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DIRICHLET FORMS ON QUOTIENTS OF SHIFT SPACES

BY

MANFRED DENKER (Géottingen), ATSUSHI IMAI (Osaka)
and SUSANNE KOCH (Hamburg)

Abstract. We define thin equivalence relations ~ on shift spaces &/ and derive
Dirichlet forms on the quotient space X' = &/°°/~ in terms of the nearest neighbour aver-
aging operator. We identify the associated Laplace operator. The conditions are applied
to some non-self-similar extensions of the Sierpinski gasket.

1. Introduction. A fractal set is commonly defined as a compact subset
K of some Polish space {2 with a fixed metric d satisfying

K =] F(K),
i€

where F; : 2 — 2,1 € o/ ={1,...,s} (s € N), are continuous maps ([10]).
In many cases, for example when all F; are contractions, the fractal set K
has a representation as a (continuous) factor of the one-sided shift space .7
such that each diagram

of Si of

a |

F;

K K
commutes, where I is continuous and S; : &> — &/°° maps an infinite
sequence x1,T2,... to the sequence i,x1,xa,....

The fractal set K is called self-similar if for each i € & and all z,y € {2,
d(Fi(x), Fi(y)) = rid(z,y)

for some r; € (0,1), and it is called post-critically finite if it is connected and
there exists a finite boundary set Vj C K such that

Fi(K) N Fj(K) = F;(Vo) N Fj(Vo) C 2\ Vo (i # j)
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and each point in Vj is a fixed point for some map Fj. For post-critically finite
self-similar fractal sets the factor map is an almost topological isomorphism
in the sense of [1], hence all Bernoulli measures p on .27°° can be considered
on the quotient space. For such fractal sets and Ls-spaces the construction
of Dirichlet forms has been investigated by several authors (cf. [10]).

In what follows we consider the abstract setting of the diagram disre-
garding the motivation arising from fractal geometry. We are interested in
deriving Dirichlet forms on Ly(x) which are determined by the equivalence
relation given by the preimage relation of I1, thus extending previous con-
structions to non-fractal settings, and continuing our previous investigations
in [2]-[5] and [7].

In order to describe the general framework of the present paper, consider
an equivalence relation on the space of all infinite sequences of letters from a
finite alphabet. This relation does not need to be shift invariant, as it is the
case for post-critically finite fractal sets. We only consider those relations
for which the Bernoulli measure with uniform marginals can be regarded
as a probability measure on the quotient space. The representation by se-
quence spaces defines balls in a natural way and operators averaging over
midpoints of neighbouring balls (in the quotient topology). This will be used
to construct Dirichlet forms & on the Lo-space of the Bernoulli measure pu.

We recall the definition of a Dirichlet form. Let {2 be a locally compact
separable Hausdorff space and p be a positive Radon measure on {2 for
which Supp(u) = 2. A Dirichlet form € on Lo({2, ) is a non-negative
definite symmetric bilinear form defined on a dense linear subspace Dom[€£] C
Ly(£2, ), for which the following properties hold:

(1) € is closed, i.e. Dom[€] is complete with respect to the metric which
is induced by the form &(f, g) :== E(f,9) + §, fgdu, f,g € Dom[€],

(2) &€ is Markovian, i.e. for each ¢ > 0, there exists a real function ¢.
on R such that

o ¢ (t)=ton[0,1], —e < p:(t) < 1+econRand 0 < ¢.(t) —¢.(t) <
t—tforall t <t
e for f € Dom[€] also ¢.o f € Dom[€] and E(p-o f,p-0f) < E(f, f).

The construction closely follows Friedrichs’ extension procedure (see [6]),
starting with a sufficiently rich class of functions on which the above averag-
ing operator is defined. We show that this symmetric form is Markovian and
closable, thus extending to a Dirichlet form. In fact, we formulate this result
for an abstract measure m which may be the sum of the Bernoulli measure
p and a boundary measure v. Such a splitting admits a decomposition

éam(QSv ’(7[)) = Cg&#(gsv Q;Z)) + é&y(d), 1/’)

of the corresponding Dirichlet forms for certain continuous functions, which
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may be regarded as a generalized Green’s formula. In particular, we thus
obtain the Dirichlet and Neumann extensions.

By the spectral theory for self-adjoint operators the Laplacian A associ-
ated to a Dirichlet form is well defined by

E(p, ) ==\ A(¢) pdo, o€ {m,p,v},

whence the right hand side represents the classical “differential” operator for
o = p and the negative of the Neumann derivative for o = v. Since the
Beurling-Deny conditions must be satisfied, we also see that for all ¢ > 0
the operators e 4 are positivity-preserving, and consequently, define a re-
versible Markov process ([6]) which may be considered as Brownian motion
on the quotient space.

In order to illustrate these ideas and definitions, consider {2 the unit
interval [0, 1] and let &7 = {0, 1}. The equivalence relation zj ..., 0111 - ~
x1...2,1000... defines the dyadic representation of reals in [0, 1] (&> /~
is isomorphic to (2). A Dirichlet form on the Ly-space of Lebesgue measure
is given by

&(u,v) = /()0 (2) dz = — ' (2)v(2) dz + v/ (1)v(1) — v/ (0)v(0)

(u € C%(]0,1]), v € C*([0,1])) with associated Laplace operator Au = u".
This also illustrates the idea behind the analysis for the Sierpinski gasket in
N dimensions in Section 6.

In Section 2 we set up the notations, assumptions and necessary defini-
tions. Section 3 contains the basic result (Theorem 1) which gives conditions
for the existence of a Dirichlet form on the space of square-integrable func-
tions on the quotient space. In Section 4 we prove a Gauss—Green formula
for the Laplace operator defined by this Dirichlet form. An example of an
equivalence relation is considered in Section 5. We construct a suitable dense
set of functions satisfying the assumptions of the main theorem and for the
existence of the “differentiable” form of the Laplace operator. Applications
are given in Section 6. The method immediately applies to the Sierpinski gas-
ket and we derive as a special case Kigami’s Laplace operator ([9]). Other,
new examples are also obtained in Section 6.

Acknowledgements. We would like to thank the referee for a care-
ful reading of the original manuscript and drawing our attention to several
unclear statements.

2. Preliminaries. Consider a finite alphabet o/ := {1,..., N}, N > 2.
The space of finite words over & is defined by I = {w = w;...w, :
1 < w; < N,n € N} U {0}, where () is the empty word consisting of no
letter. Set .7, = 7 \ {0}. For 0 < n < oo, let &/™ denote the collection of
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words consisting of n symbols. The space 7 U .2/ has a metrizable, natural
topology. For x € &/™ and 0 < n < oo, the length of a word is defined
by d(x) :=n. If w = w; ... w, is a finite word, set w~ = wy ... w,_1. We
denote by 7(w) := w, the last letter of w. The product of w = wy ... wy,
€ 7 and X = 2122... € T U is defined by wx := wy ... w,r1272... €
T U /. Moreover, the nth power of a letter is defined by

1) if n =0,
a" := { ntimes

—— .
a...a otherwise,

where 0 <n < oo and a € &7.
If ~ is an equivalence relation, we denote by (x) the equivalence class of
X € &/ and by
II:ad® —YX=9g>/~

the quotient map IT onto the quotient space X

DEFINITION 1. An equivalence relation ~ on &7 is called thin if there
is an embedding v : 7, — X such that

(1) v(74) contains all points in X' which, as an equivalence class, are of
cardinality > 2.

(2) Equivalence classes are finite and of uniformly bounded cardinality
with upper bound R € N.

(3) For every x = x1x3... € &/ we have

lim y(xy...2,) = (x) € 2.
n—oo

If ~ is a thin equivalence relation the quotient space is metrizable, and
we fix a metric d to describe the quotient topology on X.

If o € C(X) we write ¢, = ¢ 0. A thin equivalence relation defines an
equivalence relation on .7 by setting

w ~ v if and only if d(w) =d(v) and y(w) = ~v(v).

The equivalence class of v will be denoted by (v) C .7. For a finite word
w € /" define

[w]={{ € X :3rvesuchthat w=2x1...2,}.

For example, the Sierpinski equivalence relation is defined by x = z1xo... ~
Y = y1y2 ... if there is an n € N such that z,, =y, for all 1 < m <n — 1,
Tpik = Yn and Yp4p = x, for all £ > 1, and the embedding is v(w) =
(wy . ..wd(w)wg?w)>. This equivalence relation has been studied by Denker
and Sato in [4] and by Denker and Koch in [2]. In case N = 2 it reduces
to the dyadic representation of reals in the unit interval. Imai considered
another equivalence relation for the pentakun in [7].
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LEMMA 1. If ~ is a thin equivalence relation, then the Bernoulli measure
Woon &% with uniformly distributed 1-dimensional marginals is mapped to
{(&) € X : |(&)| = 1} via the map x — {(x). Denote this image measure also
by .

Let w € 7, and ¢ € C(X) and define the operator D : C(X) — C(74)
by

(DE)(w) = 1 3 0w 7)oy ().
(1<

Let 0 = (on)nen be a sequence of strictly positive reals converging to
zero. Call a function ¢ € C(X) o-continuous if there exists a constant cy,
satisfying

(YU (uz)) —¢p(II(ay))| < cpon,  d(u) =n,

and let D, denote the subspace consisting of these functions.

3. Dirichlet forms on quotient spaces. In this section we consider a
thin equivalence relation on 7°° and derive conditions for the existence of
certain Dirichlet forms on Lo-spaces of measures on 3.

To begin with, note the following easy fact:

LEMMA 2. For any two functions p,9 : X — R,

Z ﬁ{ Z (DQP)(V)}Q)Z)V(W) = Z (D) (W) (W)

wea™ ve(w) we™
== Y (Dp)(W)(D¥)(w).
wegn
Proof. Since v ~ w = y(v) = v(w), the claim follows easily from

> it X et = 3 3 0 m)
ve(w)

wedm vE(w) wen
= ) (Do) (V)i (v),
vegn
and .
> (Do) (V)% > y(via)=0.
vegn acd

For all n € N, let I,, denote a positive real constant and let o0 = (05,)nen-
Let m,m,, denote probability measures on X' such that m,([w]) € (0, o0]
for w € /™ and m, converges weakly to m. Define o : J;, — R, by
a(w) = 1/mgiw)([w]). For ¢ € C(X) and n € N, let

o2, = 3 o (w)a(w) .

weg ™
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It follows that

Tim Y oy (w)Pa(w) T = [l aom)
wen

PROPOSITION 1. Let D denote the set of all functions ¢ € D, such that

B w2 Y aw)(éw) - o (wa)' <,
wEeEA " acd
2 D >2<
(3:2) suply ) alw <r< >\v€%( D)) <o

Then D is a linear subspace of Lo(p), and for any function ¢ € D and
any twice differentiable function g : R — R with bounded first and second
derivatives, also go ¢ € D. Moreover, for all ¢ € D there exists a constant

Cy such that for any ¢ € C(X) and n € N,
In Y, (DO)(w)in(w)| < Col[¢l|an-

we "

(3.3)

Proof. Clearly, D is a linear subspace.

Let ¢ € D and g : R — R be a twice differentiable function with bounded
first and second derivative. By the mean value property of g it follows for
v,w € 7 that

19(67(w)) = g(Sy (V)] < 19 lloc] 7 (W) = b(V)],

hence g o ¢ € D,, and moreover, condition (3.1) holds for g o ¢.
By Taylor expansion, for n large enough and for some 1 : 7, x & — R4
with supve&{n acy N(v,a) — 0 as n — oo it follows that

S X 0weanm)’

GQ{" ve(w)

By V;‘L[; )(DO)(v)

WEQ/"

2

+—Zg” Dy (W) + 1(v, ) {$y(v) — %(Vi)}Q]

i€/

1 2
<2 P12 Y a(w)(m > (qu)(V))

wegm ve(w)
I_r% 12 1 4
21 DD alw) {6 (w) — gy (wi
WEQf" 1€

Now (3.2) for g o ¢ follows from (3.1) and (3.2) for ¢.
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Finally, we show (3.3). Let ¢ € D and ¢ € C(X). By Lemma 2 and
Hélder’s inequality,

L Y (DY)(w)u(w)|

weg "

Y Y <D¢>(VWW>'

wed " ve(w)
2 a(w L A i w)2a(w) ! v
s{fnwg;ﬂ ( >(,<W>‘ve§<;v>w¢>< ) 3 dnlwraw b

The claim follows immediately from (3.2) and Lemma 1. =
LEMMA 3. If (3.2) holds for ¢ € C(X), then
(3.4) Tm L Y (6y(W) = dy(wa))' =0
wed", acd
Proof. A direct calculation shows

I Z (fy(W) — <b«,(wa))4

wEA ", aEd
< sup |¢7(W) - ¢7(W_b)|21n
weS", bed
X Z (¢7(W)2 —2¢y(W)gy (W™ a) + ¢7(W_a)2)
wES, acd
=—2N el |65(W) — 6y (W b)* L, VGZW ¢ (v)(Do)(v)
= — su W) — wb)|? v L u
=N sup[6(w) — 6 (w D) IRVEZJ;HW )\<v>l§vw¢)()
<2N sup |py(W)— ¢v<w_b)’2
wEeS, bed
2 Y o Y waw) |
lollant? 3= o) (s Taw) |

veg™ u~v

This last expression converges to 0 because of (3.2) and continuity of ¢. =

Whenever the limit exists, define

35  Slew)=—lm I, 3 L ST (De)v) b (w)

wegm ’ <W> ‘ ve(w)

— lm I, 3" (Dp)(w)(DY)(w),

weg"
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THEOREM 1. Let Dy C D generate an La(m)-dense subspace. Assume
that for every p € Dy and every 1 € D the form &(p, 1)) in (3.5) exists. Then
(&,D1) extends to a Dirichlet form on La(m) with domain containing D.

Proof. We first remark that the form &(p,1) extends to finite linear
combinations of functions from D;. Therefore we may as well assume that
D, is a dense, linear subspace of Ly(m). By (3.3) in Proposition 1, we can
also extend the form &(-,-) to D x C(X). Since & is symmetric by Lemma 2,
for a Cauchy sequence ¢; € Dy (I > 1), converging to ¢ € C'(X) in La(m),
the sequence & (¢y, ) (¢ € D) is convergent:

|8 (01 — @1, V)| = |8, o1 — i)

=-Jm L ), oo o — o1)7(W)

we Q/" VW

< Cy lim g — SOk:Ha,n = Cyller = erllLam)
shows that & (g, 1)) is a Cauchy sequence. We define its limit as
E(p.) = lim 8(pn. ).

Moreover, by (3.3), for ¢ € D and 9y, € D; converging to 1) € D we deduce
that for every k € N,

limsup |1 Z ’ Z v)(¢¥ — T/fk) (w)| < CSC’Hw_wk”LQ(m)
n— oo EJJ” VoW
Therefore
E(p, ) = lim I, Y (Dp)(w)(Dy)(w), @9 €D.
weg "

It follows that we may assume D; = D.

Clearly, & is bilinear, non-negative definite and symmetric by Lemma 2.

In order to show that & extends to a Dirichlet form it is sufficient to
show that (&, D) is Markovian and closable (see e.g. [6]).

We begin showing the Markov property (see Section 1). By Proposition 1
again, D contains all functions of the form g o ¢ for every ¢ € D and every
g € C?*(R) with bounded first and second derivative, in particular those
satisfying

o<y <1,

(2) —e < g(t) <1+ ¢ for some € > 0,

(3)gt)y=tfor 0 <t < 1.

Using Taylor expansion for g around ¢,(v) for each v € &/", and since
llg'[|loc < 1, we have
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2
~ 1. ¥ {0 + 55 X o0, ) - (v 0l

acsl

<1, Z ((Do)(v }2—1-0([ Z Z 0y (W) — o (W a))4}1/2)’

vegm wed" acd

where 6y, is some value in the interval determined by ¢(v) and (v~ a).
Letting n — oo and applying (3.4) of Lemma 3 shows that &(go ¢, gop) <
E(p, ).

Finally, we show that & is closable, i.e. if ¢; € D, & (¢ — ¢, d1 — dx) — 0
(k,l — o0) and ||¢y||l2 — 0 (I — o0), then &(¢py, ¢y) — 0 (I — 00). Let ¢y € D,
¢ — 0in Lo(m) and ¢ € D. By (3.3), for some constant Cy, > 0, we obtain

Yl S 0w et

wedm ve(w)
< CCyllonll Lo (m)-

The last expression tends to 0 as [ — oco. It is well known that this property
is sufficient to prove that & is closable. m

The following fact has been shown in the previous proof.

COROLLARY 1. The form & is well defined on D x C(X).

4. Gauss—Green formula. We define the notion of boundaries in X,
continue with the definition of the Laplace operator Ay on the quotient
space X and finally prove the Gauss—Green formula for this operator and
the Dirichlet form constructed in the last section.

DEFINITION 2. Let ~ be a thin equivalence relation with embedding 7.
A set X C X is called a boundary if it has the following properties:
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(1) 0% is compact and nowhere dense.

(2) There is a set .7, C .7 such that v(.Z;) is dense in 0% and satisfies
(w) € 7, for w € .

(3) For each n € N the set

U, ={¢ € X :3x €& such that z;...x, € T,}
is a neighbourhood of 9X.

Note that (,cy Un = 0%, since for X 5 n € [w"] C U, there is some
x € n with z7 ...z, = w", whence

d(n,y(w™)) < d({x),v(w")) = 0.
Define
A'={ued" :Nabe I, weE T, vou=v bt w a}.
LEMMA 4.

(1) Let p denote the Bernoulli measure with uniformly distributed one-
dimensional marginals, and suppose that w(0X) = 0. Then V,, =
Uvg%n [v] satisfies U,, C V,, and lim,,_.~ p(V,) = 0.

(2) Ifue ] and v ~u, then v € .

(3) Ifue & and a € o7, thenu"a & .

Proof. Since
v=U U UUUHmw
weA " NI, a€l vow—a bES u~v—b
one immediately deduces

W(Vy)) < |&™ N ZINT"N2R? < N2R2u( U [U]) 0
veEA NI
as pu(0X) =0 and p is regular.
(2) and (3) are immediate consequences of the definition of 27". m

Let D; be a dense set of p-continuous functions ¢ € C(X) with some
fixed sequence o = (I, })pen-

DEFINITION 3. Suppose 02X is a boundary for the equivalence relation ~,
and m is a Borel measure on X. Define p(A) = m(A\ 0%) and v(A) =
m(ANoX). We call m = u + v the splitting of m.

(1) Let o0 = (I, Y)nen. The Laplace operator Ayx on X is defined on

n

Dom(Ayx) C D, C La(p) such that Axpp =1 if

(4.1) lim InN”KjV—>| S (D)) = v(n)

uniformly in w € &7 converging to some n € X.
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(2) Let ¢ € C(X). A function d¢/dn € Ly(v) is called the Neumann
derivative of ¢ if for every x € £ € X (in fact the following limit is
independent of the choice of a representative in &),

o LlZna"

THEOREM 2. Let 0X be a boundary and m be a Borel measure on X
with splitting m = p+ v. Assume that u is the Bernoulli measure on X with
uniformly distributed one-dimensional marginals, and that v is the weak limit
of the measures

1
PN S
(T | =,
Let Cy C C(X) be a class of functions with the following properties:
(a) Co (considered as a subset of La(n)) is La(p)-dense and contained in
Dom(Ay).
(b) Co (considered as a subset of La(v)) is La(v)-dense and the Neumann

derivative exists for £ € 90X and ¢ € Cy.
(c) Letting 7" = /™ \ (T U ), the sequence K,, (n € N) defined by

- L o)
K122 Y (s S 0o

wegn VoW

diverges to oco.

If for each ¢ € Cy,

wp DT Ny (W) — (W)

wed ace
+ Y TN (py(w) — oy (W a))? < oo,
wgA acd
then
dg
E(¢v) = =\ Aggpdu+ | ==t dv

(¢ € Co, ¥ € C(X)) extends to a Dirichlet form on La(m).

Proof. Let ¢ € Cy and ¢ € C(X). Since by Lemma 4, /" contains
complete equivalence classes, it follows that

S (Do) (whn(w) = Y @ S (DY) (V)5 (w),

wegmn weg" vow

S (Do) (whn(w) = Y ﬁ S (D6)(v) thy (w).

W W VW
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Therefore
In ) (Dg)(w)hy(w)
weF"
= 3 LDA) W) (W)~ NS Anly(w)iy(w)
wea/n wean
SN Y LN (D) (w) — Asd(v(w))] [t (w)]
wed
+ N> | Ang(v(w)) by (w)].
W

This bound tends to zero as n — oo, showing that

E(9,0) =~ lim L, Y (D)(w)ihy(w)

weg "
~JAs(€)¢ () u(dé) — lim I, Z ] Y
ey" vw
Cim LI Z0a Y 3 (D)) (w
e WE%FL;Z{” |vww ’ * dn|
[ Aso(€)w(©) p(de) + | %@wg) (de).

Setting a(w) = N™ for w € &, a(w) = |Z. N"| for w € T, N&™ and
a(w) = K,|7 N /" otherwise, we find that m, converges weakly to m
(since |7 N /™| and |(27")¢| are of the same order). Formula (3.2) follows
from

2
2y a(w)(@ Z<D¢><v>)

weS™ vew

2
— N W%( >|§D¢><v>)
1 1| 7. N " 2
*rzwn|WE§M< ol 2209 >
2
iz S (s S 0am) <,

weTnn
where we use (a)-(c) and the fact that |7, N &/"| and |(27)¢| are of the
same order.
Formula (3.1) for ¢ € Cp follows immediately from the assumption, since
© is p-continuous.

V~wW
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We have shown that D; = Cj satisfies the assumptions in Theorem 1.
Hence & extends to a Dirichlet form on La(m). =

The form & in the last theorem may be considered also as a form on
Ly(p) since continuous functions in Cj are dense in La(p) and La(v). We
therefore obtain

COROLLARY 2 (Gauss-Green formula). Let ¢,1 € Dom(Ayx) C La(u).
Then

H{o(©)(As¥) (&) — (Anp)(©v(&)} u(dE)

N 1
ZES
ox

(10 G20 - (@) ) vide).

5. An example. We consider the equivalence relation ~ on ' defined
by x ~ y if x =y or if there exist a # b € &/ and n > 0 such that
X=x1...2,ab and y=ux1...2,ba,

together with the embedding

Y(wy ... wy) = (wy ... wuwp).
The boundary is defined by 7, = {w = a" : a € &/, n > 0}, hence
oY ={a>®:a € o}.
As an example consider the case N = 2. Then X can be identified with
the unit interval and the boundary is {0, 1}. By the definition of D we deduce
for a twice continuously differentiable function ¢ that

(Dg)(wii) = 3 (p(y) — (x),

where z = wijjj... and y = wiiii. ... It follows that

2d(w)+2D(Wij) _ gp(y) — 90(33) N :Eg@l(f)
[z -yl
as n — oo and x — £. Moreover,
(5.1)  22H3((Dy)(wij) + (D) (wiji))
_ d(w)+1 <s0(y) — (@) | ely) - w(w’))
|z =yl 2’ =yl )
where y' = wjjjj... and 2’ = wjiii.... Asn — oo and x — £ € [0,1],
it follows that 2/ — &. Moreover, either y > x and 3’ < 2’ or vice versa,
whence (5.1) converges to ¢”(£). This proves that the construction in this
section in case N = 2 recovers the usual Laplace operator on the Lo-space
of Lebesgue measure on the unit interval.
In this section we construct a set of functions satisfying conditions (3.1),
(3.2) and (3.5). In addition the functions belong to D, for some p and finite
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linear combinations thereof are dense in Ly(p) and in Lo(m), where m = u+v
with the counting measure v =}  £q on 0X.

We begin with two numbers «, 5 € (0, 1) satisfying 2a + NG = 1 and
define I, = (1 —a— )7". The first lemmas are straightforward calculations
and their proofs are left to the reader.

LEMMA 5. Let p, € R (a € o). Define recursively f(a) = po for a € o,
and forw € J and i,j € o let

fowigy = L 1O ifi=j,

J « vawij f(V_) + 6206@7 f(WC) Zf’L 7& .7

Then

(1) There exists a function ¢ = ¢/ € C(X) such that
(a) e((wa™)) = f(wa) for alla € o/, w € T;

(b) le((vEi&a...)) — e({vinma...))| < 2(1 — @ = B)* ™|, where
5k777k6@7, k>1.
(2) We have

[ O = F2)(De)(wi) - ifi = j,
2o = o(Dg)(wi) — B(Dg)(wi) if i # .
(3) If i # j then
(Do) (wij) + (D) (wji) = 0.
COROLLARY 3. Let p € C(X) satisfy, for allw € 7, and i,j € <,
Py (Wij)
py(wi) +O((1 — a — B)*™) ifi=j,
=4 afpy(wi) + oy (W)}
+ B e (W) + O((1 — = B)2 ™) if i # j.
Then
(1) lp((vé&&z.. ) = e({uvmnz ...)| = O((1 = @ = B)*)|[p||o), where
e, € o for all k€ N.
(2) We have
(X7 = ¥F20) (De)(wi) + O((1 — a = B)™™)) ifi=j,
a(Dp)(wj) — B(De)(wi) + O((1 — a = B)*)) if i # j,
where i, ] € &/ and w € u7.

(Dp)(wi) = {

LEMMA 6. Let @, € C(X) satisfy the condition of Lemma 5(2) for all
w € J andi,j € o/. Then, forn> 2,
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L ) (D) (w)(Dy)(w)

weg "

~ha X GoOow)(1+ 22 (W Da-12),

weg/n—1

If (2) in Corollary 3 holds then this equality remains valid up to the order of
(1-a— B
COROLLARY 4. Let p,v satisfy the assumptions in Lemma 6. Then
lim I, ) (Dg)(w)(Dy)(w)
n—oo
weF ™
exists if and only if o = (N +2)~! (= B).
In what follows we fix &« = = 1/(N + 2). For every b € <7 let f, denote
the function defined in Lemma 5 for the boundary conditions p, = 0, a € 7,

a # b, and p, = 1. Let @, := @, as defined in (1) of Lemma 5, and consider
this function defined on &/ by setting

op(x) = pp(I1(x))  (x € 7).
Fix a word u € 7, and define ¢, : /> — R by

w00 if x ¢ [u),
PulX) = . B
Pr(u) (y) — %HX:UT(u)oo if x=u"y.

It is also easy to see that for w € .7 and i, j € &/ with d(w) + 2 # d(u),
oo Pu(Wi™) ifi=7j,
pu(Wij™) = o - e
a{pu(Wi%®) + @u(Wji®) + > c Pu(we®)} if i # 5.

Let 975 denote the set of all words in 7 for which the last two letters are
different or which are of length < 1. A function @ : &/*° — R of the form

=Y Blu)(N +2)" MWy,
uc.J
is well defined. Such a function defines a function on X' if for each u € 7
we have 3(v) = f(u) for all v € (u), because } ¢, ¢v is constant on the
set {vr(v)*® : v € (u)}. As a function on X, 45 1s contlnuous as long as
the coefficients § are uniformly bounded. In fact it has the same modulus of
continuity as ¢y.
We need to construct the coefficients F(u) such that

(i) B(u) are bounded and constant on equivalence classes.
(ii) Conditions (3.1), (3.2) and (3.5) are satisfied for the associated func-
tion &.
(iii) For a set [u] U [u”] and & > 0, the associated function & satisfies

12 — Tujopu#llzou) < e



72 M. DENKER ET AL.

First note that (3.5) has been shown in Corollary 4 for ¢y, hence also for
finite linear combinations and also for @ by the absolute convergence of the
series. We start with the equation

By =~ 37 2()
w2

and need to determine z(v). Note that (i) is satisfied if the coefficients z(v)
are uniformly bounded. In the following calculations we suppress the index ~,
thus for a function g : ¥ — R we write g(w) for g(y(w)).

A direct calculation shows that for k£ > 2, v € &/™ and a,c # b,

@, (vab tc) — ., (vab®)
= )3 6(411)@) (pulvab™lc) = pu(vad®))

d
u€ I, d(u)<d(v)+1 (N t 2)

vab’d B
+§: §: JV+2an2¢mwd Mﬁld

ji= Ob;éded
B(u) k—1 k—2
- S Y (puvab ) + pulvabt %)
d(u)+1
u€ s, d(u)<d(v)+1 (N + 2) W (

+ Y walvab2d) — (N + 2)pu(vad' ™))
ded

B(vab’d) -
+ Z Z N +2) (N + 2\n+i+3 (SOVabjd(vabk )
]D#%M

+ Cuapal(val 2e) + 3 Guaa(valh=2e) ) (N +2) " p(vartle)

ecod
= (N 4 2)" Y D(vab*~2c) — d(vab* 1) + N(DP)(vab* 1))
B(vabF—1e
i

Summing over ¢ # b yields
(N + 2)FR+L D) (vabk)

= N(N + 2)¥**(D@) (vabh~) Z B(vabF'e
c;éb

= N(N + 2)3)**(D@) (vabh~!) — % Z[z(vabkilc) + z(vab®2cb)).
c#b
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Setting
z(vab®) := (N + 2) M+ D) (vab)
we obtain
1 1
2(vab* ) = — 2(vab®) + == Y [2(vabre) + z(vabt2eb)],
N 2N ¢ ot

which is a convex combination determining z(vab*~1).

We sketch the construction of functions solving the associated Dirichlet
problem. Consider functions 1) on X which are of the form

WoI(€) = > av(N+2)"Mp(9),

veT
T(V)£T(v")
where
(5.2) ay= N_—jQ [(N +6)2(v) +3 ;@/ {z(v e) + 2(v? )}
o {r(v),r(v#)}
Y A,
c,degt , c£d
cd ¢H{r(v),r(vF)}

and where z : 7 — R is some continuous function. Note that the series

Z oy (N +2)74V)
veT
T(V)#T(v7)
converges absolutely, hence ¢ € C(X). We know that Asy = z (see [5]).

Let Dy denote the space of functions constructed above. We show that
D is a dense linear subspace. By definition, D; is linear and each ¢ € D
satisfies

oy (wij) = > ay(N +2)") (B, 0 y)(wij)
vET,d(v)#d(w)+2
T(V)#T(v7)

+O((N +2)71"+)

= N;Jrz (%(Wi) +oy(wi) + ) %(wc)) + Oz 40)-
ced

Therefore, by Corollary 3, ¢ is a g-continuous function, where g, = I ".
According to [5, the remarks after Lemma 5.7, for any z : 7 — R as above
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and for k € N,
— 5 (N 4+ 22D (vab 1) + (D) (vba*+1))

= Nz(vab®) — NL—FZ [Z z(vab®e) + Z z(vbakc)}

ce ced
c#£b c#a
k—l
NH[Z D avabtTled)+y ) a(vbatled)
ced ded ced/ deod
c#b d#b, d#c c#a d#a,d#c

< 3(N +2)]|2]|co-

This shows that (3.2) holds for ¢ € D; when defining a(w) = N™ for w
not a monomial and = 1 otherwise. Condition (3.1) can be shown in the
following way. Let B denote all words in .2/~ which are not monomials.
Then it suffices to estimate as in the proof of Lemma 3:

BN S (0y(vh) — gy (va))? = 2NN 3 (D) (w))? < ox.
veB, a,bed w¢ T

In order to show that the functions in D; are dense in Lo(u), note that
by (5.2) we can choose z in an arbitrary manner, e.g. vanishing on words
not starting with v. The associated function ¢ will vanish outside of [(v™)~].
Therefore, given u and m define z(uv; ... v,) = 1if vy, ..., v, € o contains
the letter 7(u) (similarly for z(u”v;...v,)), and z(w) = 0 if w does not
start with u or u”. As m — oo these functions approach a multiple of
[ryuu#] in L2(p). Hence Dy is dense in La(u). The solution of the Dirichlet
problem for ¢y € C(X) also shows that this class of functions is dense in

LQ (m)

6. Applications. In this section we discuss further applications of the
results in Sections 3-5. However, we only sketch the proofs, since they are
similar to those described before.

6.1. Application to the Sierpinski gasket. Fix N > 2. The Sierpiniski gas-
ket S is described geometrically in the following way. Let A := A(p1,...,pN)
denote the non-degenerate regular simplex generated by N points p1,...,pn
€ RV~1. For each fixed ig € <7, the midpoints p;;, = (pi, +p;)/2 (j € &)
define a corresponding simplex A(ip) := A(pig,---,PNi,) C A and the
affine mappings f;, : & — A(ig) satisfying fi,(pi) = pi,i,. It is well known
that the Sierpinski gasket S can be represented as a limit set of the semigroup
generated by the f;, hence the natural identification space is a symbolic se-
quence space over IN symbols with identification by the equivalence relation

X = (T)keN ~S Y = (Yr)keN
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if x = y or if there exists some n € N such that x,+; = y, and y,+; = =,
for every [ > 1 and z; + y; for [ < n. The Bernoulli measure p is known to
be a multiple of the Hausdorff measure of the Sierpinski gasket with respect
to the Euclidean norm.

The situation described in Section 5 applies directly in this situation. If
v denotes the counting measure on the vertices of S, we let m = u + v. It
follows that

o) = i (V52) X (DomDu)

n—oo
wegm

defines a Dirichlet form on Ls(m) with Laplace operator (on La(u))

1
Asp(§) = lim (N +2)" 7—= > (Dp)(w)
N g 2
for all w, where w converges to £ as n — oo under the condition that each
equivalent v has two different letters in v—.

6.2. The case of S x B*. Consider two alphabets A = {1,..., N} and
B = {1,..., B}. Points in the sequence space (A x B)> are written in the
form x = (z%22) = (zlzl...;2323...). Define an equivalence relation by
x ~ y ifand only if 2! ~5 y' and 22 = y?, where ~s denotes the equivalence
relation of S. Finite words are as well written in the form w = (w!, w?),
where w! and w? have the same length m = d(w) and the embedding is

defined by
y(w) = {(w! (wn)>5 w? (w)>)),
where () denotes the equivalence class.

Define .7, to be the set of all words of the form w = (w!, w?), where
w' is a monomial and w? € B4W), Note that v(.7,) is compact, nowhere
dense and consists of all points of the form (x) = ((x!,2?)), where 2! is a
monomial and 22 € B®. We let v be a measure on §X which is the sum of
the Bernoulli measures on {a*} x B*°. Notice that the equivalence relation
is not thin, but the Bernoulli measure p on (A x B)* satisfies

p{x:(x)=1}) =1
and can be transported to the quotient space.
Let ¢ be the function constructed in Section 5 for the Sierpinski gasket
S and let v? be any finite word over the alphabet B. We denote by I},2) the
indicator function of the set of all £ € B> which begin with the word v2.
Then for any word w of length larger than d(v?),

D(p @ Lyz)) (W) = D(p)(w")Lgey (w?),

since all or none of the (w?)~b belong to [v?].
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Since the Bernoulli measure p is the product measure of the Bernoulli
measures on A%/~ and B>, finite linear combinations of functions of the
form ¢ ® Ij,2) are dense in La(u), and we show that (3.1), (3.2) and (3.5)

hold with I, = (%)n As before, for fixed ¢ ® Ijy2), if n is large enough,
Jim I,(NB)" > S (e @Iy (v(w) — ¢ @ Iy (v(ua)))*

we(AxB)" ue(w)
a=(a',a?)eAxB

< nhjglo BN Z Z (907(“1) - @7(“1)_a1)47
weA™ yle(wly,aleA
which is bounded by the results in Section 5. This shows (3.1).
Similarly,

2
sup I2(NB)™ Z (@ Z (Dp ® ]IW])(U))

neN we(AxB)» u~w
1 2
< sup I2N"B*" (— Do) (ut ) < o0
e 2\ 2 (P90
shows (3.2), and finally
g(@ & H[vQ} ) 1/})
. 1
=—lim L, WZ(DSO@H v2]) (W) (W)
we(AxB)n u~w
=— lim I,B" )_ > (D) )BT > b (wh w?)pey (w?)
n—oo weAn ‘< >’ wl~owl w EB"

= &' (¢, B> (¢¥11,2)),

where &' denotes the form associated to the first coordinate according to
Section 5 and where E? denotes integration with respect to the second co-
ordinate. Theorem 1 also applies in this situation and we obtain extensions
of the Sierpinski gasket.

Note that products of fractals and their analysis have been considered in
the literature. We refer to [11].

6.3. Non-Sierpinski cases. In this subsection we briefly sketch how our
results can be applied in other cases than the Sierpiriski relation.

Let o ={1,2,3,4,5,6,7}. Consider the equivalence relation x = z1za. ..
~y =11y2 ... defined by x =y or there exists an n such that

ri=y Yi<mn, Tnt+k = Ynt+k = C Vk > 1, C#xn'\‘cyn#ca

where a ~. b is given by the following table of classes:
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c=1 {2,3,5} and {4,6,7}
c=2 {1,5,7} and {3,4,6}
c=3 {1,2,6} and {4,5,7}
c=4 {1,5,6} and {2,3,7}
c=5 {1,3,4} and {2,6,7}
c=6 {1,3,7} and {2,4,5}
c="7 {1,2,4} and {3,5,6}

The embedding is as before, i.e. y(w) = (w7 (w)>).
The first lemma is immediate from the definitions and its proof is omitted.

LEMMA 7. Let f(a ) =pq € R for a € & and define

f(wab) =17 Z f(we) 117 Z fwd), a#b,

cpa ded
f(wa®) = f(wa), acd.

Then there ezists a function p € C(X) with (wa™) = f(wa). Furthermore,
¢ is {(14/17)" : n > 1}-continuous and satisfies

> (Dg)(web) =0, a#b,

14
T

The following arguments are similar to those used for the Sierpinski re-
lation before. We sketch the construction of a suitable set D;. For every
b e o let f, and let @, denote the functions being defined in Lemma 7 for
the boundary conditions p, = 0, @ € &7, a # b, and p, = 1. Consider a
second function defined on 2/*° by setting

ep(x) = @I (x))  (x € F%).
Fix a word u € 7 and define ¢, : &/°° — R by
0 if x ¢ [u,
pulx) = { Orw)(¥) = Slxcuruy= fx=u"y.

Let 975 denote the set of all words in .7 for which the last two letters are
different or which are of length < 1. Let § = 2/17 and recall that N = 7.
A function @ : &/ — R of the form

=" Ou)p

UE§7§

(Dy)(wa), a€ .

is well defined on X’ and continuous as long as the coefficients 6 are uniformly
bounded and satisfy 6(v) = 0(u) for all v € (u), because } ¢,y ¢v is
constant on the set {vr(v)>®:v € (u)}.
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We need to construct the coefficients #(u) such that

(i) O(u) are bounded and constant on equivalence classes.
(ii) Conditions (3.1), (3.2) and (3.5) are satisfied for the associated func-
tion @.
(iii) For a set U = J,.,[v] and € > 0 there exist coefficients §(u) such
that the associated function @ satisfies ||® —Ti||1,u) < €.

First note that (3.5) follows immediately from Lemma 7 for ¢, hence
also for finite linear combinations and also for @ by the absolute convergence
of the series.

As before, we start with the equation

o) =~ 3
|6()

Note that (i) is satisfied if the coefficients z(v) are uniformly bounded.
A direct calculation shows that for & > 2, v € @™ and a,c # b,

éw(vabkflc) -9, (vabk)
_ > O a(vab o) — pulvath))

d
u€ Iy, d(u)<d(v)+1 p W

Vade _
+Z Z ﬂn+]+2 ()Ovabjd(vabk 16)

7=0 b#de s

f(u _
— Z ﬁ (a Z u(vab™2d)

u€ Iy, d(u)<d(v)+1 dreb

+ 0 Z gou(vabk_2d) — @u(vabk_l)>

ded/

+Z Z 5::??163{ (vaabjd(vabk_l)

§=0 bAde o/
+ Spvabjd(vabk72c) + Z (pvabjd(vabki%a))
ecq/
+ 87 (vabt )
1
— g—1< > 5 [@(vab®2c) — d(vab* )] + N(D@)(vabk_1)>
btdrcb

O(vabF~1c)
ﬁn-{—k—l—l
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Summing over ¢ # b yields

ﬁ_d(v)_k_l(D@) (Vabk)

1
= N3~ =k(D@)(vab* 1) + N Z O(vab®Lc)
c#£b

— N(N + 2)%H (D) (vabh) — % SO s(vath—2d).
c#b d~cb

Setting z(vab®) := B~4V)=k=1(D&)(vab*) we obtain

1 1
2(vab ) = S z(vab®) + 5303 z(vabt ),
c#b droch

which is a convex combination determining z(vab*~1).

The remaining arguments are now carried out similar as before. We sum-

marize them in

THEOREM 3. The form

s = i (1) T DAmDH)

n—oo
wegm

exists for ¢ € Dy and ¢ € C(X). The associated Laplace operator is given

by

(1]
(2]
(3]
[4]
[5]
[6]
[7]
(8]

Aspl) = lm 5T S (Dg)wer(w)).

wom Atz e~ (w)T(WT)
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