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SUPERSYMMETRY CLASSES OF TENSORS

BY

M. SHAHRYARI (Tabriz)

Abstract. We introduce the notion of a supersymmetry class of tensors which is the
ordinary symmetry class of tensors with a natural Z2-gradation. We give the dimensions
of even and odd parts of this gradation as well as their natural bases. Also we give a
necessary and sufficient condition for the odd or even part of a supersymmetry class to
be zero.

1. Motivation. In [4], a joint paper with A. Madadi, we introduced a
concrete method to construct the irreducible representations of the simple
Lie algebra sln(C), using the notion of symmetry classes of tensors. A similar
work can be done for the Lie superalgebra sl(p|q), if we have a suitable notion
of supersymmetry classes of tensors. On the other hand, recently the term
super linear algebra is widely used in both mathematics and physics articles
which study objects of linear algebra from the super-structure point of view
(see [10]). Since in the last five decades, several articles have been published
concerning symmetry classes of tensors, it is natural to have in hand the
super-version of this notion. Although there are some articles concerning
representations of Lie superalgebras which employ some special cases of this
notion (see [1] or [8]), the present article is the first attempt toward introduc-
ing supersymmetry classes of tensors systematically and the author hopes
the resulting notion will be interesting both from the multilinear algebra
and from the representation of Lie superalgebras point of view.

2. Introduction. Let V = V 0 ⊕ V 1 be an n-dimensional Z2-graded
complex vector space with dimV 0 = r. Suppose e1, . . . , er is a basis for V 0

and er+1, . . . , en is a basis for V 1. For any homogeneous vector v ∈ V , we
define deg v = i iff v ∈ V i, for i = 0, 1. Let m be a positive integer and V ⊗m

denote the tensor product of m copies of V . Then we have a Z2-gradation

V ⊗m = L0 ⊕ L1,
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where

L0 = spanC

{
v1 ⊗ · · · ⊗ vm :

∑
i

deg vi = even
}
,

L1 = spanC

{
v1 ⊗ · · · ⊗ vm :

∑
i

deg vi = odd
}
.

Suppose Γmn is the set of all m-tuples of integers α = (α1, . . . , αm) with
1 ≤ αi ≤ n for any i. If α ∈ Γmn , then we define the tensor

e⊗α = eα1 ⊗ · · · ⊗ eαm .
Recall that the set {e⊗α : α ∈ Γmn } is a basis for V ⊗m. Now, let Emn be the set
of all α ∈ Γmn in which the number of entries with αi > r is even. We define
similarly the set Omn using the word odd instead of even. Then it is clear
that the set {e⊗α : α ∈ Emn } is a basis for L0. Similarly the set {e⊗α : α ∈ Omn }
is a basis for L1. In the following proposition we give the dimensions of L0

and L1.

Proposition 2.1. For i = 0, 1, we have

dimLi = 1
2(nm + (−1)i(2r − n)m).

Proof. Let Ak be the set of all α ∈ Emn such that α has exactly 2k terms
greater than r. Then we have the set partition

Emn =
[m/2]⋃
k=0

Ak.

So we are going to count the number of elements in Ak. We can consider
every element α ∈ Ak as an ordered set of m boxes in which 2k boxes contain
numbers from the set

r + 1, r + 2, . . . , n.

So we must choose 2k boxes from m boxes and this is clearly possible in(
m

2k

)
=

m!
(2k)!(m− 2k)!

ways. Next, we write one of the numbers in the above list in each selected
box and this can be done in (n − r)2k ways. Finally, we must write one of
the numbers 1, 2, . . . , r in the remaining m− 2k boxes, which is possible in
rm−2k ways. So we can obtain α ∈ Ak in(

m

2k

)
(n− r)2krm−2k

ways. Thus

|Ak| =
(
m

2k

)
(n− r)2krm−2k,

and this completes the proof.
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3. Symmetry classes of tensors. In this section, we review the notion
of a symmetry class of tensors. The interested reader can find a detailed
introduction in [5] or [6]. Note that as in Section 1, V = V 0 ⊕ V 1 is an
n-dimensional Z2-graded complex vector space with dimV 0 = r.

Let Sm denote the full symmetric group of degree m and let G ≤ Sm be
any subgroup. Suppose χ is an irreducible complex character of G. For any
σ ∈ Sm, define the permutation operator Pσ : V ⊗m → V ⊗m by

Pσ(v1 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ · · · ⊗ vσ−1(m).

It is clear from this definition that L0 and L1 are invariant under Pσ and so
we can define, for i = 0, 1,

P iσ = Pσ|Li ,
the restriction of Pσ to Li. The symmetrizer corresponding to G and χ is

Sχ =
χ(1)
|G|

∑
σ∈G

χ(σ)Pσ.

Its image is called the symmetry class of tensors associated with G and χ
and it is denoted by Vχ(G).

For example, if we let G = Sm and χ = ε, the alternating character,
then we get

∧m V , the mth Grassmann space over V , and if G = Sm and
χ = 1, the principal character, then we obtain V (m), the mth symmetric
power of V , as symmetry classes of tensors.

Let v1, . . . , vm be arbitrary vectors in V and define the decomposable
symmetrized tensor

v1 ∗ · · · ∗ vm = Sχ(v1 ⊗ · · · ⊗ vm).

For α ∈ Γmn , we use the notation e∗α for the decomposable symmetrized
tensor eα1 ∗ · · · ∗ eαm . It is clear that Vχ(G) is generated by all e∗α, α ∈ Γmn .
We define an action of G on Γmn by

ασ = (ασ−1(1), . . . , ασ−1(m))

for any σ ∈ G and α ∈ Γmn . Suppose ∆ is a set of representatives of all
orbits of this action and let Gα denote the stabilizer subgroup of α. Define

Ω = {α ∈ Γmn : [χ, 1Gα ] 6= 0},
where [ , ] denotes the inner product of characters (see [2]). It is well known
that e∗α 6= 0 if and only if α ∈ Ω (see for example [6]). Suppose ∆̄ = ∆ ∩Ω.
For any α ∈ ∆̄, we have the cyclic subspace

V ∗α = 〈e∗ασ : σ ∈ G〉.
It is known that we have the direct sum decomposition

Vχ(G) =
∑·

α∈∆̄

V ∗α
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(see [6] for a proof). It is also known that

dimV ∗α = χ(1)[χ, 1Gα ],

and in particular, if χ is linear then dimV ∗ = 1 and so the set {e∗α : α ∈ ∆̄}
is a basis for Vχ(G). In the general case, let α ∈ ∆̄ and suppose

e∗ασ1 , . . . , e
∗
ασt

is a basis for V ∗α , with σ1 = 1. Let

Aα = {ασ1 , . . . , ασt}.
Then we define ∆̂ =

⋃
α∈∆̄Aα. It is clear that ∆̄ ⊆ ∆̂ ⊆ Ω, and the set

{e∗α : α ∈ ∆̂} is a basis for Vχ(G). Finally we remind the reader of a formula
for the dimension of symmetry classes. We have

dimVχ(G) =
χ(1)
|G|

∑
σ∈G

χ(σ)nc(σ),

where c(σ) denotes the number of disjoint cycles (including cycles of length
one) in the cycle decomposition of σ.

4. Supersymmetry classes of tensors. Now we return to the Z2-
gradation of V ⊗m. As in Section 1, we use the notations L0 and L1 for the
even and odd parts of this gradation, respectively. Let

Liχ = Sχ(Li)
for i = 0, 1. Then it is clear that Vχ(G) = L0

χ ⊕ L1
χ is a Z2-gradation of

Vχ(G). If we consider Vχ(G) together with this Z2-gradation, we call the
resulting vector space the supersymmetry class of tensors associated with G
and χ on V . Our next aim is to compute the dimensions of the even and
odd parts of this supersymmetry class of tensors. To do this, let

Siχ =
χ(1)
|G|

∑
σ∈G

χ(σ)P iσ

for i = 0, 1. It is easy to see that Siχ is idempotent and its image is pre-
cisely Liχ. So we have

dimLiχ =
χ(1)
|G|

∑
σ∈G

χ(σ) TrP iσ.

For any σ ∈ Sm, let c0(σ) (similarly c1(σ)) denote the number of cycles
of even (odd) length in the disjoint cycle decomposition of σ. Note that we
have c(σ) = c0(σ) + c1(σ).

Theorem 4.1. We have
TrP 0

σ = 1
2(nc(σ) + nc0(σ)(2r − n)c1(σ)).

There is a similar formula for TrP 1
σ .
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Proof. Let f1, . . . , fn ∈ V ∗ be the corresponding dual basis of e1, . . . , en.
So fi(ej) = δij for any i and j. For any α ∈ Γmn , define

hα = fα1 ⊗ · · · ⊗ fαm .
Note that

hα(v1 ⊗ · · · ⊗ vm) =
m∏
i=1

fαi(vi).

Now let
E = {e⊗α : α ∈ Emn } and E∗ = {hα : α ∈ Emn }.

We have hβ(e⊗α ) = δαβ for any α, β ∈ Emn . Hence E∗ is the dual basis to E.
The (α, α) entry of the matrix representation of P 0

σ in the basis E is equal
to

hα(P 0
σ (e⊗α )) = δ

α,ασ−1 .

Hence
TrP 0

σ = |{α ∈ Emn : α = ασ}|.
Now let (t, σ(t), σ2(t), . . . , σp−1(t)) be one of the cycles in the disjoint cycle
decomposition of σ. So ασ = α iff

αt = ασ(t) = · · · = ασp−1(t) = k

for some fixed k. Hence α is partitioned into c(σ) parts and every part has
equal terms.

Let σ = θ1 · · · θc be the cycle decomposition of σ. To count the number
of α ∈ Emn with ασ = α, we consider α as a function

{1, . . . ,m} → {1, . . . , n}.
Suppose X = {1, . . . ,m} and let X(θi) be the set of all non-fixed points
of θi. Then

X =
c⋃
i=1

X(θi)

is a partition for X, and ασ = α iff for any i,

α|X(θi) = const.

Call this constant si. If |X(θi)| is an even number, then we can choose
1 ≤ si ≤ n arbitrary. This can be done in nc0(σ) ways. Next, we are going to
count the number of cases for those si such that |X(θi)| is odd. Let i1, . . . , il
be the set of all indices with |X(θi)| odd. Note that l = c1(σ). Define

α′ = (αi1 , . . . , αil).

Now α ∈ Emn iff α′ ∈ Eln. Hence the number of α ∈ Emn with ασ = α is equal
to

nc0(σ)|Ec1(σ)
n |.
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But using Proposition 1.1, we have

|Ec1(σ)
n | =

[c1(σ)/2]∑
k=0

(
c1(σ)

2k

)
(n− r)2krc1(σ)−2k,

and this completes the proof.

Note. It is easy to find a basis for Liχ. Let ∆̄ and ∆̂ be as in Section 2.
We define

∆̄E = ∆̄ ∩ Emn , ∆̄O = ∆̄ ∩Omn ,
∆̂E = ∆̂ ∩ Emn , ∆̂O = ∆̂ ∩Omn .

Then the sets {e∗α : α ∈ ∆̂E} and {e∗α : α ∈ ∆̂O} are bases for L0
χ and L1

χ,
respectively.

5. On the vanishing of even and odd parts. In this section, we
give a necessary and sufficient condition for vanishing of Liχ. Note that the
map σ 7→ P iσ is a representation of Sm on the vector space Li. Let ξi be the
corresponding character, i.e.,

ξi(σ) = TrP iσ.

We have

dimLiχ = χ(1)[χ, ξiG] = χ(1)[χSm , ξi],

by Frobenius reciprocity. So we must compute the irreducible constituents of
ξi to determine when Liχ = 0. A similar problem (computing the irreducible
constituents of ξ(σ) = nc(σ)) was solved in [9]. In what follows, we compute
the irreducible constituents of ξ0 and one can do the same for ξ1.

First of all, we give a summary of ordinary representations of the sym-
metric group Sm. The reader is referred to [3] or [7] for a detailed discussion.
Ordinary representations of Sm are in one-to-one correspondence with par-
titions of m. Let λ = (λ1, . . . , λs) be any partition of m. We call h(λ) = s
the height of λ. The Ferrers diagram of λ is a set of m boxes, arranged in s
rows (left aligned) and for any 1 ≤ i ≤ s, the ith row consists of λi boxes.
A Young tableau associated with λ, or a λ-tableau, arises from the Ferrers
diagram of λ by inserting numbers 1, . . . ,m in the boxes. If t is a λ-tableau,
then the number in the (i, j) box is denoted by tij . The symmetric group
Sm acts on the set of all λ-tableaux if we set

(tσ)ij = (tij)σ.

Two tableaux t and t′ are said to be equivalent iff their corresponding rows
contain the same numbers. The equivalence class of t is denoted by {t} and
it is called a λ-tabloid. For any σ ∈ Sm, define

{t}σ = {tσ}.
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So Sm acts on the set of λ-tabloids. Let Mλ be the free vector space gen-
erated by the set of all λ-tabloids over the field of complex numbers. Then
Mλ is a CSm-module and we have

dimMλ =
m!

λ1! · · ·λs!
.

The Young subgroup associated with λ is defined as follows:

Sλ = S{1,...,λ1} × S{λ1+1,...,λ1+λ2} × · · · .

Therefore we have Sλ ∼= Sλ1×· · ·×Sλs . The corresponding character of Mλ

is (1Sλ)Sm (see [7]). We can look at Mλ from another point of view. First
choose a left transversal for H = Sλ in Sm, say θ1, . . . , θk, and form the
CSm-module C[θ1H, . . . , θkH]. It is known that

Mλ ∼= C[θ1H, . . . , θkH].

Let t be a λ-tableau and Ct be the column stabilizer subgroup of t. Define

κt =
∑
σ∈Ct

ε(σ)σ,

where ε is the alternating character of Sm. Now define the λ-polytabloid
pt = κt{t}. Let Sλ be the submodule of Mλ generated by the set of all
λ-polytabloids. This is called the Specht module associated with λ. It is well
known that the Specht modules associated with all partitions of m are all
of the non-isomorphic irreducible CSm-modules (see [3] or [7]).

Now, we are ready to talk about the irreducible constituents of Mλ.
To do this, we need to define the concept of majorizing in the set of all
partitions of m. Let λ = (λ1, . . . , λs) and µ = (µ1, . . . , µl) be two partitions
of m. We say that µ majorizes λ iff for any 1 ≤ i ≤ min{s, l},

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi.

In this case we write λ E µ. This is clearly a partial ordering on the set of
all partitions of m. A generalized µ-tableau of type λ is a function

T : {(i, j) : 1 ≤ i ≤ h(µ), 1 ≤ j ≤ µi} → {1, . . . ,m}

such that |T−1(i)| = λi for any 1 ≤ i ≤ m. This generalized tableau is called
semi-standard if for each i, j1 < j2 implies T (i, j1) ≤ T (i, j2), and for any
j, i1 < i2 implies T (i1, j) < T (i2, j). In other words, T is semi-standard iff
every row of T is nondescending and every column of T is ascending. The
number of all such semi-standard tableaux is denoted by Kµλ and it is called
the Kostka number. It is well known that Kµλ 6= 0 iff µ majorizes λ (see [6]
for example), and that

Mλ =
∑.

λEµ

KµλS
λ.
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We now return to the problem of determining the irreducible constituents
of ξ0 or equivalently of L0. Let C[Emn ] be the free vector space generated by
Emn over C. We know that Sm acts on Emn and so C[Emn ] is a CSm-module.
On the other hand, L0 is a CSm-module as well. In fact these two modules
are isomorphic via the map

α 7→ e⊗α .

So we are done if we can obtain all irreducible constituents of C[Emn ]. Now,
letM be the set of all orbits of Emn under the action of Sm. For any Ω ∈M
we have

C[Ω] ≤CSm C[Emn ]

and
C[Emn ] =

∑.

Ω∈M
C[Ω].

For any α and 1 ≤ t ≤ n, we denote the multiplicity of t in α by mt(α). We
define the multiplicity composition of α by

m(α) = (m1(α), . . . ,mn(α)).

The non-zero terms of m(α) form a partition of m (the multiplicity partition
of α), which we denote by λα.

Proposition 5.1. Let α ∈ Ω. Then

Mλα ∼= C[Ω].

Proof. For simplicity, let λ = λα. There is an element ω ∈ Ω such that
Sλ = StabSm(ω), where Sλ is the Young subgroup. Suppose θ1, . . . , θk is a
left transversal for H = Sλ in Sm. We must show that

C[Ω] ∼= C[θ1H, . . . , θkH].

We know that the action of Sm on Ω is transitive, so C[Ω] = CSm[ω]. Define

φ : C[θ1H, . . . , θkH]→ C[Ω] by φ(θiH) = ωθi .

It is easy to see that this is the required CSm-isomorphism.

Corollary 5.2. Let Ω ∈ M and α ∈ Ω. Then the irreducible con-
stituents of C[Ω] are the Specht modules Sµ, in which λα E µ.

Corollary 5.3. The irreducible constituents of ξ0 are the Specht mod-
ules Sµ, where λα E µ for some α ∈ Emn .

Using the equality dimL0
χ = χ(1)[χSm , ξ0] and Corollary 5.3, we obtain

the following theorem.

Theorem 5.4. L0
χ does not vanish iff χSm has an irreducible constituent

of the form λα with α ∈ Emn .



SUPERSYMMETRY CLASSES OF TENSORS 275

Acknowledgments. The author would like to express his appreciation
of the referee for his/her invaluable comments and suggestions.

The author is supported by a grant from Tabriz University, Iran.

REFERENCES

[1] A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics
and representations of Lie superalgebras, Adv. Math. 64 (1987), 118–175.

[2] M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976.
[3] G. D. James, The Representation Theory of the Symmetric Groups, Lecture Notes

in Math. 682, Springer, 1978.
[4] A. Madadi and M. Shahryari, Symmetry classes of tensors as sln(C)-modules, Linear

Multilinear Algebra 56 (2008), 517–541.
[5] M. Marcus, Finite Dimensional Multilinear Algebra, Part I, Dekker, 1973.
[6] R. Merris, Multilinear Algebra, Gordon and Breach Science Publisher, 1997.
[7] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and

Symmetric Functions, Wadsworth and Brook/Cole, 1991.
[8] A. N. Sergeev, Tensor algebra of the identity representation as a module over the Lie

superalgebras GL(n, m) and Q(n), Mat. Sb. (N.S.) 123 (1984), 422–430 (in Russian).
[9] M. Shahryari and M. A. Shahabi, On a permutation character of Sm, Linear Mul-

tilinear Algebra 44 (1998), 45–52.
[10] V. S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, Courant

Lecture Notes 11, Amer. Math. Soc., 2004.

M. Shahryari
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Tabriz, Tabriz, Iran
E-mail: mshahryari@tabrizu.ac.ir

Received 28 May 2009;
revised 18 December 2009 (5230)

http://dx.doi.org/10.1016/0001-8708(87)90007-7
http://dx.doi.org/10.1080/03081080701393496
http://dx.doi.org/10.1080/03081089808818546

	Motivation
	Introduction
	Symmetry classes of tensors
	Supersymmetry classes of tensors
	On the vanishing of even and odd parts

