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AN OVERDETERMINED ELLIPTIC PROBLEM IN A DOMAIN
WITH COUNTABLY RECTIFIABLE BOUNDARY

BY

PRZEMYSEAW GORKA (Warszawa)

Abstract. We examine an elliptic equation in a domain {2 whose boundary 9f2 is
countably (m—1)-rectifiable. We also assume that 942 satisfies a geometrical condition. We
are interested in an overdetermined boundary value problem (examined by Serrin [Arch.
Ration. Mech. Anal. 43 (1971)] for classical solutions on domains with smooth boundary).
We show that existence of a solution of this problem implies that {2 is an m-dimensional
Euclidean ball.

1. Introduction. We shall study the following boundary value problem:
Au= —1 in £2,

u=20 on 0f2,
% = —c®  ondn,
ov

where r = \/JU% +--- 422, ¢, B are constants and = 0 or 1. Our goal is to
show that if {2 is an open bounded subset of R and there exists u € ﬁ2(Q)
which satisfies the above system then {2 must be a Euclidean ball. This prob-
lem has been studied by many authors (Serrin, Prajapat, Amdeberhan and
others). Our contribution is a weakening of the assumptions on the boundary
042 as well as on the solution.

We now introduce our hypothesis on 0f2. We assume that 0f2 is count-
ably (m — 1)-rectifiable, namely 0f2 is a union of countably many Lipschitz
manifolds plus an exceptional set of H™ ! measure zero. In addition, we as-
sume that the measure H~! restricted to 0f2 has a special behavior, namely
H™ 1002 N B(x,r)) ~rm L.

The definition of the Sobolev spaces H 2(£2) will be recalled later. Here we
explain the meaning of the normal derivative Qu/0v. The expression du/0v
may be understood as the trace on Lipschitz manifolds; it is well defined
H™~1 almost everywhere (this is a corollary of Rademacher’s theorem, see

23], [5])-
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Let us recall the history of this problem. The first fundamental contribu-
tion is due to Serrin [15]. He obtained the above result for § = 0 assuming
that u € C?(£2) and 042 is smooth (see [15, Theorem 1]). In the same volume
of the Archive for Rational Mechanics and Analysis, Weinberger published
a short proof of Serrin’s result (see [22]). In fact, Serrin showed this re-
sult for more general elliptic equations. In 1998, the assumption on 0f2 was
weakened by Prajapat (see [14]). He assumed that 92 is Lipschitz with pos-
sibly one corner or cusp. Later, Amdeberhan [2] considered 5 = 1, {2 with
smooth boundary and u € C?({2). Kawohl and others (see [6]) examined
overdetermined boundary value problems for degenerate elliptic equations
on star-shaped or simply connected (m = 2) domains under the assump-
tion that 042 is of class C*®. In particular, this includes equations with the
p-Laplacian.

Our method of proof relies on the integration by parts formula on do-
mains with geometrically admissible boundaries for functions from Sobolev
spaces. The definition of geometrically admissible set will be provided below.
Roughly speaking, we compute the trace using a result of Triebel (see 21,
Corollary 9.8]). Then we show the main theorem. Our method of proof is
similar to that used in [2] (case § = 1) and [22] (case 8 = 0) for functions
from Sobolev spaces. It is worth noticing that Amdeberhan [2] and Wein-
berger [22]| applied elementary arguments. Serrin used the so-called “moving
planes method” and Aleksandrov’s theorem (see [1]): every embedded surface
in R™ with constant mean curvature must be a sphere.

Before going to the next section we discuss physical motivations for the
problem. Following [15] we present a few examples. Let us consider a vis-
cous incompressible fluid moving in straight parallel streamlines through a
straight pipe of given cross sectional form (2. If we fix rectangular coordi-
nates in space with the z-axis directed along the pipe, it is well known that
the flow velocity w is then a function of (z,y) alone satisfying the Poisson
differential equation (for m = 2)

Au=—-A in (2,

where A is a constant related to the viscosity and density of the fluid and to
the rate of change of pressure per unit length along the pipe. Supplementary
to the differential equation one has the adherence condition

v=0 on 0.

Finally, the tangential stress per unit area on the pipe wall is given by the
quantity vOu/0On, where v is the viscosity. Our result states that the tangen-
tial stress on the pipe wall is the same at all points of the wall if and only if
the pipe has circular cross section.

Notice that our result can be applied to weaken the assumptions in Propo-
sition 5.4 of [7]. Indeed, the authors of that paper used Serrin’s result under
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the assumption that the boundary is smooth. But the assumption that the
boundary is not smooth is more natural from the crystalline geometry point
of view considered there.

Exactly the same differential equation and boundary condition arise in
the linear theory of torsion of a solid straight bar of cross section {2 (see [17]).
Our theorem states that, when a solid straight bar is subject to torsion, the
magnitude of the resulting traction at the surface of the bar is independent
of the position if and only if the bar has circular cross section. In our case, i.e.
for a countably rectifiable set, we can interpret this result in the following
manner. In the class of bars whose boundaries are not regular (countably
rectifiable) there exists exactly one bar such that the traction at the surface
of the bar is independent of the position.

Before we present the main result we recall known definitions and make
some comments. We use the standard notation H™ for the m-dimensional
Hausdorff measure. We recall (see [3]) that a Borel set S C R is countably
m-rectifiable if there is a sequence of Lipschitz maps

fi B CR™ - R)
such that
o0
S=JfE)uB
=1

and H™(B) = 0.

Fig. 1

Figure 1 represents an example of a countably 1-rectifiable set (some-
times called the Warsaw circle). Notice that from the McShane lemma (any

Lipschitz map on a closed subset can be extended to a Lipschitz map on the
whole space) we can take F; = R™ (see [4], [10], [11]).

REMARK 1. It is well known that the above definition is equivalent to
the definition where we replace Lipschitz maps f; by maps of class C' (see
[5], [16]).

However, it turns out that the class of countably rectifiable sets is too
broad. We will consider sets with an additional property. Namely we shall call

a countably (m — 1)-rectifiable set S C R! (m — 1)-geometrically admissible
if there exists C' > 0 such that for any x € S and r € (0,1/2),

C Mt < H™ Y B(z,r)NS) < Cr™ Y,



10 P. GORKA

where B(z, ) is the m-dimensional ball. This condition will be denoted by
H™ Y B(z,r)NS) ~ rm1L,

REMARK 2. One can show that if S C R is bounded and 95 is (m —1)-
geometrically admissible, then H™~1(99) < co.

REMARK 3. It is easy to notice that not every countably rectifiable set
is geometrically admissible. A good example is the Warsaw circle (see Fig-
ure 1). Another example shown in Figure 3. It is taken from Nikodym’s
paper [13]. The Warsaw circle and Nikodym’s example are similar in some
sense. Nice examples can be found in the book of Maz'ya [12, Chapter 1,
Example 2|. From this monograph we have taken an example of a set which
is geometrically admissible (see Figure 2).

y y

Fig. 2 Fig. 3

Let us recall the definition of Sobolev spaces H*(£2) (see [9]). For every
positive s we denote by fIs(Q) the space of all v defined in 2 such that
u € H*(R™) where u is the continuation of u by zero outside 2. We define
a Hilbert norm on H*(£2) by

et e g2y = Nl ).

2. The main result. First we formulate and prove a version of the
integration by parts formula. The main point is to weaken the assump-
tions on Of2. This result is our basic tool. The difficulty is in the proof
of the integration by parts formula. The geometric admissibility condition
(H™ Y(B(z,7) N S) ~ r™71) is essential in order to compute the trace and
use the result from [21].

THEOREM 1. Suppose u € H2(2) and v € H'(£2), where 2 is a bounded
open subset of R™. Assume that 02 is (m — 1)-geometrically admissible.

Then

[ vAuwdH™(2) = - | VuvvdH™(z) + | v ? dH™ ().
(9} (9} a1 v
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Proof. First, note that if u € C°°(£2) N H2(£2) and v € C®(2) N H(12),
then the formula holds. Indeed, the exceptional set has measure zero and we
are dealing with smooth maps (see [23] and [5]).

Next, we prove the following lemma.

LEMMA 1. If u € H2(2) and v € H'(R), then there exists a constant ¢
such that

of?

ou

Chew dH™ (x) < c||v

||ﬁ1(g) ”qu[2(())‘

Proof. We apply a result of Triebel [21, Corollary 9.8]. In order to explain
it, we define a Radon measure v on R™ by

v(A) =H" o0 N A).
It is easy to see that supp v = 0f2, and indeed from Remark 2 we infer that

v is a Radon measure.

Now we have to check that the assumptions of Corollary 9.8 from [21] are
satisfied. Indeed, by taking s = 1,p = 2,7 = 2,d = m — 1 in [21, Corollary
9.8], it is easy to check that

v(B(z,r) ~ 1% v(2Q,) <2V s —m/p > —d/r,

where (),; is the cube in R™ with sides parallel to the axes, centered at 277,
and with side length 27%. Here [ € Z™ and v € Ny.

Triebel’s result already mentioned (|21, Corollary 9.8]) says that if the
above conditions are satisfied then there exists a trace operator

Troo : F, ,(R™) — L"(092).
Recall that W*P(R™) = FJ,(R™), where FJ, are the Lizorkin-Triebel
spaces. Hence, we obtain a sequence of inequalities
S 8u

v dH™ 1 (z) < ool gy, @m IVl 7y, @em)
20

< cl|vll g ey [Vl ey < elloll g lull 2 ()
where we applied the Schwarz inequality. From this the lemma follows. =

Now, we can return to the proof of the theorem. Recall from [9] that

HY(9)

— H2(2) - — ~
C>(0) N H2(0) = H%(2), C>=(Q)NHY(N) = H'Y(0).

Take any u € H2(2) and v € IA-jl(Q) Next, fix ¢ > 0 and choose v, €
C>®(2)N HY(2) and u. € C°°(2) N H%(£2) such that

|ve — ”Hﬁl(g) <eg, l|ue — Upr(Q) <e.
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These functions satisfy
Ou,
ov

1) (veducdH™(@) = — | Vue Voo dH™(2) + | .
L9} (0] a1

dH™ ().

Applying the Schwarz inequality and the above lemma one can show the
following inequalities:

‘ S ve Aue dH™ (x) — S vAudH™(z)| < Me,

0 2

\ | VuVo. dH™ (@) - | VuVodH™ (@)] < Me,

1% 1%

‘ S Ve Oue dH™ Y (z) — S

v
o2 0 o012

Ju
U@I/

dH™ N(z)| < cMe.

Finally, we can let ¢ — 0 under the integrals in (1) to obtain

0
S vAudH™(z) = — S VuVvdH™(z) + S v 8_u dH™ 1 (z).
19 0 oo
This ends the proof of the theorem. m

REMARK 4. The conclusion of the above theorem is true if we assume
that v € H'(2) and u € E(A, L*($2)), where E(A, L*(2)) = {u € HY(0) :
Au € L?(R™)}. This follows from the fact that 0%u/0z;0x), = —R;RpAu
(see [18], [19]). But in the next theorem we need H? regularity in order to
apply the maximum principle.

Now, we can formulate the main result of this paper. We may view the
theorem below as a generalization of Prajapat’s result [14] for the overdeter-
mined problem for Lipschitz domains with cusps. Indeed, countably rectifi-
able sets have countably many cusps.

THEOREM 2. Suppose that {2 is a bounded open subset of R™ such that
992 is (m — 1)-geometrically admissible. If there exists a solution u € H?(2)
of the problem

Au= —1 in {2

u=20 on 0f2
0
au_ er® on of2,
v
where r = x% + -+ a2 andc, B are constants and 3 =0 or 1, then (2 is

an m-dimensional Euclidean ball.

Proof. Our method of proof is similar to [2] (case § = 1) and [22]| (case
B = 0). We refer the reader to those papers for details.
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It is easy to see that the assumptions of Theorem 2 imply that ([2, Lem-
ma 1] for § =1)

(2) S wdH™(z) = S r2 dH™ (),
02 9]
and also that ([22] for 5 = 0)
(3) (m+2) | udH™(x) = mH™(12),
Q

where we applied Theorem 1.
It is not hard to see that the expressions

ou\? 9 9
Em —cr for g =1,

ou\? 2
( —) +—u for =0
Ov m

are constants on 0f2, which is a consequence of the boundary conditions.
Next from the weak maximum principle (see [8, notes in Chapter 8] or |20,

Appendix B]) and identity (2) (respectively (3)), we deduce that these ex-
pressions are constants in (2. From this we obtain

0%u 1 5
Or;0x;  m 7
So the solution of our equation takes the form
T2
u=c— —.
2m

Since u vanishes on 0f2 and has radial symmetry we conclude that (2 is a
ball. =

Finally, let us state some open questions. Is it possible to weaken further
the assumptions on 327 Is geometric admissibility really necessary?

Acknowledgements. I would like to thank Professor Piotr Rybka for
his comments and suggestions. I also thank Professor Pawet Strzelecki and
Professor Dariusz Wrzosek for reading a preliminary version of this manu-
script. I thank my wife Malgosia for making the figures and the referee for his
suggestions. The author was partially supported by KBN grant 1 PO3A 37 28.

REFERENCES

[1] A. D. Alexandrov, A characteristic property of the sphere, Ann. Mat. Pura Appl.
56 (1962), 303-354.

[2] T. Amdeberhan, Two symmetry problems in potential theory, Electron. J. Differen-
tial Equations 2001, no. 43, 5 pp.



14

P. GORKA

(3]
[4]

[5]
[6]

[7]
(8]

(9]
[10]

[11]

[12]
[13]

[14]
[15]
[16]

[17]
[18]

[19]
[20]

[21]
[22]

[23]

G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Math.
Surveys Monogr. 38, Amer. Math. Soc., Providence, RI, 1993.

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-
Holland, Amsterdam, 1976.

H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.

1. Fragala, F. Gazzola and B. Kawohl, Overdetermined problems with possibly de-
generate ellipticity, a geometric approach, forthcoming.

Y. Giga, M. Paolini and P. Rybka, On the motion by singular interfacial energy,
Japan J. Indust. Appl. Math. 18 (2001), 231-248.

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order, Springer, Berlin, 2001.

P. Grisvard, Singularities in Boundary Value Problems, Masson, Paris, 1992.

W. B. Johnson, J. Lindenstrauss and G. Schechtman, Eztensions of Lipschitz maps
into Banach spaces, Israel J. Math. 54 (1986), 129-138.

U. Lang, Extendability of large-scale Lipschitz maps, Trans. Amer. Math. Soc. 351
(1999), 3975-3988.

V. M. Maz’ya, Sobolev Spaces, Springer, Berlin, 1985.

O. Nikodym, Sur une classe de fonctions considerées dans le probléme de Dirichlet,
Fund. Math. 21 (1933), 129-150.

J. Prajapat, Serrin’s result for domains with corner or cusp, Duke Math. J. 91
(1998), 29-31.

J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43
(1971), 304-318.

L. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. 3,
Austral. Nat. Univ., Canberra, 1983.

I. S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Prince-
ton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970.

—, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory In-
tegrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, NJ, 1993.

M. Struwe, Variational Methods—Applications to Nonlinear Partial Differential
Equations and Hamiltonian Systems, Springer, Berlin, 1990.

H. Triebel, The Structure of Functions, Monogr. Math. 97, Birkhauser, 2001.

H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Ration. Mech.
Anal. 43 (1971), 319-320.

W. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer,
Berlin, 1989.

Department of Mathematics and Information Sciences
Warsaw University of Technology

PI. Politechniki 1

00-661 Warszawa, Poland

E-mail: pgorka@mini.pw.edu.pl

Received 25 October 2005;
revised 27 January 2006 (4684)



