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AN OVERDETERMINED ELLIPTIC PROBLEM IN A DOMAINWITH COUNTABLY RECTIFIABLE BOUNDARYBYPRZEMYS�AW GÓRKA (Warszawa)Abstra
t. We examine an ellipti
 equation in a domain Ω whose boundary ∂Ω is
ountably (m−1)-re
ti�able. We also assume that ∂Ω satis�es a geometri
al 
ondition. Weare interested in an overdetermined boundary value problem (examined by Serrin [Ar
h.Ration. Me
h. Anal. 43 (1971)℄ for 
lassi
al solutions on domains with smooth boundary).We show that existen
e of a solution of this problem implies that Ω is an m-dimensionalEu
lidean ball.1. Introdu
tion. We shall study the following boundary value problem:
∆u = − 1 in Ω,

u = 0 on ∂Ω,

∂u

∂ν
= − crβ on ∂Ω,where r =

√
x2

1 + · · · + x2
m, c, β are 
onstants and β = 0 or 1. Our goal is toshow that if Ω is an open bounded subset of R

m and there exists u ∈ H̃2(Ω)whi
h satis�es the above system then Ω must be a Eu
lidean ball. This prob-lem has been studied by many authors (Serrin, Prajapat, Amdeberhan andothers). Our 
ontribution is a weakening of the assumptions on the boundary
∂Ω as well as on the solution.We now introdu
e our hypothesis on ∂Ω. We assume that ∂Ω is 
ount-ably (m − 1)-re
ti�able, namely ∂Ω is a union of 
ountably many Lips
hitzmanifolds plus an ex
eptional set of Hm−1 measure zero. In addition, we as-sume that the measureHm−1 restri
ted to ∂Ω has a spe
ial behavior, namely
Hm−1(∂Ω ∩ B(x, r)) ∼ rm−1.The de�nition of the Sobolev spa
es H̃2(Ω) will be re
alled later. Here weexplain the meaning of the normal derivative ∂u/∂ν. The expression ∂u/∂νmay be understood as the tra
e on Lips
hitz manifolds; it is well de�ned
Hm−1 almost everywhere (this is a 
orollary of Radema
her's theorem, see[23℄, [5℄).2000 Mathemati
s Subje
t Classi�
ation: 35N99, 35J05, 28A99.Key words and phrases: 
ountably re
ti�able sets, integration by parts, overdeterminedproblem, potential theory, geometri
 measure theory.[7℄
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Let us re
all the history of this problem. The �rst fundamental 
ontribu-tion is due to Serrin [15℄. He obtained the above result for β = 0 assumingthat u ∈ C2(Ω) and ∂Ω is smooth (see [15, Theorem 1℄). In the same volumeof the Ar
hive for Rational Me
hani
s and Analysis, Weinberger publisheda short proof of Serrin's result (see [22℄). In fa
t, Serrin showed this re-sult for more general ellipti
 equations. In 1998, the assumption on ∂Ω wasweakened by Prajapat (see [14℄). He assumed that ∂Ω is Lips
hitz with pos-sibly one 
orner or 
usp. Later, Amdeberhan [2℄ 
onsidered β = 1, Ω withsmooth boundary and u ∈ C2(Ω). Kawohl and others (see [6℄) examinedoverdetermined boundary value problems for degenerate ellipti
 equationson star-shaped or simply 
onne
ted (m = 2) domains under the assump-tion that ∂Ω is of 
lass C2,α. In parti
ular, this in
ludes equations with the

p-Lapla
ian.Our method of proof relies on the integration by parts formula on do-mains with geometri
ally admissible boundaries for fun
tions from Sobolevspa
es. The de�nition of geometri
ally admissible set will be provided below.Roughly speaking, we 
ompute the tra
e using a result of Triebel (see [21,Corollary 9.8℄). Then we show the main theorem. Our method of proof issimilar to that used in [2℄ (
ase β = 1) and [22℄ (
ase β = 0) for fun
tionsfrom Sobolev spa
es. It is worth noti
ing that Amdeberhan [2℄ and Wein-berger [22℄ applied elementary arguments. Serrin used the so-
alled �movingplanes method� and Aleksandrov's theorem (see [1℄): every embedded surfa
ein R
m with 
onstant mean 
urvature must be a sphere.Before going to the next se
tion we dis
uss physi
al motivations for theproblem. Following [15℄ we present a few examples. Let us 
onsider a vis-
ous in
ompressible �uid moving in straight parallel streamlines through astraight pipe of given 
ross se
tional form Ω. If we �x re
tangular 
oordi-nates in spa
e with the z-axis dire
ted along the pipe, it is well known thatthe �ow velo
ity u is then a fun
tion of (x, y) alone satisfying the Poissondi�erential equation (for m = 2)

∆u = −A in Ω,where A is a 
onstant related to the vis
osity and density of the �uid and tothe rate of 
hange of pressure per unit length along the pipe. Supplementaryto the di�erential equation one has the adheren
e 
ondition
u = 0 on ∂Ω.Finally, the tangential stress per unit area on the pipe wall is given by thequantity ν∂u/∂n, where ν is the vis
osity. Our result states that the tangen-tial stress on the pipe wall is the same at all points of the wall if and only ifthe pipe has 
ir
ular 
ross se
tion.Noti
e that our result 
an be applied to weaken the assumptions in Propo-sition 5.4 of [7℄. Indeed, the authors of that paper used Serrin's result under
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the assumption that the boundary is smooth. But the assumption that theboundary is not smooth is more natural from the 
rystalline geometry pointof view 
onsidered there.Exa
tly the same di�erential equation and boundary 
ondition arise inthe linear theory of torsion of a solid straight bar of 
ross se
tion Ω (see [17℄).Our theorem states that, when a solid straight bar is subje
t to torsion, themagnitude of the resulting tra
tion at the surfa
e of the bar is independentof the position if and only if the bar has 
ir
ular 
ross se
tion. In our 
ase, i.e.for a 
ountably re
ti�able set, we 
an interpret this result in the followingmanner. In the 
lass of bars whose boundaries are not regular (
ountablyre
ti�able) there exists exa
tly one bar su
h that the tra
tion at the surfa
eof the bar is independent of the position.Before we present the main result we re
all known de�nitions and makesome 
omments. We use the standard notation Hm for the m-dimensionalHausdor� measure. We re
all (see [3℄) that a Borel set S ⊂ R
l is 
ountably

m-re
ti�able if there is a sequen
e of Lips
hitz maps
fi : Ei ⊂ R

m → R
l,su
h that

S =

∞⋃

i=1

fi(Ei) ∪ Band Hm(B) = 0.

Fig. 1Figure 1 represents an example of a 
ountably 1-re
ti�able set (some-times 
alled the Warsaw 
ir
le). Noti
e that from the M
Shane lemma (anyLips
hitz map on a 
losed subset 
an be extended to a Lips
hitz map on thewhole spa
e) we 
an take Ei = R
m (see [4℄, [10℄, [11℄).

Remark 1. It is well known that the above de�nition is equivalent tothe de�nition where we repla
e Lips
hitz maps fi by maps of 
lass C1 (see[5℄, [16℄).However, it turns out that the 
lass of 
ountably re
ti�able sets is toobroad. We will 
onsider sets with an additional property. Namely we shall 
alla 
ountably (m− 1)-re
ti�able set S ⊂ R
l (m− 1)-geometri
ally admissibleif there exists C > 0 su
h that for any x ∈ S and r ∈ (0, 1/2),

C−1rm−1 ≤ Hm−1(B(x, r) ∩ S) ≤ Crm−1,
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where B(x, r) is the m-dimensional ball. This 
ondition will be denoted by
Hm−1(B(x, r) ∩ S) ∼ rm−1.
Remark 2. One 
an show that if S ⊂ R

m is bounded and ∂S is (m−1)-geometri
ally admissible, then Hm−1(∂S) < ∞.
Remark 3. It is easy to noti
e that not every 
ountably re
ti�able setis geometri
ally admissible. A good example is the Warsaw 
ir
le (see Fig-ure 1). Another example shown in Figure 3. It is taken from Nikodym'spaper [13℄. The Warsaw 
ir
le and Nikodym's example are similar in somesense. Ni
e examples 
an be found in the book of Maz'ya [12, Chapter 1,Example 2℄. From this monograph we have taken an example of a set whi
his geometri
ally admissible (see Figure 2).

y y

x
Figure 2 Figure 3

xFig. 2 Fig. 3Let us re
all the de�nition of Sobolev spa
es H̃s(Ω) (see [9℄). For everypositive s we denote by H̃s(Ω) the spa
e of all u de�ned in Ω su
h that
ũ ∈ Hs(Rm) where ũ is the 
ontinuation of u by zero outside Ω. We de�nea Hilbert norm on H̃s(Ω) by

‖u‖
H̃s(Ω)

= ‖ũ‖Hs(Rm).

2. The main result. First we formulate and prove a version of theintegration by parts formula. The main point is to weaken the assump-tions on ∂Ω. This result is our basi
 tool. The di�
ulty is in the proofof the integration by parts formula. The geometri
 admissibility 
ondition(Hm−1(B(x, r) ∩ S) ∼ rm−1) is essential in order to 
ompute the tra
e anduse the result from [21℄.Theorem 1. Suppose u ∈ H̃2(Ω) and v ∈ H̃1(Ω), where Ω is a boundedopen subset of R
m. Assume that ∂Ω is (m − 1)-geometri
ally admissible.Then \

Ω

v∆udHm(x) = −
\
Ω

∇u∇v dHm(x) +
\

∂Ω

v
∂u

∂ν
dHm−1(x).



OVERDETERMINED ELLIPTIC PROBLEM 11

Proof. First, note that if u ∈ C∞(Ω)∩ H̃2(Ω) and v ∈ C∞(Ω)∩ H̃1(Ω),then the formula holds. Indeed, the ex
eptional set has measure zero and weare dealing with smooth maps (see [23℄ and [5℄).Next, we prove the following lemma.Lemma 1. If u ∈ H̃2(Ω) and v ∈ H̃1(Ω), then there exists a 
onstant csu
h that \
∂Ω

∣∣∣∣v
∂u

∂ν

∣∣∣∣ dHm−1(x) ≤ c‖v‖
H̃1(Ω)

‖u‖
H̃2(Ω)

.

Proof. We apply a result of Triebel [21, Corollary 9.8℄. In order to explainit, we de�ne a Radon measure ν on R
m by

ν(A) = Hm−1(∂Ω ∩ A).It is easy to see that supp ν = ∂Ω, and indeed from Remark 2 we infer that
ν is a Radon measure.Now we have to 
he
k that the assumptions of Corollary 9.8 from [21℄ aresatis�ed. Indeed, by taking s = 1, p = 2, r = 2, d = m − 1 in [21, Corollary9.8℄, it is easy to 
he
k that

ν(B(x, r)) ∼ rd, ν(2Qνl) ≤ c2−ν(m−1), s − m/p > −d/r,where Qνl is the 
ube in R
m with sides parallel to the axes, 
entered at 2−ν l,and with side length 2−ν . Here l ∈ Z

m and ν ∈ N0.Triebel's result already mentioned ([21, Corollary 9.8℄) says that if theabove 
onditions are satis�ed then there exists a tra
e operator
Tr∂Ω : F s

p,q(R
m) → Lr(∂Ω).Re
all that W s,p(Rm) = F s

p,2(R
m), where F s

p,2 are the Lizorkin�Triebelspa
es. Hen
e, we obtain a sequen
e of inequalities\
∂Ω

∣∣∣∣v
∂u

∂ν

∣∣∣∣ dHm−1(x) ≤ c‖ṽ‖F 1

2,2
(Rm)‖∇ũ‖F 1

2,2
(Rm)

≤ c‖ṽ‖H1(Rm)‖∇ũ‖H1(Rm) ≤ c‖v‖
H̃1(Ω)

‖u‖
H̃2(Ω)

,where we applied the S
hwarz inequality. From this the lemma follows.Now, we 
an return to the proof of the theorem. Re
all from [9℄ that
C∞(Ω) ∩ H̃2(Ω)

H̃2(Ω)
= H̃2(Ω), C∞(Ω) ∩ H̃1(Ω)

H̃1(Ω)
= H̃1(Ω).Take any u ∈ H̃2(Ω) and v ∈ H̃1(Ω). Next, �x ε > 0 and 
hoose vε ∈

C∞(Ω) ∩ H̃1(Ω) and uε ∈ C∞(Ω) ∩ H̃2(Ω) su
h that
‖vε − v‖

H̃1(Ω)
≤ ε, ‖uε − u‖

H̃2(Ω)
≤ ε.
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These fun
tions satisfy\

Ω

vε∆uε dHm(x) = −
\
Ω

∇uε∇vε dHm(x) +
\

∂Ω

vε
∂uε

∂ν
dHm−1(x).(1)Applying the S
hwarz inequality and the above lemma one 
an show thefollowing inequalities:

∣∣∣
\
Ω

vε∆uε dHm(x) −
\
Ω

v∆udHm(x)
∣∣∣ ≤ Mε,

∣∣∣
\
Ω

∇uε∇vε dHm(x) −
\
Ω

∇u∇v dHm(x)
∣∣∣ ≤ Mε,

∣∣∣
\

∂Ω

vε
∂uε

∂ν
dHm−1(x) −

\
∂Ω

v
∂u

∂ν
dHm−1(x)

∣∣∣ ≤ cMε.Finally, we 
an let ε → 0 under the integrals in (1) to obtain\
Ω

v∆udHm(x) = −
\
Ω

∇u∇v dHm(x) +
\

∂Ω

v
∂u

∂ν
dHm−1(x).This ends the proof of the theorem.

Remark 4. The 
on
lusion of the above theorem is true if we assumethat v ∈ H̃1(Ω) and u ∈ Ẽ(∆, L2(Ω)), where Ẽ(∆, L2(Ω)) = {u ∈ H̃1(Ω) :
∆ũ ∈ L2(Rm)}. This follows from the fa
t that ∂2ũ/∂xi∂xk = −RiRk∆ũ(see [18℄, [19℄). But in the next theorem we need H2 regularity in order toapply the maximum prin
iple.Now, we 
an formulate the main result of this paper. We may view thetheorem below as a generalization of Prajapat's result [14℄ for the overdeter-mined problem for Lips
hitz domains with 
usps. Indeed, 
ountably re
ti�-able sets have 
ountably many 
usps.Theorem 2. Suppose that Ω is a bounded open subset of R

m su
h that
∂Ω is (m− 1)-geometri
ally admissible. If there exists a solution u ∈ H̃2(Ω)of the problem

∆u = − 1 in Ω

u = 0 on ∂Ω

∂u

∂ν
= − crβ on ∂Ω,where r =

√
x2

1 + · · · + x2
m and c, β are 
onstants and β = 0 or 1, then Ω isan m-dimensional Eu
lidean ball.Proof. Our method of proof is similar to [2℄ (
ase β = 1) and [22℄ (
ase

β = 0). We refer the reader to those papers for details.
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It is easy to see that the assumptions of Theorem 2 imply that ([2, Lem-ma 1℄ for β = 1) \
Ω

u dHm(x) = c2
\
Ω

r2 dHm(x),(2)and also that ([22℄ for β = 0)
(m + 2)

\
Ω

u dHm(x) = mc2Hm(Ω),(3)where we applied Theorem 1.It is not hard to see that the expressions
(

∂u

∂ν

)2

− c2r2 for β = 1,

(
∂u

∂ν

)2

+
2

m
u for β = 0are 
onstants on ∂Ω, whi
h is a 
onsequen
e of the boundary 
onditions.Next from the weak maximum prin
iple (see [8, notes in Chapter 8℄ or [20,Appendix B℄) and identity (2) (respe
tively (3)), we dedu
e that these ex-pressions are 
onstants in Ω. From this we obtain

∂2u

∂xi∂xj
= −

1

m
δij .So the solution of our equation takes the form

u = c −
r2

2m
.Sin
e u vanishes on ∂Ω and has radial symmetry we 
on
lude that Ω is aball.Finally, let us state some open questions. Is it possible to weaken furtherthe assumptions on ∂Ω? Is geometri
 admissibility really ne
essary?A
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