VOL. 120

2010

NO. 2

AUTOMORPHISMS OF THE ALGEBRA OF OPERATORS IN \mathbb{L}^p PRESERVING CONDITIONING

ΒY

RYSZARD JAJTE (Łódź)

Abstract. Let α be an isometric automorphism of the algebra \mathbb{B}_p of bounded linear operators in $\mathbb{L}^p[0,1]$ $(p \ge 1)$. Then α transforms conditional expectations into conditional expectations if and only if α is induced by a measure preserving isomorphism of [0,1].

For $\mathbb{L}^p[0,1]$ (real or complex), let \mathbb{B}_p be the algebra of bounded linear operators in \mathbb{L}^p $(p \ge 1)$. Let \mathcal{E} denote the set of conditional expectations acting in \mathbb{L}^p .

The theory of automorphisms of \mathbb{B}_2 is well developed in a general set-up of C^* -algebras. There is no such theory for \mathbb{B}_p , $p \neq 2$. The von Neumann algebra structure of \mathbb{B}_2 is entirely different in comparison with that of \mathbb{B}_p , $p \neq 2$. That is why it is of interest to distinguish some classes of automorphisms in \mathbb{B}_p enjoying the properties common for all $p \geq 1$. The following result is of this type.

THEOREM. If α is an isometric automorphism of \mathbb{B}_p $(p \ge 1)$ then the following conditions are equivalent:

(1)
$$\alpha(\mathcal{E}) \subset \mathcal{E},$$

(2)
$$\alpha(x) = UxU^{-1}, \quad x \in \mathbb{B}_p, \quad with \quad Uf = f \circ \beta,$$

where β is a measure preserving isomorphism of the unit Lebesgue interval.

Proof. Let α be of the form (2). For a fixed σ -field G of subsets of [0, 1], let us put

$$\alpha(\mathbb{E}^G)f = g, \quad f \in \mathbb{L}^p,$$

i.e. $[\mathbb{E}^G(f \circ \beta^{-1})] \circ \beta = g.$

Thus $\mathbb{E}^G(f \circ \beta^{-1}) = g \circ \beta^{-1}$, which means that $g \circ \beta^{-1}$ is *G*-measurable and $\int_A f \circ \beta^{-1} = \int_A g \circ \beta^{-1}$, $A \in G$. Consequently, g is $\beta^{-1}G$ -measurable and $\int_{\beta^{-1}A} f = \int_{\beta^{-1}A} g$, $A \in G$, which means that $g = \mathbb{E}^{\beta^{-1}G} f$ so $\alpha(\mathbb{E}^G) = \mathbb{E}^{\beta^{-1}G}$.

²⁰¹⁰ Mathematics Subject Classification: 47D30, 46E30, 28D05.

Key words and phrases: algebra of operators in \mathbb{L}^p , conditional expectation, algebraic automorphism, measure preserving set-isomorphism, point transformation.

Now, let us assume (1) and take a partition of [0, 1], say (A_1, \ldots, A_N) . All subsets of [0, 1] are supposed to be measurable. We shall use the following notation. For $A \subset [0, 1]$, we set

$$\widehat{A} = (\widehat{\chi}_A)\widehat{\chi}_A, \quad \text{where } \widehat{\chi}_A = |A|^{-1/2}\chi_A.$$

Then $\sum_{k=1}^{N} \widehat{A}_k$ is a conditional expectation operator which is transformed by α to be a conditional expectation

$$\sum_{k=1}^{N} \widehat{B}_k, \quad \text{where } (B_1, \dots, B_N) \text{ is a partition of } [0, 1], \ \widehat{B}_k = \alpha(\widehat{A}_k)$$

Indeed, it is enough to show that, for $A \subset [0, 1]$,

(*)
$$\alpha(\widehat{A}) = \widehat{B}$$
 for some $B \subset [0, 1]$.

To prove (*), take $A \subset [0, 1]$. Then $\Delta = \widehat{A} + \widehat{A^c}$ is a two-dimensional conditional expectation which is transformed by α to $\alpha(\Delta) = \alpha(\widehat{A}) + \alpha(\widehat{A^c})$; the latter is also a two-dimensional conditional expectation (obviously, dim $\alpha(\Delta) \ge 2$, and dim $\alpha(\Delta) \ge 3$ would imply dim $\Delta = \dim \alpha^{-1} \alpha(\Delta) \ge 3$). Thus $\alpha(\Delta) = P_1 + P_2 = \widehat{B} + \widehat{B^c}$, where $P_1 = \alpha(\widehat{A}), P_2 = \alpha(\widehat{A^c})$ are mutually orthogonal one-dimensional projections and $B \subset [0,1]$. Let us write $P_1 f = a_1(f)f_1, P_2 f = a_2(f)f_2$, where a_j are linear functionals, $f_j \in \mathbb{L}^p$. The equality $\mathcal{E}_{B,B^c}\alpha(\Delta) = \alpha(\Delta)$ implies that f_1 and f_2 are linear combinations of χ_B and χ_{B^c} . By the orthogonality of P_1 and P_2 it follows that the disjoint supports of f_1 and f_2 coincide with B or B^c , and consequently $P_1 = \widehat{B}$, $P_2 = \widehat{B^c}$ (or the other way round).

For $A \subset [0,1]$, we denote by UA the set such that

$$\alpha(\widehat{A}) = \widehat{UA}.$$

In particular, since $\alpha(\mathbb{E}) = \mathbb{E}$, U[0,1] = [0,1] a.e. We shall show that |UA| = |A| for $A \subset [0,1]$.

Indeed, let $\|\cdot\|_{\infty}$ denote the norm in \mathbb{B}_p . Let us take two projections \widehat{A} and $\mathbb{E} = \widehat{[0,1]}$. Then $(\mathbb{E}\widehat{A})f = (f,\widehat{\chi}_A)(\widehat{\chi}_A,1)1$, so

$$\|\mathbb{E}\widehat{A}\|_{\infty} = |A|^{1/2} \sup_{\|f\|_{p} \le 1} |(f, \widehat{\chi}_{A})| = |A|^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1.$$

Similarly,

$$\|\alpha(\mathbb{E}\widehat{A})\| = \|\mathbb{E}\alpha(\widehat{A})\|_{\infty} = |UA|^{1/q}.$$

Thus |A| = |UA| for $A \subset [0, 1]$.

Let (A_1, \ldots, A_N) be a partition of [0, 1]. Then $\alpha(\sum_{k=1}^N \widehat{A}_k) = \sum_{k=1}^N \widehat{UA}_k$, and (UA_1, \ldots, UA_N) is a partition of [0, 1] with $|A_j| = |UA_j|$. It turns out that U: Borel $[0, 1] \to$ Borel [0, 1] is a measure preserving regular setisomorphism. This means that U enjoys the properties 1° $U(A^c) = (UA)^c$, 2° $U(\bigcup_{k=1}^{\infty} A_k) = \bigcup_{k=1}^{\infty} UA_k$ for disjoint A_k , 3° $|UA| = |A|, A \subset [0, 1].$

The set transformation U induces a unique linear operator, also denoted by U, on the space of measurable functions such that

$$U\chi_A = \chi_{UA}, \quad A \subset [0, 1]$$

(cf. [1], [2]).

In our case (of the measure space being the unit Lebesgue interval) U is induced by a measure preserving isomorphism β of [0, 1], i.e. $Uf = f \circ \beta$ ([3, Chapter 15]). Consequently,

$$\alpha(\widehat{A})f = (f, \widehat{\chi}_A \circ \beta)\widehat{\chi}_A \circ \beta = (f \circ \beta^{-1}, \widehat{\chi}_A)\widehat{\chi}_A \circ \beta$$
$$= [\widehat{A}(f \circ \beta^{-1})] \circ \beta = U\widehat{A}U^{-1}f.$$

Thus (2) holds for the operators \widehat{A} , $A \in \text{Borel}[0,1]$. A fairly standard approximation shows that α is of the form (2) for compact operators in $\mathbb{L}^2[0,1]$. To conclude the proof it is enough to show that if α and $\widetilde{\alpha}$ are two automorphisms of \mathbb{B}_p which coincide on the subalgebra of compact operators then they coincide on the whole algebra \mathbb{B}_p .

Let us assume the contrary, i.e. that $\alpha \neq \tilde{\alpha}$. Then there would exist an operator $y \in \mathbb{B}_p$ and a vector $f \in \mathbb{L}^p$ such that $\alpha(y)f \neq \tilde{\alpha}(y)f$. Let (h_n) be the Haar system on [0,1], and let $S_n f = \sum_{k=0}^n (f,h_k)h_k$. The operators $T_n = \alpha^{-1}(S_n)$ are compact, so $\alpha(yT_n) = \tilde{\alpha}(yT_n)$, $n = 1, 2, \ldots$ Thus $(\alpha(y) - \tilde{\alpha}(y))S_n f = 0$ for $n = 1, 2, \ldots$ Letting $n \to \infty$ we get $(\alpha(y) - \tilde{\alpha}(y))f = 0$, which contradicts the assumption. Consequently, α of the form (2) is the unique automorphism of \mathbb{B}_p satisfying (1), which ends the proof.

Let us remark that the Lebesgue unit interval can be replaced by a more general measure space (X, μ) . It is enough to assume that it enjoys the property

(*) any regular set-isomorphism in (X, μ) is induced by a point transformation.

For details and examples we refer to [3, Chapter 15].

In the case of a general probability space we have to confine ourselves to a set-isomorphism instead of a measure preserving transformation. This means that, keeping the notation of our theorem, we can say that the isomorphism $\alpha : \mathbb{B}_p \to \mathbb{B}_p$ preserves (globally) the conditional expectations if and only if $\alpha(\cdot) = U \cdot U^{-1}$, where U is the unique linear extension of a regular set-isomorphism.

Concluding this note it is worth noticing that our theorem gives, in a sense, an algebraic characterization of the measure preserving transformations. This suggests the investigations in operator algebras. For example, taking a von Neumann algebra \mathcal{M} with a finite trace, say, one can consider the inner automorphisms $x \mapsto v \times v^{-1}$ of \mathcal{M} globally preserving the conditional expectations of \mathcal{M} . In this context, the unitary operator v is a *non-commutative counterpart* of the operator $u_{\alpha} : f \mapsto f \circ \alpha$ which is the automorphism of the *commutative* algebra \mathbb{L}^{∞} .

REFERENCES

- C.-H. Kan, Ergodic properties of Lamperti operators, Canad. J. Math. 30 (1978), 1206–1214.
- [2] J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459–466.
- [3] H. L. Royden, *Real Analysis*, 2nd ed., Collier Macmillan, New York, 1968.

Ryszard Jajte Faculty of Mathematics and Computer Science University of Łódź Banacha 22 90-238 Łódź, Poland E-mail: rjajte@math.uni.lodz.pl

> Received 13 February 2009; revised 8 December 2009

(5162)