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STATISTICAL EXTENSIONS OF SOME CLASSICAL

TAUBERIAN THEOREMS IN NONDISCRETE SETTING

BY

FERENC MÓRICZ (Szeged)

Abstract. Schmidt’s classical Tauberian theorem says that if a sequence (sk : k =
0, 1, . . .) of real numbers is summable (C, 1) to a finite limit and slowly decreasing, then
it converges to the same limit. In this paper, we prove a nondiscrete version of Schmidt’s
theorem in the setting of statistical summability (C, 1) of real-valued functions that are
slowly decreasing on R+. We prove another Tauberian theorem in the case of complex-
valued functions that are slowly oscillating on R+. In the proofs we make use of two
nondiscrete analogues of the famous Vijayaraghavan lemma, which seem to be new and
may be useful in other contexts.

1. Introduction. We consider real- or complex-valued functions that
are measurable (in Lebesgue’s sense) on some interval (a,∞), where a ≥ 0.
We recall (see [5]) that a function f has statistical limit at ∞ if there exists
a number ℓ such that for every ε > 0,

(1.1) lim
b→∞

1

b− a |{x ∈ (a, b) : |f(x)− ℓ| > ε}| = 0,

where by |{·}| we denote the Lebesgue measure of the set indicated in {·}.
If this is the case, we write

st-lim
x→∞

f(x) = ℓ.

Clearly, the statistical limit ℓ in (1.1) is uniquely determined. The ex-
istence of the ordinary limit of a function f at ∞ implies the existence of
the statistical limit of f at ∞ with the same value. The notion of statistical
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limit also enjoys the property of additivity and homogeneity. (See [5] for
further details.)
It is easy to see that the particular choice of the left endpoint a of the

definition domain of f is indifferent in (1.1). That is, if (1.1) is satisfied for
some a ≥ 0, then it is satisfied for any a1 ≥ 0 in place of a. For the sake of
simplicity in writing, in what follows we assume that a := 0.
We recall that a real-valued function f is said to be slowly decreasing (in

the sense of Schmidt; see [7] for the discrete case) if

(1.2) lim
λ→1+

lim inf
x→∞

inf
x≤t≤λx

[f(t)− f(x)] ≥ 0.

Since the auxiliary function

a(λ) := lim inf
x→∞

inf
x≤t≤λx

[f(t)− f(x)]

is evidently decreasing in λ on the interval (1,∞), the right-hand limit in
(1.2) exists, and limλ→1+ in it can be equivalently replaced by supλ>1.
It is easy to check that (1.2) is satisfied if and only if for every ε > 0

there exist x0 = x0(ε) > 0 and λ0 = λ0(ε) > 1, the latter as close to 1 as
we want, such that

(1.3) f(t)− f(x) ≥ −ε whenever x0 ≤ x ≤ t ≤ λ0x.
We note that the symmetric counterpart of the notion of slow decrease

is the following: a real-valued function f is said to be slowly increasing if

(1.4) lim
λ→1+

lim sup
x→∞

sup
x≤t≤λx

[f(t)− f(x)] ≤ 0.

Clearly, f is slowly increasing if and only if the function−f is slowly decreas-
ing. In particular, the right-hand limit limλ→1+ in (1.4) can be equivalently
replaced by infλ>1.
We recall that a complex-valued function f is said to be slowly oscillating

if

(1.5) lim
λ→1+

lim sup
x→∞

sup
x≤t≤λx

|f(t)− f(x)| = 0.

Again, the right-hand limit limλ→1+ in (1.5) can be equivalently replaced
by infλ>1.
It is easy to check that (1.5) is satisfied if and only if for every ε > 0

there exist x0 = x0(ε) > 0 and λ0 = λ0(ε) > 1, the latter as close to 1 as
we want, such that

(1.6) |f(t)− f(x)| ≤ ε whenever x0 ≤ x ≤ t ≤ λ0x0.
In particular, a real-valued function f is slowly oscillating if and only if it
is both slowly decreasing and slowly increasing.
We recall that a function f is said to be locally absolutely continuous on

R+, in symbols: f ∈ ACloc(R+), if the derivative f ′ exists almost everywhere
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on R+, f
′ is locally integrable (in Lebesgue’s sense) on R+, in symbols:

f ′ ∈ Lloc(R+), and

(1.7) f(t) =

t\
0

f ′(y) dy, t ∈ R+.

It is easy to check that if a real-valued function f ∈ ACloc(R+) satisfies
Landau’s one-sided Tauberian condition:

(1.8) yf ′(y) ≥ −H for some constant H > 0 and almost every y ∈ R+

(see [4] and also [3, pp. 124–126] for the discrete case), then f is slowly de-
creasing. Furthermore, if a complex-valued function f ∈ ACloc(R+) satisfies
Hardy’s two-sided Tauberian condition:

(1.9) y|f ′(y)| ≤ H for some constant H and almost every y ∈ R+

(see [2] and also [3, p. 121] for the discrete case), then f is slowly oscillating.

We note that the discrete analogues of (1.8) and (1.9) are the following
conditions:

(1.10)
(i) k(sk − sk−1) ≥ −H,
(ii) k|sk − sk−1| ≤ H,

k ≥ k0,

respectively, where (sk : k = 0, 1, . . .) is a given sequence of real or complex
numbers, while H and k0 are positive constants.

2. Main results. In Theorems 1 and 2 below we prove nondiscrete
analogues of [6, Lemmas 6 and 7], without using the so-called decomposition
theorem (see [5, Thoerem 1]) in the proof.

Theorem 1. Assume f is a real-valued , measurable and slowly decreas-
ing function on R+. If the statistical limit ℓ of f exists at ∞, then the
ordinary limit of f also exists at ∞ and equals ℓ.

Theorem 2. Assume f is a complex-valued , measurable and slowly os-
cillating function on R+. If the statistical limit ℓ of f exists at ∞, then the
ordinary limit of f also exists at ∞ and equals ℓ.

We note that the discrete versions of Theorems 1 and 2 in the special
cases when the condition of slow decrease is replaced by (1.10i), and respec-
tively when the condition of slow oscillation is replaced by (1.10ii), were
proved in [1].

We recall that a function f ∈ Lloc(R+) is said to be statistically summable
(C, 1) at ∞ to ℓ if

st-lim
x→∞

σ(x) = ℓ,
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where

(2.1) σ(x) :=
1

x

x\
0

f(t) dt, x > 0,

is the (C, 1) mean function of f . (See, for example, [3, p. 11] or [8, p. 26].)

It is routine to show that if a function f ∈ Lloc(R+) is bounded almost
everywhere on R+ and the statistical limit ℓ of f exists at ∞, then

lim
x→∞

1

x

x\
0

|f(t)− ℓ| dy = 0,

whence it follows that f is statistically summable (C, 1) at ∞ to ℓ. (See [5,
Theorem 2].)

In the following, we study the reverse implication under so-called Taube-
rian conditions. Our Theorems 3 and 4 below are nondiscrete analogues of
[6, Theorems 1 and 2].

Theorem 3. Assume f ∈ Lloc(R+) is a real-valued , slowly decreasing
function. If f is statistically summable (C, 1) at ∞ to ℓ, then the ordinary
limit of f exists at ∞ and equals ℓ.
Theorem 4. Assume f ∈ Lloc(R+) is a complex-valued , slowly oscillat-

ing function. If f is statistically summable (C, 1) at∞ to ℓ, then the ordinary
limit of f exists at ∞ and equals ℓ.
It is interesting to apply Theorems 3 and 4 in the particular case when

f ∈ ACloc(R+). By (2.1) and (1.7), using Fubini’s theorem, we obtain

σ(x) :=
1

x

x\
0

f(t) dt =
1

x

x\
0

{

t\
0

f ′(y) dy
}

dt

=

x\
0

f ′(y)

(

1− y
x

)

dy, x > 0.

Now, it is well known (see, e.g., [8, pp. 26-27]) that if the improper integral

(2.2)

→∞\
0

f ′(y) dy

is convergent, that is, if the finite limit

(2.3) lim
x→∞

x\
0

f ′(y) dy = ℓ

exists, then the ordinary limit

(2.4) lim
x→∞
σ(x) = ℓ
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also exists. The reverse implication is not true in general. However, if the
derivative f ′ of a real-valued function f ∈ ACloc(R+) is of constant sign,
then the limits in (2.3) and (2.4) exist (or not) simultaneously.

The following two corollaries are immediate consequences of Theorems
3 and 4, respectively.

Corollary 1. Assume f ∈ ACloc(R+) is a real-valued function satisfy-
ing condition (1.8). If f is statistically summable (C, 1) at ∞ to ℓ, then the
improper integral (2.2) is convergent to ℓ.

Corollary 2. Assume f ∈ ACloc(R+) is a complex-valued function
satisfying condition (1.9). If f is statistically summable (C, 1) at ∞ to ℓ,
then the improper integral (2.2) is convergent to ℓ.

3. Auxiliary results, including nondiscrete analogues of Vija-

yaraghavan’s lemma. Our first lemma is interesting in itself and may be
useful in other investigations.

Lemma 1. If the statistical limit ℓ of a function f exists at ∞, then for
any ε > 0 and λ > 1, there exists an increasing sequence (bn : n = 1, 2, . . .)
of positive numbers tending to ∞ such that
(3.1) |f(bn)− ℓ| ≤ ε, n = 1, 2, . . . ,

and for some natural number n0 = n0(ε, λ), we have

(3.2) bn+1 < λbn, n = n0 + 1, n0 + 2, . . . .

Proof. By definition (1.1) with a := 0, there exists b1 > 0 such that
(3.1) is satisfied for n = 1. There are two cases: (i) there exists some b2 ∈
(
√
λ b1, λb1) for which (3.1) is satisfied for n = 2; (ii) there is no such b2,

that is, we have

|f(t)− ℓ| > ε for every t ∈ (
√
λ b1, λb1).

In the latter case, we choose some b2 ≥ λb1 for which (3.1) is satisfied for
n = 2 (such a b2 certainly exists, due to (1.1)).

Then we repeat the previous step by starting with b2 in place of b1, and
so on. As a result, we obtain an increasing sequence (bn : n = 1, 2, . . .) of
positive numbers tending to ∞ such that (3.1) is satisfied for all n.
We claim that the case when

(3.3) |f(t)− ℓ| > ε for every t ∈ (
√
λ bn, λbn)

cannot occur for infinitely many values of n. Otherwise, for infinitely many
n we would have

1

bn
|{x ∈ (0, bn) : |f(x)− ℓ| > ε}| ≥ λ−

√
λ > 0,
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which clearly contradicts (1.1). If we denote by n0 the largest value of n
(perhaps n0 = 0) for which inequality (3.3) occurs, then (3.2) is also satis-
fied.

Our Lemma 2 below can be considered to be a nondiscrete analogue of
the famous Vijayaraghavan lemma (see [9, Lemma 6]), under less restrictive
conditions.

Lemma 2. If a real-valued function f is such that condition (1.3) is sat-
isfied only for ε := 1, where x0 > 0 and λ0 > 1, then there exists a positive
constant B such that

(3.4) f(t)− f(x) ≥ −B ln t
x
for all x0 ≤ x <

t

λ0
.

Proof. For given x0 ≤ x < t/λ0, we set

(3.5) t0 := t, tp :=
tp−1
λ0
, p = 1, . . . , q + 1,

where q is determined by the condition

(3.6) tq+1 ≤ x < tq.
By (1.3) and (3.6), we estimate as follows:

(3.7) f(t)− f(x) =
q
∑

p=1

[f(tp−1)− f(tp)] + [f(tq)− f(x)] ≥ −q − 1.

It is clear that

(3.8) λq0 =
t

tq
<
t

x
, or equivalently, q <

1

lnλ0
ln
t

x
.

Combining (3.7) and (3.8) gives

(3.9) f(t)− f(x) > −1 + 1

lnλ0
ln
t

x
, x0 ≤ x <

t

λ0
.

Taking into account that λ0 < t/x, we obtain (3.4) with B := 2/lnλ0.

The next lemma is the counterpart of Lemma 2 in the complex-valued
case.

Lemma 3. If a complex-valued function f is such that condition (1.6)
is satisfied only for ε := 1, where x0 > 0 and λ0 > 1, then there exists a
positive constant B such that

(3.10) |f(t)− f(x)| ≤ B ln t
x
for all x0 ≤ x <

t

λ0
.

Proof. It runs along the same lines as the proof of Lemma 2. For given
x0 ≤ x < t/λ0, we consider t0, t1, . . . , tq+1 defined by (3.5) and (3.6). By
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(1.6) and (3.6), we estimate as follows:

(3.11) |f(t)− f(x)| ≤
q
∑

p=1

|f(tp−1)− f(tp)|+ |f(tq)− f(x)| ≤ q + 1

(cf. (3.7)). Combining (3.8) and (3.11) gives

|f(t)− f(x)| ≤ 1 + 1

lnλ0
ln
t

x
, x0 ≤ x <

t

λ0

(cf. (3.9)), whence (3.10) follows with B := 2/lnλ0.

Lemma 4. Under the assumptions of Lemma 2, there exists a positive
constant B1 such that

(3.12)
1

t

t\
x0

[f(t)− f(x)] dx ≥ −B1 whenever t > λ0x0.

Proof. It hinges on the crucial Lemma 2. By (1.3) and (3.4), we estimate
as follows:

t\
x0

[f(t)− f(x)] dx =
{

t/λ0\
x0

+

t\
t/λ0

}

[f(t)− f(x)] dx(3.13)

≥ −B
t/λ0\
x0

ln
t

x
dx−

t\
t/λ0

dx.

Since

(3.14)

t/λ0\
x0

ln
t

x
dx ≤

t/λ0\
0

[ln t− lnx] dx = t(1 + lnλ0)
λ0

,

from (3.13) it follows that

(3.15)
1

t

t\
x0

[f(t)− f(x)] dx ≥ −B 1 + lnλ0
λ0

− 1 for every t > λ0x0.

This inequality proves (3.12) with B1 := B(1 + λ0 + lnλ0)/λ0.

The counterpart of Lemma 4 in the complex-valued case reads as follows.

Lemma 5. Under the assumptions of Lemma 3, there exists a positive
constant B1 such that

(3.16)
1

t

t\
x0

|f(t)− f(x)| dx ≤ B1 whenever t > λ0x0.
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Proof. It runs along the same lines as the proof of Lemma 4. By (1.6)
and (3.10), we estimate as follows:

(3.17)

t\
x0

|f(t)− f(x)| dx ≤ B
t/λ0\
x0

ln
t

x
dx+

t\
t/λ0

dx

(cf. (3.13)). Combining (3.14) and (3.17) gives

1

t

t\
x0

|f(t)− f(x)| dx ≤ B 1 + lnλ0
λ0

+ 1 for every t > λ0x0

(cf. (3.15)). This inequality proves (3.16) with B1 := B(1+λ0+lnλ0)/λ0.

4. Proofs of Theorems 1–4

Proof of Theorem 1. It hinges on Lemma 1, according to which for any
ε > 0 and λ > 1, there exists an increasing sequence (bn : n = 1, 2, . . .)
of positive numbers tending to ∞ such that conditions (3.1) and (3.2) are
satisfied.
By the condition (1.3) of slow decrease, we have

(4.1) f(t)− f(bn) ≥ −ε whenever x0(ε) ≤ bn < t < λbn.
Since bn →∞ as n→∞, this is certainly the case if n is large enough, say
n > n1. From (3.1), (3.2) and (4.1) it follows that if n > max{n0, n1}, where
n0 occurs in (3.2), then for every t ∈ (bn, bn+1], we have
(4.2) f(t)− ℓ = [f(t)− f(bn)] + [f(bn)− ℓ] ≥ −2ε.
Taking into account that if t ∈ (bn, bn+1], then bn < t ≤ bn+1 < λt, by

(1.3), we can also conclude that

f(bn+1)− f(t) ≥ −ε whenever t ∈ (bn, bn+1].
Combining this with (3.1) and (4.1) gives that if n > max{n0, n1} =: n2,
then for every t ∈ (bn, bn+1], we have
(4.3) f(t)− ℓ = [f(t)− f(bn+1)] + [f(bn+1)− ℓ] ≤ 2ε.
Putting together (4.2) and (4.3) yields

|f(t)− ℓ| ≤ 2ε for every t ∈
∞
⋃

n=n2+1

(bn, bn+1] = (bn2+1,∞).

Since ε > 0 is arbitrary, this means that the ordinary limit of f exists at ∞
and equals ℓ.

Proof of Theorem 2. By Lemma 1, for any ε > 0 and λ > 1, there exists
an increasing sequence (bn : n = 1, 2, . . .) of positive numbers tending to ∞
such that conditions (3.1) and (3.2) are satisfied.
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By the condition (1.6) of slow oscillation, we have

(4.4) |f(t)− f(bn)| ≤ ε whenever x0(ε) ≤ bn < t < λbn
(cf. (4.1)). Since bn → ∞ as n → ∞, this is certainly the case if n is large
enough, say n > n1. From (3.1), (3.2) and (4.4) it follows that

|f(t)− ℓ| ≤ |f(t)− f(bn)|+ |f(bn)− ℓ| ≤ 2ε

for every t ∈
⋃∞

n=n2+1
(bn, bn+1] = (bn2+1,∞), where n2 := max{n0, n1} and

n0 occurs in (3.2). Since ε > 0 is arbitrary, this means that the ordinary
limit of f(t) exists at ∞ and equals ℓ.

Proof of Theorem 3. It hinges on Lemma 4 and Theorem 1.

First, we prove that if the condition (1.3) of slow decrease is satisfied for
a single ε > 0, say ε := 1, then we have

(4.5) lim inf
x→∞

f(x)

x
≥ 0.

Indeed, from (1.3) with ε = 1 it follows that for p = 1, 2, . . . we have

f(λp0x0)− f(x0) ≥ −p, where x0 := x0(1) > 0 and λ0 := λ0(1) > 1.

This means that

f(λp0x0)

λp0x0
≥ f(x0)
λp0x0

− p

λp0x0
→ 0 as p→∞.

Now, (4.5) is obvious.

Second, we prove that if a real-valued function f ∈ Lloc(R+) is slowly
decreasing, then so is its (C, 1) mean function σ(x) defined in (2.1). To this
end, let some 0 < ε < 1 be given, and let

(4.6) x0 ≤ x ≤ t ≤ λ0x,

where x0 := x0(ε) and λ0 := λ0(ε) occur in (1.3) and this time λ0 is chosen
so that

(4.7) 1 < λ0 ≤ 1 +
ε

B1
.

By definition (2.1), we may write

(4.8) σ(t)− σ(x) := 1
t

t\
0

f(y) dy − 1
x

x\
0

f(y) dy

= − t− x
tx

x\
0

f(y) dy +
1

t

t\
x

f(y) dy
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=
t− x
tx

x\
0

[f(x)− f(y)] dy + 1
t

t\
x

[f(y)− f(x)] dy

=
t− x
tx

{

x0\
0

+

x\
x0

}

[f(x)− f(y)] dy + 1
t

t\
x

[f(y)− f(x)] dy

=
t− x
tx
x0f(x)−

t− x
tx

x0\
0

f(y) dy +
t− x
tx

x\
x0

[f(x)− f(y)] dy

+
1

t

t\
x

[f(y)− f(x)] dy =: I1 + I2 + I3 + I4, say.

It follows from (4.5) that

(4.9) lim inf
x→∞

I1 ≥ 0.

Since f ∈ Lloc(R+), we have
(4.10) lim

x→∞
I2 = 0.

By (4.6), we see that (t − x)/t ≤ (λ0 − 1)x. Using this fact and (4.7), an
application of Lemma 4 yields

(4.11) I3 ≥ −(λ0 − 1)B1 ≥ −ε.
Finally, (1.3) applies (again due to (4.6) and (4.7)) and gives

(4.12) I4 ≥ −ε.
Putting (4.8)–(4.12) together yields

σ(t)− σ(x) ≥ −4ε whenever x ≤ t ≤ λ0x,
provided that x is large enough, where we have also taken into account the
limit relations in (4.9) and (4.10). Thus, we have proved that σ(x) is also
slowly decreasing.
Third, making use of Theorem 1 yields the existence of the ordinary

limit of σ(x) with the same value ℓ as x→∞. Applying Schmidt’s classical
Tauberian theorem (see [7]) yields the ordinary convergence of the function
f(x) itself as x→∞.
Proof of Theorem 4. It hinges on Lemma 5 and Theorem 2.
Similarly to (4.5), it follows from the condition (1.6) of slow oscillation

that

(4.13) lim
x→∞

f(x)

x
= 0.

Now, we prove that if a function f ∈ Lloc(R+) is slowly oscillating, then
so is its (C, 1) mean function defined in (2.1). To this end, let some 0 < ε < 1
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be given and consider those x and t for which conditions (4.6) and (4.7) are
satisfied. By (4.8), we estimate as follows:

|σ(t)− σ(x)| ≤ t− x
tx
x0|f(x)|+

t− x
tx

x0\
0

|f(y)| dy(4.14)

+
t− x
tx

x\
x0

|f(x)− f(y)| dy + 1
t

t\
x

|f(y)− f(x)| dy

=: J1 + J2 + J3 + J4, say.

It follows from (4.13) that

(4.15) lim
x→∞
J1 = 0.

Since f ∈ Lloc(R+), we have
(4.16) lim

x→∞
J2 = 0.

By (4.6), we see that (t − x)/t ≤ (λ0 − 1)x. Using this fact and (4.7), and
applying Lemma 5 yields

(4.17) |J3| ≤ (λ0 − 1)B1 ≤ ε.
Finally, (1.6) applies (again due to (4.6) and (4.7)) and gives

(4.18) |J4| ≤ ε.
Putting (4.14)–(4.18) together yields

|σ(t)− σ(x)| ≤ 4ε whenever x ≤ t ≤ λ0x,
provided that x is large enough, where we have also taken into account the
limit relations in (4.15) and (4.16). Thus, we have proved that σ(x) is also
slowly oscillating.
Consequently, by Theorem 2, σ(x) converges to ℓ in the ordinary sense

as x→ ∞. Applying Schmidt’s classical Tauberian theorem (see [7]) yields
the ordinary convergence of the function f(x) itself as x→∞.
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