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ORLICZ SEQUENCE SPACES THAT ARE UNIFORMLY ROTUND
IN A WEAKLY COMPACT SET OF DIRECTIONS

BY

ZHONGRUI SHI, YUANDI WANG and GE DONG (ShangHai)

Abstract. Necessary and sufficient conditions are given for Orlicz sequence spaces
equipped with the Orlicz norm to be uniformly rotund in a weakly compact set of direc-
tions, using only conditions on the generating function of the space.

Let X be a Banach space and let S(X) and B(X) be the unit sphere and
unit ball of X. Then X is said to be:

e uniformly rotund in a weakly compact set of directions (URWC) if
lal = 1, gl = 1, 2n + gnll — 2, and 2, — yo 2 2 (in the
weak topology) imply that z = 0 (see [10]);

e uniformly rotund in every direction (URED) if ||z,| — 1, |lynll — 1,
lxn + yn|| — 2, and z, — y, — 2z (in the norm topology) imply that
z =0

o uniformly weak* rotund (W*UR) if ||z,| — 1, ||yn]| — 1, and ||z, +
Ynl| — 2 imply that x,, — yn = 0;

e rotund (R) if ||z|| = 1, |ly|| = 1, and ||z + y|| = 2 imply that = = y.

Clearly,
W*UR = URWC = URED = R.

Banach spaces with these types of rotundity were studied in [2, 4, 5, 10,
11] and have been applied to fixed point theory. For Orlicz spaces with the
Luxemburg norm, W*UR is equivalent to R. But for Orlicz spaces with the
Orlicz norm, W*UR and URED have rather different criteria [8, 15, 16]. All
known characterizations of URWC for Orlicz spaces with the Orlicz norm
involve both elements of the Orlicz space and the generating function M
[3, 13, 17]. Up to now, no characterization of URWC by using only conditions
on the generating function M has been given for Orlicz sequence spaces. As
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stated in [12], “some new methods and techniques are needed to solve this
kind of difficult problem”.

In this paper, we give a characterization of URWC by using only condi-
tions on the generating function M for Orlicz sequence spaces, following the
solution of this problem for Orlicz function spaces in [9]. The proof of our
result is fairly complicated.

A function M: R — R, is called an N-function if M is convex and
even, lim, o M (u)/u = 0, and lim,_,oc M(u)/u = co. The complementary
function N of M in the sense of Young is defined by

N(v) = sup{uv — M(u)}.
ueR
It is known that if M is an N-function, then so also is N. Let p and ¢ be the
right-hand derivatives of M and N, respectively. Then M is said to be:

o strictly convez (SC) if

M(U;U) < M(u)—;M(v) for u # v;

o uniformly convez if for every € > 0, there exists > 0 such that if
|u — v| > emax(|ul, |v|), then

M(u—;—v) <(1-96) M(u)—;—M(v).

Moreover, M is said to satisfy the dy condition for small u (M € d2) if for
some ug > 0 there exists K > 0 such that M (ug) > 0 and M (2u) < KM (u)
for all © < wy.

For a real scalar sequence x = {z(4)}, let opr(x) = >"72, M(x(7)), called
the modular of x. The Orlicz sequence space [ generated by M is the Banach
space

Iy =A{x ={z(i)} : 05y (Ax) < oo for some A},
equipped with the Orlicz norm
1
|| ar = Sup Z$ i = mf k(l + om(kx)).
on(y)<1,4

See [2, 7] for references on Orlicz spaces.
We first state several lemmas.

LEMMA 1 ([14]). For x € lyy, if om(p(kx)) = 1, then

l2llar = Z |(0)|p(klz(D)]) = % (1 + onr (k).
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LEMMA 2 ([14]). For x € lyy, there exists k > 0 such that

lelar = (1 + oar(e).

LEMMA 3 ([14]). Let
1
kn
If ky, — o0, then x,(i) — 0 for all i.

|lznllar = — 1+ om(knzn)) <2 (n=1,2,...).

LEMMA 4 ([14]). In a rotund Orlicz sequence space lpy, let

1 1
as n — oo, where {k,} and {h,} are bounded. If ||x,, + yn|lpr — 2, then
knzn (i) — hnyn(i) — 0 for all i.

LEMMA 5 ([14]). Let {zyn}, {yn}, {kn} and {h,} be as in Lemma 4. If
vp €I, on(vn) <1 and > 72 (xn (i) + yn(2))vn (i) — 2, then for all subsets
I, of positive integers, we have uniformly

i€ln i€l,
LEMMA 6 ([6, 9]). For 0 < A < 1, the function
M QAu+(1-Mt)
o0 = M)+ 0 = VM)

is increasing in [0, u].

LEMMA 7 ([9]). For given ¢ € (0,1) and [o, 3] C (0, 1),

where

X =Xy)(u) =

inf MAu+ (1= N)(1—¢)u) .
AefoB) AM (u) + (1 = N)M((1 — e)u)
LEMMA 8 ([9]). For u >0, if

M(u)+M((1—e)u)

2

then there exists (1 —e¢/2)u < t < u with

(3= 2o

Y =Y, 5(u) =
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LEMMA 9 ([14]). Let Iy be an Orlicz sequence space equipped with the
Orlicz norm. Then Iy is URED if and only if
(i) M € SC|0,mar], where mar = inf{t : N(p(t)) > 1};
(ii) for [o, 8] C (0,1) and for e,&’ € (0,1), there exist ug > 0, D =
D(e,e’) >0, and v = (e, ") > 0 such that for all X € [, 3] and all
u, v with max{|ul, |v|} < o, |u—v| > emax{|ul,|v|} and \M (u) +
(I =XNMw) < (1+~vy)MAu+ (1 —X)v) we have
M (e'u)
e
Moreover, A\M(u) + (1 = ANM((1 —e)u) < (1+y)MAu+ (1 =) (1 —e)u),

S0

M(u) < D(e,€)

M(e'u)

6/

M(u) < D(e, &)

Proof. First, we show that URED implies (ii). In fact, if we suppose (ii)
is not true then for some € > 0 (assume ¢ = min{e,e’'}) there exist u, \, 0
and X\, € [a, (] such that

MM (1) + (1= M) M((1— £)up) < (1 + %)M(/\nun b= A =),

and
M (euy)

M(un) > 2"n

By Lemma 8 there exists (1 —¢/2)u,, < t, < u, with

p<<1— §>t> > (1 —2772;8>p(tn)7

M (ety,)
eM(ty)
Indeed, referring to the argument of §1 of Chapter 1 in [7], we get

and

— 0.

M(zty) — j—:wun) < %’;(M(eun) — eM(up)),

wn M(ta) M(cta) . _ M(cun)

b M(un) eM (ty) = eM(uy)

—1—- -1,
and so
up, M(tn) M(ety)
tn M(up) eM(ty)
Noticing that 1 < |u,/t,] < 1/(1 —¢/2) and
Mt) M= /2un) _ M((1—=/2u)

M(un) — M (un) — Mun)+M((A—g)un)
2 2 2

we have M (ety,)/eM(t,) — 0.

2>

— 1,
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Without loss of generality, passing to a subsequence if necessary, assume

that
M (ety,)

M(t,) > 2"n
Then

M(ety) etn \ €tn
tap(tn) = M(t,) > 2" > 2" — | —
plta) 2 M (t7) > 2 2D > ()
ie.,
p(tn) > 2" np(et,/2).
From the proof of the necessity in the Theorem of [14], we can see that [y,
is not URED, a contradiction.
On the other hand, by the proof of the sufficiency in the Theorem of [14],
(i) and (ii) imply URED. =
From Lemma 7, we deduce the following
REMARK 1. [js is URED if and only if

(i) M € SC[0, m];

(ii) for 0 < e,e’ < 1 there exist D(e,e’) and ug > 0 and v = (') > 0 so
that for all |u| < wug with M (u)+M((1—e)u) < (1+7)2M ((1—¢/2)u),
we have

M (e'u)

M (u) < D(e, &) =

For convenience, we will understand D(e,&’) to be the smallest one as in the
above inequality.

LEMMA 10. Let Ips be an Orlicz sequence space equipped with the Orlicz
norm. If lpy is URWC, then for any 0 < & < 1 there exists D(g) > 0 such
that

D(e,e') < D(e)
for all 0 < &’ < 1, where D(e,€’) is defined as in (i) of Remark 1.

Proof. Define D(g) = sup,¢o1) D(e,€'). It is clear that D(e,¢’) is de-
creasing with respect to ¢’. Suppose that D(g) = oco. Then there exist £, \, 0
with D(e,e1) < D(e,e2) < -+ < D(e,ep) / 00. Let

1 M(u)+1\/[2((1—5)u) 1

?Rn:{u>0:u< <14+ -
— 9n+1’ u+(l1—e)u ’

2 M( (2 €) ) n

where D(e,¢0) = 0. We now show that for all m,
RiN---NR, #0.
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In fact, suppose first that %, N RN = 0, ie., N URS = R. Then for all
u < 1/23 with
M(u)+M((1—€)u)

—m—— P
+(1=¢) 2’
M (=575) 2
we get
M
M(u) < Die.0) LE —,
1
or
M
M(w < Die, o) 29,
€2
Thus for all such u, we get
M
M(u) < D(e,e1) (;QU),
2

so D(e,e2) < D(e,e1), contrary to D(g,e1) < D(g,e2). Proceeding induc-
tively, assume that %y N---NR,, # (), and suppose that Ry N---NR, 1 = 0,
ie, RfU---URS,; = R. Then for all u < 1/2"*! with
M(uw)+M((1—e)u) 1
- <1+=

M(u+(12—5)u) n

at least one of the following conditions holds:

M(u) < D(e,sl)M(E?u),
M(u) < D(5,£2)M(;3u), A
M(u) < D(e,sn)w%:llw,

so we have at least one of the following contradictions:
D(e,e2) < D(g,e1) < D(g,¢e3),
D(e,e3) < D(e,e2) < D(g,e3), ...,
D(e,ent1) < D(g,en) < D(&,€(nt1))-
Hence 1 N---NR,, # 0 for all m € N by the induction principle. Take
Up € Ry N---NR,. Then u, < 1/27F1
M (un)+M((1—€)un)

M ( un+(1275)un )

1
<1+ -,
n

and
M (erun
(1) M (up) > D(a,ek_l)@, 0<Ek<n.
k
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By Lemma 8, there exists (1 — ¢/2)u,, < t, < u, with

o {05 (2

Without loss of generality, assume that p(u;) < 1. Take ¢ > 0 with 1/2 >
N(p(c)) > 0 and take a positive integer m,, so that

1 1 < 1
Define

dn = inf{s > 0: N(p(s)) + N(p(c) + maN(p(ta)) > 1},
dy =inf{s > 0: N(p(s)) + N(p(c)) + myN(p((1 — £/2)t,)) > 1}.
Then d,, < d}; < b where N(p(b)) > 1

N(p( ) ) - V()

< [1=N(p(e)) =maN(p((1 —/2)tn))] = [1 = N(p(c)) = mnN (p(tn))]
= ma[N(p(tn)) — N(p((1 — £/2)tn))]

p(tn)

= My, S q(s)ds < my[p(tn) — p((1 —&/2)tn)]q(p(tn))
p((1—¢/2)tn)

, and by (i), we have

22—c¢
<my— p(tn)tn
22—¢ 2 1
< — 1—¢/2)t, ——=+— 1—¢/2)t
< 22t e = /Dt
22 1 1
<=z __ - .,
Tnel-—22=¢2

n e

Also by (i), we have f~d;, —d,, — 0, so d}, — d, — 0. Take p_(dy,) < 6, <
p(dy) such that
N(bn) + N(p(c)) + maN(p((1 —&/2)tn)) = 1
where p_(s) = lim;_,o- p(s + t). Next define
kn =1+ M(d,) + M(c) +mpM(t,),
hp =1+ M(d},))+ M(c)+m,M((1 —e/2)t,),

1 PR
l‘n:k;_(dnaca--'atnv""t”’o"")’
n

mn

(@ oo (L= /2t ... (L—£/2)tn,0,...),

_ 1
yn_h

3
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Mn
AN

U, = (On, 0(c),p((1 — &/2)ty),...,p((1 —€/2)t,),0,...).

Then

Qn(vn) =1,

On the other hand, by the Holder inequality,
”ynHM = <vn7yn> =1

From

1
lnllar < 2= (1 + enr(knn)) =1,

and by the uniform continuity of M on bounded closed intervals, we get

<vn7 k?nxn> = dn[en] + Cp(C) + mntnp((l - 5/2)tn)

< (0~ )p(0) + 500 +ep(6) + g Malapll)
< (05— dp0) + g (1 M) + M) + M 1)
< (&~ dp(b) + 1_ (M (d}) — M(dn)

= M(dn; + M(e) + muM(ty)

1 1

— kn,
hence (v, x,) — 1, and consequently ||z, + yn||ss — 2. Noticing that

M (suy,) M((1—¢/2)ty) D(e,e)

M(un)mn < D(E,E) my, < D(E,E) My <

€ - 2
without loss of generality, we assume ¢ > £1. So for arbitrary 7 > 0, take I
with 1/D(e,er) < 7-2¢/D(g,¢), and take ko such that for all & > kg with

SuP1<i<s M (epui)m;/ex < T, we have
M (eui)m;
sup ———
i>1 €k
_ { M (egu;)m; M (eu;)m; M (eus)m; }
= max

sup ———, sup , sup
1<i<I €k I<i<k Ek i>k €k
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<max{ sup ——>—, sup ,su
1<i<I €k I<i<k €; i>k D(¢,€x-1)
< max{ sup 7M(6kui)mi, sup M{us)m , M (ui)ms } <T.
1<i<I €k 1<i<k D(g,€i-1)" ik D(e,€5-1)
Mn
By [1], {un}22, is relatively weakly compact, where @, = (0,0,Up, ..., Uy,
0,...). But, for x., = (0,1,0,...),

1 1
<X627xn_yn>: <k——h—>0—/->0 (7”L—>oo)7

a contradiction with URWC of [;;. =

THEOREM 1. Let s be an Orlicz sequence space equipped with the Orlicz

norm. Then lpr is URWC if and only if

(i) M € SC[0, m];

(i) for [, B] C (0,1) and 0 < € < 1 there exist D = D(e) and ug > 0
such that for all 0 < &’ < 1, we can find v = v(¢') > 0 so that for
all X € [o, B] and all u,v satisfying max{|ul,|v|} < wo, |u—v| >
emax{|ul, [v]}, AM(u) + (1 = A)M(v) < (1 +9)MQAu+ (1 = Av),
we have

M (e'u)
e

Proof. Necessity. Since URWC implies rotundity, we get (i) (see [2]). By
Lemma 10, (ii) follows.

Sufficiency. If we suppose that [j; is not URWC, there exist sequences
{zn} and {yn} satistying [|2n[[p = %(1+9M(kn$n)) = 1, [lynllnr = %(1‘}‘
011 (hntin)) — 1 (n — 00), |20 +ynllar — 2 but 2, —yn = 2, = 2z # 0. If for
all i, ,,(i) — 0 and y,, (i) — 0, set &, = xp, — 2, /4, Yyl = T —32, /4. Tt is easy
to see that [z ar — 1, [ghlls — L, 124 + 811 — 2 and ,(5) — (i) =
2 (1) = (20/2)(i) — (2/2)(i) # 0. Thus 2/, = 2,/2 = 2/2 # 0 (n — o).
Clearly /(i) % 0. So we assume that z,, ~ 0 and 3, ~ 0 if necessary
replacing {z,,} and {y,} by {z/,} and {y},}. By Lemma 3, {k,} and {h,} are
bounded, and we may assume that k, — k, h,, — h, passing to a subsequence
if necessary. By Lemma 4, this implies that for all 4, k2, () — hpyn(i) — 0,
ie. (ky — hp)xn(i) — hpzp(i) — 0. If kK = h, it follows that z,(i) — 0, so
Zn v 0, contradicting z # 0. Hence k # h; we assume that k£ > h and
kn > hy,, passing to a subsequence if necessary. We can do the same in the
case of k < h. Define A\, = hy,/(kn, + h,) < 1/2. Since {k,} and {h,} are
bounded we deduce that A, € [«, 8] for some [«, 3] C (0,1).

Since z # 0, take a subset Iy = {1,2,...,I} such that

(3) z|1, # 0.

M(u) <D
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Take an arbitrary ¢ > 0. Since {z,} is weakly compact, by [1], {z,} is
In-weakly compact. Take 0 < ¢/ < 1 such that

/2 ~ 2
(4) onm(e"2kzy,) C £

el 4D’
By (ii), there is v > 0 such that for all A € [«, 5] and all u,v satisfying
max(|ul,|v]) > wg, |u — v|] > emax(|ul, |v|) with AM (u) + (1 = A)M(v) <
(I+~v)M(Au—+ (1 —N)v) we have

(5) M(u) < D @
By (3),

hz
©) QM(k_hIO>>o.

For each n, we split the set N into the following parts:

Ay, = {1 € N\ Ip : max(|knxn(i)], |hnyn(i)|) < €},

B, ={i e N\ Ip\ Ay, : |knzn(i) — hpy(i)| < e max(|knzn(7)], |hnyn(i)])},
knhn, : :

H, = {z eN\Ip\A,\ B,: (1 +’y)M(k T (zn(7) +yn(z)))

hn, , kn .
e Mt (i) + 1 M)},

In ={i € N\ Io \ An \ Bp \ Hy : |20 (i)] < [yn (i)},
Qn ={i € N\ Io\ Ap \ Bu \ H \ I : |20 (i)] < elzn(i)]},

= {z € N\ Ip : max(|knxn(7)|, |hnyn(i)]) > €,
|kn®n (1) — hny(9)| > € max(|knzn (i)], [hnyn(9)]),

()M (205 )+ 1))
b, K

>
“ kn+hy kn + hp,
|2 ()| = elzn(i)] and |zn (i) = Iyn(i)!}-

Pick v, € B(ly) such that [x,(i) + yn(7)]v,(i) > 0 and

<

<Una Tn + yn> — 2.
Then

<Un7mn> — 1, (Unvyn> — 1.
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Thus
k—h = lim(k, _hmz n@n (1) = Py (i)]vn (4).-

In the following, we estimate the sums over the above subsets.

(a) Since kyx, (i) — hpyn(i) — 0 uniformly on Iy, for n large enough, we
get

S (kna (i) = huyn(0)oa ()] < e.

i€lp

(b) Clearly, by Hélder’s inequality,
Z | (knn (i) — hayn(i))vn(i)] < 2e.
€A

(c) We also have

D 1 (knzn (i) = Aoy (D)oa(8)] < € Y (knwn(@)] + [hnyn ()] [on(D)|

ZEBn ZeBn
< e(kn + hy).
(d) Noticing that
Y hn n
o i) + )

<2- ||33n + ynHM — 0,
by Lemma 5, we see that for n large enough,
Z |(kn@n (i) — hayn (i) vn(§)] < e.
i€Hy,
(e) Let i € I, that is, |x,(2)] < |yn(7)
I 2, (1) yn (i) = 0, as [ (1) + yn (i) ]vn(
i

Yn (1) vn (1) > 0, 80 27 (4) 2, (1) = 20 () [0
Hence

-
i) > 0, we have xy,(i)vy, (i) > 0 and
) — yn( )] < 0, thus 2, (i)v, (i) < 0.

[ (i) — hnyn(§)]on (i) = (kn — hp) 2 (0)0n(8) + ha[20(2) — yn(i)]on ()
= (kn — hn)@n(0)on (i) + hnzn(i)vn (i)
< (kn — hn)zn(i)vn(i).

If 2,(i)yn(i) < 0, from |z,(7)] < |yn(i)|, we have y,(i)v,(i) > 0 and
T (1)vp (1) < 0. Since 2, (i) = x5 () — yn(i), we have z,(i)v, (i) < 0. Hence
[Fnwn (i) = hnyn ()]on(i) = (kn = hn)2n (D)on (@) + ha[2n () = ya(i)]vn (i)
= (kn = )@ (1)n (1) + hn2n(7) n(z)
< (kn = hn)xp (i) vn (7).
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Therefore
Z[knxn( ) — hnyn (1)]un (i) < Z(kn = hn)zn (i)vn ().
i€l i€ly

(f) Let i € Qn, that is, |z,(7)] < e|lxn(i)]. From |y,(i)] < |x,(i)] and
[, (7) + yn(9)]vn (i) > 0, it follows that x,(i)v,(7) > 0, z,(i)v, (i) > 0, and

[ken@n (i) = hayn (§)]vn (i) = (kn — hp)@n(9)vn(i) + hpzn (1) vn (i)
< (kn = hp)an (D)o (i) + ehnan(i)vn (i)
Thus
Z [fenan (1) = Pnyn (§)]vn (i) < (kn — ha + €ha) Z T (1) (7).
1€EQnR 1€EQn

(g) Let ¢ € Ty, that is, max{|knxn(i)|, |hnyn ()|} > &, |knzn(i) — hnyn(i)]
> emax{kn|n(i)], |hnyn(i)[},
)‘nM(knajn(Z))'+ (1— )‘n)M(hn?/n(l)) <147
M (Mpknxn (1) + (1 — Ap)hnyn (i)
Since €|z, ()| < |2n(7)], from (5), it follows that for i € T,

— 3

My (i)) < D ME (@) _ py M(E2k2n ()

gle gle
Hence, by (4),
/ 2
ont (knn|,) < D om(e ilk:n|Tn) < DDi —
Since |, (7)| > |yn(i)| and ky > hy,, we know that |kyx, ()| > |hnyn ()], so
QM(hnyn|Tn) <e.
Noticing that

1

h
E QM(knxnho) > QM(xn’IO) — O0M (mzho)

and

1
L ||zl = . (14 onr(knnlry) + QM(knxn‘N\Io)]

v

1
(B2 ISV VA = om (knZnl1,)
n

h
> fenlionl+ o (257l ).

1€N\Io

v

we find that for n large enough,

5l < 1= o (el )

i€N\Io
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Moreover,
. . . . h
X el < 3l <1 o2l )
1€l UQn ZGN\IO

Since £ > 0 is arbitrary, (a)-(g) lead to a contradiction:

kE—h<(k—h)|1l—om Lzho <k—h nu
k—nh
By Lemma 7, we have the following
REMARK 2. [j; is URWC if and only if

(i) M € SC[0, mp];

(ii) for 0 < & < 1 there exist D = D(¢g) and ug > 0 such that for all &,
0 < ¢ <1, we can find v = 7(¢’) > 0 so that for all |u| < uy with
M(u)+ M((1—¢)u) < (1+7)2M((1 —¢/2)u), we have

M(e'u)

5/
Z. R. Shi thanks Professor B. Johnson for his invitation to the Texas

A&M University. This work was completed there.

M(u) <D
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