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COMPOSITION OF AXIAL FUNCTIONS OFPRODUCTS OF FINITE SETSBYKRZYSZTOF P�OTKA (S
ranton, PA)To the memory of my FatherAbstra
t. We show that every fun
tion f : A × B → A × B, where |A| ≤ 3 and
|B| < ω, 
an be represented as a 
omposition f1 ◦f2 ◦f3 ◦f4 of four axial fun
tions, where
f1 is a verti
al fun
tion. We also prove that for every �nite set A of 
ardinality at least 3,there exist a �nite set B and a fun
tion f : A×B → A×B su
h that f 6= f1 ◦ f2 ◦ f3 ◦ f4for any axial fun
tions f1, f2, f3, f4, whenever f1 is a horizontal fun
tion.A fun
tion f : A × B → A × B is 
alled verti
al (f ∈ V) if there exists afun
tion f1 : A×B → A su
h that f(a, b) = (f1(a, b), b). It is 
alled horizontal(f ∈ H) if f(a, b) = (a, f2(a, b)) for some fun
tion f2 : A × B → B. If f ishorizontal or verti
al then we 
all it axial. A one-to-one fun
tion from A×Bonto A×B is 
alled a permutation of A×B. The family of all fun
tions from
A × B into A × B is denoted by (A × B)A×B. If F1, . . . , Fn ⊆ (A × B)A×B,then we write F1F2 . . . Fn to denote {f1 ◦ · · · ◦ fn : fi ∈ Fi, i = 1, . . . , n}.It is 
onvenient, espe
ially when the set A × B is �nite, to use matri
esto represent fun
tions from (A × B)A×B. Given a fun
tion f ∈ (A × B)A×Band a matrix M = [m(a,b)] of size |A| × |B|, we de�ne f [M ] = [mf(a,b)].If the elements of the matrix M = [m(a,b)] are distin
t, then the matrix
f [M ] uniquely determines the fun
tion f . We will often identify the ele-ments (a, b) of A × B and the 
orresponding entries m(a,b) of the matrix
M . Observe also that if f, g ∈ (A × B)A×B, then f [g[M ]] = (g ◦ f)[M ]. Tosee this let M ′ = g[M ] and M ′′ = f [M ′] = f [g[M ]]. For (a, b) ∈ A × Bwe have m′′

(a,b) = m′
(c,d) for some (c, d) ∈ A × B su
h that (c, d) = f(a, b).Now, note that m′

(c,d) = mg(c,d). Hen
e m′′
(a,b) = mg(c,d) = mg(f(a,b)) =

m(g◦f)(a,b).Bana
h ([M, Problem 47℄) asked whether every permutation fun
tion ofa 
artesian produ
t of two in�nite 
ountable sets 
an be represented as a
omposition of �nitely many axial fun
tions. The question was answered2000 Mathemati
s Subje
t Classi�
ation: Primary 03E20; Se
ondary 08A02.Key words and phrases: axial fun
tions.[15℄
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a�rmatively by Nosarzewska [N℄. Resear
h on this subje
t was 
ontinued byEhrenfeu
ht and Grzegorek [EG, G℄. They dis
ussed the smallest possiblenumber of axial fun
tions needed. Also, they 
onsidered the 
ase when bothsets are �nite. In parti
ular, they proved the following.Theorem 1. Let f, p ∈ (A × B)A×B and p be a permutation.(i) Then p = p1 ◦ p2 ◦ p3 ◦ p4, where all pi are axial permutations of

A × B.(ii) If A is �nite, then p = p1◦p2◦p3, where all pi are axial permutationsof A × B and p1 ∈ V.(iii) If A × B is in�nite, then f = f1 ◦ f2 ◦ f3, where all fi are axialfun
tions.(iv) If A×B is �nite, then f 
an be represented as f = f1◦· · ·◦f6, whereall fi are axial fun
tions and f1 ∈ V.Let us mention here that Ehrenfeu
ht and Grzegorek also showed thatit is not possible to de
rease the numbers 4 in part (i) and 3 in parts (ii)and (iii) of the above theorem. In addition, in part (i) it 
annot be spe
i�edthat p1 ∈ V. However, it was not proved that 6 in part (iii) is the smallestpossible. Later, Szyszkowski [S℄ proved that 6 
an be de
reased to 5. Healso gave an example whi
h showed that 5 
annot be de
reased to 3. In hisexample one of the sets has at least 4 elements and the other one at least 5.Below, we present an example in whi
h both sets have exa
tly three elementsea
h. It is worth noting that, if one of the sets has at most two elements,then three axial fun
tions are enough (see Remark 5).Example 2. The number 6 in Theorem 1(iv) 
annot be redu
ed to 3.Proof. Let
M =






a b c

d e f

g h i




 .

De�ne f ∈ (A × B)A×B by
f [M ] =






i g e

d h b

h a c




 .

We will justify why f 6= f1 ◦f2 ◦f3 for any axial fun
tions f1, f2, f3 su
h that
f1 ∈ V (the 
ase when f1 ∈ H is analogous). Noti
e that for the equality
f [M ] = (f1 ◦ f2 ◦ f3)[M ] = f3[f2[f1[M ]]] to hold, entries from ea
h 
olumnof f [M ] would have to appear in di�erent rows of f1[M ]. In parti
ular, sin
ethe sets {i, d, h} and {g, h, a} form two 
olumns of f [M ], the elements a, d, g
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would have to appear in di�erent rows of f1[M ] than the element h. But thisis impossible.The question, whi
h remains open, is whether every fun
tion 
an beobtained as a 
omposition of four axial fun
tions. We give partial answersto this question.Theorem 3.(i) If |A| = 3, then (A × B)A×B = VHVH.(ii) If |A| ≥ 3, then there exists an integer m0 su
h that (A × B)A×B 6=
HVHV whenever |B| ≥ m0.Theorem 3 implies the following.Corollary 4. There exist �nite sets A, B and a fun
tion f : A×B →

A × B su
h that f ∈ VHVH and f 6∈ HVHV.Proof of Theorem 3. (i) First observe that it su�
es to prove the resultfor fun
tions f : A × B → A × B su
h that the entries in ea
h row of thematrix f [M ] are all distin
t, that is, |f({a}×B)| = |B| for every a ∈ A. Thisis so be
ause for an arbitrary fun
tion f ′ : A × B → A × B, there exists afun
tion f of the above type and a horizontal fun
tion h : A×B → A×B su
hthat f ′[M ] = h[f [M ]] = (f ◦ h)[M ]. Sin
e the 
omposition of two horizontalfun
tions is a horizontal fun
tion, if f ∈ VHVH, then also f ′ ∈ VHVH.Hen
e, let f be a fun
tion su
h that the entries in ea
h row of the matrix
f [M ] are all distin
t. It 
an be easily proved, by indu
tion on |B|, that thereexists a horizontal permutation h : A × B → A × B su
h that there exists apartition of B into three sets B1, B2, B3 (some of whi
h may be empty) withthe following properties:1. |(f ◦ h)(A × {b1})| = 1 for every b1 ∈ B1,2. |(f ◦ h)(A × {b2})| = 2 for every b2 ∈ B2,3. |(f ◦ h)−1({m})| ≤ 2 for every m ∈ (f ◦ h)(A × B3) and |{m ∈

(f ◦ h)(A × B3) : |(f ◦ h)−1({m})| = 2}| ≡ 0 mod 3,4. if (f ◦ h)(A × {b}) ∩ (f ◦ h)(A × {b′}) 6= ∅, then b, b′ ∈ B3.For the matrix h[f [M ]] this means that ea
h 
olumn with index in B1has all entries equal, ea
h 
olumn with index in B2 has only two di�erententries, and the number of entries appearing twi
e in the part of h[f [M ]]
orresponding to B3 is divisible by 3. In addition, 
olumns with indi
es in B3are the only 
olumns whi
h 
an share entries with other 
olumns. We have
h[f [M ]] =






a b . . .

a b . . .

a b . . .
︸ ︷︷ ︸

B1

p q . . .

p s . . .

r s . . .
︸ ︷︷ ︸

B2

v x y . . .

v w z . . .

w x z . . .






︸ ︷︷ ︸

B3

.
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So, if we 
an prove that f ◦ h ∈ VHVH, then, sin
e h is a horizontal permu-tation, we will also prove that f ∈ VHVH. Hen
e, without loss of generality,we 
an assume that f itself satis�es the above four 
onditions.Now, let us partition the set (A × B) \ f(A × B) into sets E1, E2, E3su
h that |E1| = 2|B1| and |E2| = |B2|. Next de�ne the partition P =
P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 of A × B into sets of size 3 as follows:

• {m1, m2, m3} ∈ P1 if m1 ∈ f(A × B1), m2, m3 ∈ E1,
• {m1, m2, m3} ∈ P2 if m1, m2∈f(A × {b2}) for some b2∈B2, m3∈E2,
• {m1, m2, m3} ∈ P3 if m1, m2, m3 ∈ E3,
• {m1, m2, m3} ∈ P4 if mi ∈ f(A × B3), |f

−1({mi})| = 2 for i = 1, 2, 3,

• {m1, m2, m3} ∈ P5 if mi ∈ f(A × B3), |f−1({mi})| = 1 for i = 1, 2, 3.The existen
e of this partition follows from 
onditions 1�4. Note that these
onditions also imply that |P3| = |P4|.By Theorem 1(ii), there exists a verti
al permutation f1 ∈ V su
h that forea
h set P ∈ P, the elements of P appear in di�erent rows of f1[M ] (see theargument in Example 2). Now observe that there exists a horizontal permu-tation f2 ∈ H su
h that the 
olumns of f2[f1[M ]] are the sets of the partition
P and the sets from P1 ∪P2 
orrespond to 
olumns with indi
es in B1 ∪B2.The fun
tion f2 
an be modi�ed, so the elements from the sets in P3 are re-pla
ed by the elements from the sets in P4 and the latter appear twi
e in thematrix f2[f1[M ]]. Noti
e that the parts of the matri
es f [M ] and f2[f1[M ]]
orresponding to A×B3 are permutations of ea
h other, so by Theorem 1(ii)one 
an be obtained from the other by performing three axial permutations(note that if both sets A and B are �nite, then Theorem 1(ii) with p1 ∈ Vrepla
ed by p1 ∈ H also holds). Additionally, the 
olumns in f2[f1[M ]] withindi
es in B1∪B2 
an be made identi
al to the 
olumns of f [M ] by perform-ing one verti
al operation. Consequently, there exist three axial fun
tions
f3 ∈ H, f4 ∈ V, f5 ∈ H su
h that f [M ] = f5[f4[f3[f2[f1[M ]]]]]. Hen
e
f = f1 ◦ · · · ◦ f5. Sin
e f2 ∈ H and f3 ∈ H, we have f2 ◦ f3 ∈ H and so
f ∈ VHVH.(ii) Denote |A| by k. De�ne

n = k(k − 1) + 1 and m0 =

⌈
k
(
n
k

)
− n

k − 2

⌉

.Let m ≥ m0 be an integer and M be a k×m matrix with all entries distin
tand su
h that the �rst n entries in the �rst row are a1, . . . , an.We de�ne a fun
tion f : A×B → A×B (|B| = m) by de�ning f [M ]. Theentries from the �bottom� k − 2 rows of M do not appear in f [M ]. The �rst
(

n
|A|

)
=

(
n
k

) 
olumns of f [M ] are formed by all k-subsets of {a1, . . . , an}. Theremaining (m −
(
n
k

)
) 
olumns of f [M ] are formed using all the entries fromthe �rst two rows of M ex
ept a1, . . . , an (some of them may need to appear
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more than on
e). Note that this is possible be
ause the number 2m − n ofentries in the �rst two rows of M ex
ept a1, . . . , an is not greater than thenumber k(m −
(
n
k

)
) of positions in m −

(
n
k

) 
olumns of f [M ]. Indeed,
m ≥ m0 =

⌈
k
(
n
k

)
− n

k − 2

⌉

≥
k
(
n
k

)
− n

k − 2
.Consequently, m(k − 2) ≥ k

(
n
k

)
− n and k

(
m −

(
n
k

))
≥ 2m − n.

M =









a1 a3 . . . an . . .

· ·... ... ...
· ·









︸ ︷︷ ︸

m 
olumns
f [M ] =









ai1 aj1 . . .

ai2 aj2 . . .... ... ...
aik

ajk
. . .

︸ ︷︷ ︸

(
n

k

) 
olumnsall k-subsets of
{a1, . . . , an}

. . .

. . ....

. . .









︸ ︷︷ ︸

m −
(
n

k

) 
olumnsall entries from the �rst tworows of M ex
ept a1, . . . , anWe will show that f 6∈ HVHV. Assume that this is not the 
ase and thereexist axial fun
tions f1, . . . , f4 su
h that f1 ∈ H and f = f1 ◦ f2 ◦ f3 ◦ f4, i.e.
f [M ] = f4[f3[f2[f1[M ]]]].Note that there are k elements out of a1, . . . , an su
h that there is arow of the matrix f2[f1[M ]] whi
h does not 
ontain any of these k elements.Sin
e all the elements of M from the �rst two rows appear in the �nal matrix
f [M ], we see that f1 is a permutation on ea
h of the �rst two rows of M .Let us denote by b1, . . . , bn the elements from the se
ond row of f1[M ] thatappear in the same 
olumns as a1, . . . , an by b1, . . . , bn, respe
tively. Sin
e
n = k(k − 1) and |A| = k, by the Pigeonhole Prin
iple, there exists a row in
f2[f1[M ]] whi
h 
ontains at least k elements out of b1, . . . , bn. This row doesnot 
ontain at least k elements out of a1, . . . , an, say ai1 , . . . , aik .Applying the fun
tions f3 ∈ H and f4 ∈ V to the matrix f2[f1[M ]]]] willnot result in a matrix 
ontaining a 
olumn whose entries are ai1 , . . . , aik .Hen
e f [M ] 6= f4[f3[f2[f1[M ]]]], a 
ontradi
tion.Let us mention here that, using a similar te
hnique to the one used inthe proof of Theorem 3(i), we 
an show the following.
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Remark 5. Let |A| = 2. Then (A × B)A×B = HVH. In addition, if

|B| ≥ 3, then (A × B)A×B 6= VHV.A 
ounterexample justifying the se
ond part of the above remark 
an befound in [S, p. 36℄.
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