d'"~! xd' matrix with Clityerit—1),(G1it) = 5(i17---,i1—1)7(j1,---7j1—1) and Rqy = C:Z,l'
With the notation @, one can choose k = d, C»*! = Ca,i, RitLi = Ry
and let d — o0 (one does not need the 1 at the (1,1) position). In terms of
Fock spaces, the description of the shift Sy is not as nice as the one above
(unless we go to the completely bounded side).

One can extend this combinatorial method to finite Lc-sets, but the
statements and their proofs become really heavy.

5. The Herz—Schur norm calculation—the algebraic method.
We start with the following well known properties of the Herz—Schur multi-
plier norm:

PropoOSITION 15. Let G be a discrete group.

(i) If E< G and x € G, then |xg|m,ac) = IXzElM,AG)-

(ii) If H is a subgroup of G and E < H, then |xelm,ac) =
IxEl 1.4

Proof. For z in G let 7, be translation by = on A(G); it is a complete
isometry. Then (i) follows from 7, XET,-1 = XzE-
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It is well known (see [5]) that for any subgroup H of G, the extension
map
¢(g) ifgeH,
v A(H) — A(G),  u(9)(9) = .
0 otherwise,
is a complete embedding. Moreover, the restriction map p is a left inverse
for + and is a complete contraction. Then X% = pxgb, which gives the
estimates. m

Now, let Fy be the free group on two generators g; and go. Then it is
trivial to see that the set {e, g, 'go} satisfies the Leinert condition. (In fact,
it can be verified that any set of cardinality 2 satisfies the Leinert condition
if g7 ! g5 has infinite order.) Let Z be the group generated by g; !gs. We have

HX{gl,gg}HMch(IFg) = HXgl{e,gl—ng}“Mch(ng) = HX{e,gl—ng}HMch(]Fz)

= IXge gt gy IMa@) = IXqe gm0 IB@)

= HX{&g;ng}HA(Z) = HX{e,g;ng}”Ll(z)
= HX{ZQEQ}HLl(T);
where )’Z{e’glqm}(z) =1+ z. Hence

27
; 4
0
HX{gl,gz}”Mch(lFQ) 5 §) |1+ e[ df = —.

A key ingredient in this section is the following characterization of the
Leinert condition:

PROPOSITION 16. Let G be a discrete group. Then A = G satisfies the

Leinert condition if and only if uA is free in G = Z, where u is a generator
of 7.

Proof. Let A = {aj,as,...} be a Lc-subset of G. We have to show that
ul = {uay,uay,...} is free. To this end, we analyze the form of a product

w = (uay )" (uai,)? - - - (ua;, )"

with ¢, = +1 and we assume that there is no trivial simplification, that is,
€k€k+1 7= —1 OF Gf # ipq1.

We describe the resulting word w in letters a;’s and u after all possi-
ble cancellations of u’s. We will write E (resp. E) for a word of the form
-1 - . -1 -1
Wiy Gy By (resp. a;, @iy, "'ail+2(p_1)aiz+2p71)' Note that
our assumption is exactly that such elements in G are different from the
identity. Similarly for odd products, we write O (resp. O) for a word of the
-1 -1 -1
form a;,a; | -+ @iy, ) (vesp. a; " ai., ---ail+2(p_1)). Hence (uO)* means a
word of the form uO; ---uOy. If € = 1, after all possible cancellations of
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u’s, w will have one of the following forms:
P
wy = H ((uO)kS(uEu_l)(éu_l)lSE) with p > 1,

s=1

Wy = (p ((uO)ks (uEu—l)(éu—l)lsE)>(uO)kp with p> 1, ky > 1,

ws = ([T ((wO)* (uBu=")(Ou)" E) ) (uO)" (wBu)(Ou")
s=1 with p > 1, kp, 1, > 0.

This can be checked by induction on n. When n = 1, w = ua;, so it is of the
form wo. Then we have the following rules for multiplication on the right:

-1
wiua;, ,, — we, wi(ua;,,,) " — w3,  waua;, , — wa,
1 .
wa(ua;, )" — ws, wiua;,,, — wy ifl, =0,
. -1
waua;, ., —wy ifl, >0,  ws(ua;,,,)  — ws.

Now assume that w is the identity. Then, as all u must cancel, > ¢; = 0, in
particular n is even. As xy = 1 implies yx = 1, conjugating w if necessary,
we may assume that e; = 1. Taking into account that some words of the
form O may cancel, but those of the form E are different from e, we see from
the above description that w has block length greater than 3. Consequently,
w # e and uA is free.

To prove the other implication, we note that uA being free implies that
u/ satisfies the Leinert condition, which further implies that A = u~!(uA)
also does. =

Let G be any discrete group and A ¢ H a Le-subset, say A = {a1, a2, ...}.
Let I' = G % 7Z with u a generator of Z. By the above proposition, the
set {uai,uasg, ...} is the set of generators of a copy of the free group F 4
in I'. As usual, we denote by g; the generators of the free group. Now, by
Proposition [I5]

IX¢ar....apq | Mo aG) = IXtar,apa Mo Ay = [Xquan,..uap 1 v A0

= HX{ual,...,ua‘A‘}HMCbA(FM‘) = HX{gl,...,g‘A‘}HMch(FM‘)‘
This leads us to the following theorem:
THEOREM 17. Let G be a discrete group and A be a Lc-subset. Then

Hence, the norm |x4| s, 4(c) depends only on |A]. To compute it, we

only need to do so on a particular example. But the set of generators of

? 7o is an Lc-set of cardinality n; according to Theorem [2| these values
can be evaluated using the following:
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COROLLARY 18. Let F,, be the free group with n generators and E be a
subset of all its generators. Then

n—2 T -1
I— H
n—1 n—1

IxElMm4aE,) =

)

1
where H = [(1) é]

6. Remarks on the multiplier norm. In this section we will focus
on the multiplier norm. The algebraic method also works in this case:

THEOREM 19. Let G be a discrete group and A be a subset satisfying the
Leinert condition. Then

HXAHMA(G) = HX{gl,...,gw}HMA(FW)-

It is obvious that HX{gl,---,gw}HMA(FM\) = Hx{gh---,gm\}HMch(Fw) < 2. Un-
like in the completely bounded case, we have no nice formula in this setting.
We can however prove the following estimate:

THEOREM 20. Let E be an infinite set of generators of F. Then
> < sl <2
37 = XE || MA(F) :

Consequently, the bounded and completely bounded norms of xg on A(F)
are different.

For convenience, we turn to the dual notion and look at the multiplier
norm on VN(F).

Let H be the subspace of VN(F) generated by the A(g;)’s. It has been
shown in [I] that on H, the Ls and Lo, norms are equivalent. More precisely,
for aq,...,a, € C,

<Z; |ai|2> 1/2 < H ;ai)\(gi) VN GE)

i+ SYVEFTRP -0 120} 52( i)
i=1 i=1

and 2 is the best possible constant. Moreover, this formula holds for any
family satisfying the Leinert condition.

LEMMA 21. We have

Ixelyvae < suwp Jzfi]z]o.
aeH, z]2=1

Proof. This is a very general fact as x g is an orthogonal projection on Ls.
Take y € VN(FF); then y = Az + z with « in H, |z|2 = 1 and 2z orthogonal
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to z and |xEg(Y)|w = |A| - |%] . But thanks to Hélder’s inequality we have

Al =17 (yz™)] < l1lly]o- =

Proof of the upper bound in Theorem [20. It suffices to prove that
SUPged, |z)o—1 |Z[1l1z]lc < 2. Assume that this is not true. Let £ > 0 and
x € H with |z|2 = 1 so that |z|i|z|x > 2—¢. Using the Akemann-Ostrand
estimate, we have 27(|z|) > 2 — ¢ and |z|n > 2 — € as |z|; < |z[2 = 1.
Hence,

2] = 1[5 =
On the one hand,
[, < 1ol |, + | bel(hel = D, < 1+ Jelkof 121 = 1], < 1+ 2.
But with z = > | ai\(gi),

2? = 2*x (Z|az|) £ Y ma )

i#j=1

T(x*z) —27(Jz]) + 1 < e.

Hence

n 2 n
o2 = (Dlail) + 3 faullal? = 2(2 i) = 3 foul*
i=1 i=1

i#j=1
Putting everything together, as I | |ay|? = 1, with § = (1 + 24/2)? — 1 we
get "
max |o;|? > Z lag|* =1 -4
‘ i=1
For simplicity, we can assume that |a;|? > 1 — 6. Taking ¢ = 1/2 in the
Akemann-Ostrand formula and using /1/4 + u2 — 1/2 < u?, we have

/1 1 /1 3
2—e< |z <1+ 1t |y |2 — 5 +2|a2|2 = —Jag]® + 1 +|a1|2+§.

=2

As ¢ — 0, |a1] goes to 1, and we obtain 3/2 < 4/5/2 which is false. This
completes the proof of the upper bound. =

Proof of the lower bound in Theorem[20. First, we know that we can re-
place E by any infinite Lc-set. We choose E to be the set of all the generators
and their inverses. Fix an integer n > 0 and let

-1
s .
\ m 2 )
This is a self-adjoint element which generates a commutative von Neumann
algebra M, in VN(F). It is easy to see that s, is the only element in
VN(F,,) " H that is invariant under the automorphisms of VN(F,,) n H corre-
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sponding to permutations of the generators and their inverses (i.e. g; — g, b,
Consequently, for any element x € M,,, we have xg(x) € Cs,,. Recall that on
Lo, xg is an orthogonal projection. Restricting to M,,, xg is the rank one
operator p given by p(x) = 7(25n).5n. S0 Xzl = [5al1[5nleo-

We note that the density of s,, with respect to the Lebesgue measure can
be computed explicitly using the R-transform (see [16]). However, our proof
does not make use of this formula. Next, by the non-commutative central
limit theorem, s,, tends to a semicircle random variable s in moments and
in distribution. Hence,

2
1 8
suls = o= § [tVA—t2dt = .
T, 3T

Also [sy |0 = 2 = |s]lec by [1]. Finally

16

Ixelara) = Islilsle = 5 »

It has been shown in [I] that sup,e~vn,), 2)2=1 %] is achieved for
T = sp. It is likely that this is also true for sup,e g vn(,), |2).=1 12 [1l1Z] 0,
but we do not know how to prove it. For a general x = >\ | a;A(gi), its
1-norm coincides with that of Z?zl «;e;, where g; are free Bernoulli variables.
Unfortunately, the R-transform of this type of random variable is hard to
invert (except when all a;’s are equal), and it is difficult to compute its
1-norm.
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