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FINITE-DIMENSIONAL TWISTED GROUP ALGEBRAS OF
SEMI-WILD REPRESENTATION TYPE

BY

LEONID F. BARANNYK (Stupsk)

Abstract. Let G be a finite group, K a field of characteristic p > 0, and K*G the
twisted group algebra of G over K with a 2-cocycle A € Z*(G, K*). We give necessary and
sufficient conditions for K*G to be of semi-wild representation type in the sense of Drozd.
We also introduce the concept of projective K-representation type for a finite group (tame,
semi-wild, purely semi-wild) and we exhibit finite groups of each type.

Introduction. Let K be a field, K the separable closure of K, and A, B
algebras over K. Denote by Bim(A, B) the set of all A-B-bimodules M such
that M is a free right module of finite rank over B. Let F = K (t1,t5) be the
free associative K -algebra of polynomials in two non-commutting indetermi-
nates t1, to with coefficients in K. We recall from [9] that a finite-dimensional
K-algebra A is said to be of semi-wild representation type (briefly, A is
semi-wild) if there is M € Bim(A, F) such that for any N € Bim(F,K)
there exist only a finite number of non-isomorphic NV; € Bim(F, K ) with
M ®p N =2 M ®p N;. If, moreover, M @p N = M ®p N’ implies N = N’,
we say that the algebra A is of wild representation type (briefly, A is wild).

We recall that the paper by Simson [22] gives various notions of wildness
of an algebra A and discusses relations between them. A detailed description
of basic concepts of the theory of tame and wild representation types of
algebras over an algebraically closed field can be found in monographs by
Simson [21] and Simson and Skowronski [23].

Let K be a field of characteristic p > 0, G a finite group and p||G]|.
Higman [14] proved that the group algebra KG is of finite representation
type if and only if Sylow p-subgroups of G are cyclic. Bashev [5] and Heller
and Reiner [13] have determined indecomposable representations of KG in
the case when p = 2 and G is the group of type (2, 2). Kruglyak showed in [17]
that if p > 2 and G is a non-cyclic p-group, then KG is wild. Brenner [§] has

2010 Mathematics Subject Classification: Primary 16G60; Secondary 20C20, 20C25.

Key words and phrases: modular projective representation, modular representation, pro-
jective representation, semi-wild twisted group algebra, twisted group algebra, wild twisted
group algebra.

DOI: 10.4064/cm120-2-8 [277] © Instytut Matematyczny PAN, 2010



278 L. F. BARANNYK

shown that KG is wild if p = 2, G is a non-cyclic 2-group and |G : G'| # 4.
Bondarenko [6] and Ringel [20] have independently shown that KG is not
wild if p = 2 and G is a dihedral 2-group. Finally, Bondarenko and Drozd [7]
have established that K G is not wild either if p = 2 and G is a semidihedral
2-group or a quaternion 2-group.

Let K be an algebraically closed field, A a finite-dimensional K-algebra,
G a finite group and AG the group algebra of G over A. The representa-
tion type of AG is determined by Meltzer and Skowronski [I8] [19] and by
Skowronski [24] 25].

Let G be a finite group, G}, a Sylow p-subgroup of G, K a field of char-
acteristic p and A\ € Z2(G, K*). We recall from [4] that the twisted group
algebra K*G is of finite representation type if and only if the algebra K ’\Gp
is uniserial.

In this paper we determine the algebras K*G of semi-wild representation
type. We also introduce the concept of projective K-representation type for
G and exhibit finite groups of each type.

Let us briefly present the main results of the paper. Let G be a finite
group, G, a Sylow p-subgroup of G, G;, the commutant of Gy, s the number
of invariants of the abelian group G/ G;, and C), a Sylow p-subgroup of the
commutant G’ of G. We assume that C, C G). Denote by D the subgroup
of Gj such that G}, C D and D/G), = soc(Gp/G},). Let K be a field of
characteristic p and let

: . TP — o
Z(K):{n ?f[K.K]—p ,
oo if [K : KP] = .

In Section [1} we describe twisted group algebras of semi-wild represen-
tation type. Let A € Z%(G, K*) and d = dimy (K*G,/rad K*G}). Suppose
that p # 2 and if |G},| = p, pd = |G, : G}| then D is abelian. We prove
that the algebra K*G is semi-wild if and only if the subalgebra K AGp is not
uniserial (Theorem . If p = 2 and one of the following conditions holds:

(i) 4d < |Go : GSl;
(ii) 4d = |Go : G|, |G| > 4 and K*Go/K*Gy - rad K*GY is a uniserial
algebra;
(ii) d = |Gy : G4| and |GY : GY| # 4,

then the algebra K*G is semi-wild if and only if the subalgebra K*G5 is not
uniserial (Theorem [1.17).

We say that a finite group G is of purely semi-wild |wild| projective K -
representation type if K G is of semi-wild [wild] representation type for any
)€ Z3(G, K*).

In Section [2] we exhibit finite groups of purely semi-wild projective K-
representation type at characteristic p # 2. Assume that if |Cp| = p, s =
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i(K) + 1 and D is non-abelian, then exp D = p?. We prove (Theorem [2.7)
that a group G is of purely semi-wild projective K-representation type if
and only if one of the following conditions is satisfied:

(i) Cp is a non-cyclic group;
(i) s > i(K) + 2;
(ili) s =i(K)+1,Cp, =G} = (c), |c| > p* and gP € () for every g € D;
(iv) s =i(K)+ 1, C, = G’ |G| = p and D is an elementary abelian
p-group.
As a consequence we obtain the following two corollaries:

1. Let p # 2 and [K : KP] = oco. A group G is of purely semi-wild
projective K-representation type if and only if C), is non-cyclic.

2. Let p # 2 and G be a finite group such that G), is abelian. Then G is
of purely semi-wild projective K-representation type if and only if C,
is non-cyclic or s > i(K) + 2.

In Section [3] we characterize finite groups of purely semi-wild projective
K-representation type at characteristic p = 2. Let G be a finite group such
that G is abelian and C5 is cyclic. We show in Theorem that G is of
purely semi-wild projective K-representation type if and only if one of the
following conditions is satisfied:

() s> i(K) +3
(ii) s =14(K)+2 and |Cy| > 4;
(iii) s =4(K)+2,|C2| <2 and G2 has at most one invariant equal to 2.

We also prove that if |Cy : C4| # 4 and [K : K?] = oo, then the group G is
of purely semi-wild projective K-representation type if and only if C5 is not

cyclic (Corollary .

Preliminaries. Throughout this paper, we use the following notations:
K is a field of characteristic p > 0; K* is the multiplicative group of K;
KP = {a? : « € K}; G is a finite group, G’ is the commutant of G and
G" is the commutant of G’; G, is a Sylow p-subgroup of G, C, a Sylow
p-subgroup of G, G]’D the commutant of G, s the number of invariants of
Gp/G),. Moreover, we assume that C,, C Gy, hence G}, C C,. Let Z(G) be
the center of G, e the identity element of G, |g| the order of g € G and soc B
the socle of an abelian p-group B. We denote by Z2?(G, K*) the group of all
K*-valued normalized 2-cocycles of the group G, where we assume that G
acts trivially on K* (see [I5, Chapter 2] and [16, Chapter 1]).

Given a cocycle A : G x G — K* in Z*(G,K*), we denote by K \G
the twisted group algebra of G over K with the 2-cocycle A\. A K-basis
{ug : g € G} of K*G satisfying uqup = AapUap for all a,b € G is called
natural (corresponding to A). If H is a subgroup of G, we often use the same
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symbol for an element A : G x G — K* of Z?(G,K*) and its restriction to
H x H. In this case, K*H is a subalgebra of K*G.

Let G be a finite p-group. Denote by rad K*G' the radical of K*G. We
set K G = K*G/rad K*G. We recall that in this case KAG is a finite
purely inseparable field extension of K [16, p. 74]. Given A € Z%(G, K*), the
kernel Ker(\) of A is the union of all cyclic subgroups (g) of G such that the
restriction of A to (g) x (g) is a coboundary. We recall from [3, p. 268] that
G’ C Ker()), Ker()) is a normal subgroup of G and the restriction of A to
Ker(A) x Ker(\) is a coboundary (see also |2 p. 197] for a simple proof).
Up to cohomology in Z%(G, K*), we have Ay, = Ag g = 1 for all g € G and
a € Ker(\). In what follows, we assume that every cocycle A € Z2(G, K*)
under consideration satisfies this condition.

Assume now that G is a finite group, A € Z%(G, K*), u is the restriction
of A to G x G and Hy, = Ker(p). Then Cp, C Hy, (see [16, p. 48]).

Let G be an abelian p-group, G = socG, A\ € Z?(G,K*), and S =
Ker()\). If K*G is not a field and G ¢ S, then there exists a direct product
decomposition G = H x {c1) X - - - x {c;,) such that H # {e}, K*H is a field
and K*Dj is not a field for every j € {1,...,m}, where D; = H x {c;).
The algebra K*G is not uniserial if and only if m > 2 (see [4, p. 176]). If
G C S then K*G is the group algebra of G over K. In this case K*G is
not a uniserial algebra if and only if G is a non-cyclic group. Assume that
G = B x C, where C is a cyclic group and K C is not a field. The algebra
K@ is not uniserial if and only if K*B is not a field (see |4, pp. 175-176]).

Let G be a p-group, H a normal subgroup of G, A\ € Z%(G,K*), H C
Ker(A) and T' = G/H. We put pzgyn = Azy for all 2,y € G. Then
p € Z*(T,K*). Assume that {u, : ¢ € G} is a natural K-basis of K*G
corresponding to A, and {vyy : g € G} is a natural K-basis of K*T corre-
sponding to p. The formula

f( Z agug) = Z QgUgH

geG geG

defines a K-algebra epimorphism f : K*G — KH*T with the kernel U =
K*G -rad K*H (see [15] p. 14] or [I6] p. 88]). Hence, K*G/U = K*T. We
recall that
rad K\H = P K(un — ue)
heH\{e}

is called the augmentation ideal of the group algebra K*H. If G’ C H then
KMT is a commutative algebra. Let d = dimg K*G. Then d divides |G : G'|.
Moreover, if G is an abelian p-group and K*G is not a uniserial algebra,
then p?d is a divisor of |G].
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If V is a finite-dimensional vector space over K and I' : G — GL(V) a
projective representation of G with a 2-cocycle A € Z2(G, K*), we refer to
I' as a A-representation of G over K. Let PGL(V) = GL(V)/K* - 1y and
7 : GL(V) — PGL(V) be the canonical group homomorphism. The kernel
of the composite homomorphism 7o I' : G — PGL(V) is called the kernel
of I' and is denoted by Ker(I'). Let G be a p-group and K be a field of
characteristic p. If I' is an irreducible A-representation of G over K then
Ker(I') = Ker(\) (see |2, p. 198]).

We recall from [26, p. 129] that a set of elements ar,...,ay, of a field
K is called p-independent if the p™ monomials o' ... alm with 0 < i, < p
for every r € {1,...,m} are linearly independent over the subfield K? of K.
A subset {1, ..., 0n} of K is said to be a p-basis if it is a p-independent set
and K = KP((34,...,0,). In this case [K : KP] = p™.

It is not difficult to verify that a subset {a1,...,a;,} of the field K is
p-independent if and only if the K-algebra

(1) K[t)/(#" — 1) ©xc - - @ K[t]/(t" — am)

is a field. It follows that i(K’) (definition on p. is the supremum of the
set that consists of 0 and all positive integers m such that a K-algebra of
the form is a field for some ajy, ..., q;, € K.

The reader is referred to [15] and [16] for basic facts and notation from
the theory of projective representations of finite groups and to [I] and [11]
for terminology, notation and introduction to the representation theory of
finite-dimensional algebras over a field.

1. Twisted group algebras of semi-wild representation type. Let
G be a finite group, K a field of characteristic p, K the separable closure of
K, X € Z*(G,K*) and A = K*G. Following Drozd [0, p. 109], we say that
A is of tame representation type (briefly, A is tame) if there exists a family
S = {M; € Bim(A, K[t]) : i € I'} of A-K[t]-bimodules M; with the following
properties:
e for every positive integer d the set S has a finite number of M; of
K|[t]-rank d;
e for every indecomposable module V' over the algebra A=A®x K
there exist M; € S, a € K and positive integer n such that

V& M; @py K[/ (t— )"

Here Bim(A, K[t]) is the set of all A-K[t]-bimodules M such that M is a free

right module of finite rank over the algebra K[t]. By [d p. 110], no algebra
K@ is both semi-wild and tame.
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Now we collect basic facts we use throughout the paper.
LEMMA 1.1. Let G be a finite group and X\ € Z*(G, K*).

(i) If the algebra K G is tame then the subalgebra K*H is also tame for
any subgroup H of G. If the subalgebra K H of K G is semi-wild
then the algebra K G is semi-wild.

(ii) Let Gy be a Sylow p-subgroup of G. If the subalgebra K*G,, of K*G
is tame then the algebra K*G is also tame. If the algebra K G is
semi-wild then the subalgebra K*G,, is semi-wild as well.

Proof. Apply [7, Proposition 2|. =
LEMMA 1.2 (|7, p. 24]). Let G be a p-group. The group algebra KG is
wild if and only if G is non-cyclic and |G : G'| # 4. Otherwise KG is tame.

LeEMMA 1.3 ([, p. 175]). Let G be a finite group and A\ € Z?(G, K*). The
algebra K G is of finite representation type if and only if K)‘Gp s uniserial.
LEMMA 1.4 (12 p. 119]). Let G be an abelian p-group and T a subgroup

of socG. Then there exists a direct decomposition G = A x B such that
socB="T.

LEMMA 1.5. Let G be a non-abelian p-group with G' = (c), H = (cP),
and \ € Z*(G,K*).

(i) V := K*G -rad KH is an ideal of K’G and there is an algebra
isomorphism K G/V = KPT, where T = G/H, T' = (cH) and
PeHyH = Mgy for all z,y € G.

(i) The algebra K G is uniserial if and only if K*G/V is uniserial.

Proof. We have G’ C Ker(\), H <G and (G/H) = G'/H = (cH). The
set V is an ideal of K*G and K*G/V = K*T. We put K*G = K*G/V and
W = w4+ V for every w € K G. Since V is a nilpotent ideal, rad KAG =
(rad K*G)/V. If K*G is uniserial then rad K*G = K*G - for some 6 €
rad K*G (see [I1} p. 170]). It follows that rad KXG = KAG - 6. Hence K G
is a uniserial algebra.

Conversely, assume that K G is uniserial. Then rad K*G = K G - 8 for
some 6 € rad K*G. Consequently, for any w € rad K*G, there is z € K*G
such that w + V = (2 4+ V)(0 + V). It follows that w — 20 € (rad K G)?,
since uf — ue = (ue — ue)P € (rad K*G)2. This implies

w+ (rad K2G)? = [z + (rad K*G)?] - [0 + (rad K*G)?].
Therefore the radical of K*G/(rad K*G)? is a principal left ideal. Hence
K*G/(rad K*G)? is a uniserial algebra. But K*G/(rad K*G)? is uniserial
if and only if K G is uniserial (see [IT, p. 172]). Consequently, K G is a
uniserial algebra. m
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LEMMA 1.6. Let G be a p-group, |G'| = p and X € Z*(G, K*). Suppose
that K*G is not a uniserial algebra and K*G/K G -rad KG' is a uniserial
algebra. If H is an abelian subgroup of G, G' € H and K*H/K*H -rad KG'
is not a field, then K*H is not a uniserial algebra either.

Proof. Let G' = (c). If H = A x {(¢) then K’"H = K*A @ KG' and
K*A is not a field, since K*A = K H/K*H - rad KG'. Therefore K*H is
not a uniserial algebra.

Now we assume that (c) is not a direct factor of H. By Lemma , there
exists a direct product decomposition H = (hy) x - -+ x (hy,), where ¢ € (hy,)
and |c| < |hy|. Assume K*H is uniserial algebra, |h,| = p*! and ¢ = hE

Then
lhi]=1  |hn|-1

K*H=@ ... P Ku .. .ujp,

i1=0 in=0
where
h; .
U‘}L;':(Sjue, e K* forj=1,...,n—1,
t
up = au, a€e K",
and

lhal=1  |hn—1]-1
F:= @ @ Kuzll...uZ’::l
i1=0 in—1=0
is a field. Since K*H/K*H (u, — u¢) is not a field, we have au, = 6P for
some 0 € F. From
(071u1,';:1 — Ue)? = Ue — Ue

it follows that u.—u. € (rad K*H)?. Because K*G is a local algebra, we have
rad K*H C rad K*G. Hence K*G(u. — u.) C (rad K*G)?. By hypothesis,
the algebra K*G/K*G(u, — ue) is uniserial. Arguing as in the proof of
Lemma we show that K*G/(rad K*G)? is a uniserial algebra. Then
K?G is also uniserial, a contradiction. m

LEMMA 1.7. Let G be a non-abelian p-group with non-cyclic commutant.
Then G contains a normal subgroup H such that H C G’ and (G/H)" =
G'/H is an elementary abelian group of type (p,p).

Proof. By our assumption, G'/G" is a non-cyclic abelian p-group. Denote
by S the subgroup of G’ generated by G” and all elements z?, where z € G’.
Clearly, S is a normal subgroup of G and G’/S is a non-cyclic elementary
abelian p-group. Since (G/S)" = G’/S, in what follows we assume that G’ is
a non-cyclic elementary abelian p-group.

Let |G'| = p™ and n > 2. Choose a # e in G’ such that a € Z(G). Then
the commutant of G/(a) is a non-cyclic elementary abelian group of order
p" L If n — 1 > 2, we inductively continue the above construction. =
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Let H be a subgroup of a group G. If M is a K*G-module, we denote by
My the module M viewed as a K*H-module. If N is a K* H-module, then
N% = K G @y N is called the induced K*G-module.

LEMMA 1.8. Let G be a finite group, H a subgroup of G and \ €
Z2(G,K*). If H ¢ Z(G) and K H is a wild algebra, then K G is also
wild.

Proof. Let Vi and Va be K* H-modules. As (V%) g = V;®---@V; (|G : H|
summands) for i = 1,2, by the Krull-Schmidt Theorem the modules V;* and
VQG are isomorphic if and only if the modules V; and V5 are isomorphic.

Let K be the separable closure of K and F' = I?(tl, t2). By definition of
a wild algebra, there exists a bimodule M € Bim(K*H, F) such that, for
any N,N' € Bim(F,K), M ®p N = M ®p N’ implies N = N’. We put
W =K G @y M. It W®p N =W @p N for some N, N’ € Bim(F, K),
then

(M ®p N)¢ = (M op N
This implies M @p N 2 M ®p N’, hence N 22 N’. Thus K*G is wild. =

LEMMA 1.9. Let G be an abelian p-group, A € Z*(G, K*), d =dimy K G
and 4d # |G|. If K*G is not a uniserial algebra then it is wild.

Proof. Let G = H x (b1) X --- X (bp), Dj = H x (b;) for j =1,...,m,
where H may be the trivial group. Assume that K*H is a field and K )‘Dj is
not a field for every j € {1,...,m}. Then m > 2, since K*G is not uniserial.
First, we assume that m > 3 in the case p = 2. Let B = (b1) X - -+ X (bm),
G = socG, H = soc H and B = soc B. Then K*G =~ K*H ® KB. Since
|B| > 4, by Lemmas and the algebra K G is wild. It follows, by
Lemma that so is K*G.

Next we suppose that p =2 and G = H x (b1) x (b2). Denote by F' the
field K*H. We have K*G = FAB, where B = (b) x (b2). Let {u, : g € G}
be a natural K-basis of K*G. Then

2m1 1221
K G = @ @ Fuélluzz, ugjj =yue for j € {1,2},
i1=0 i2=0
where 2" = |b;|, 7; € K*. Since
d
dimp(F*B/rad FAB) = TR |G| =[F:K]-|B| and 4d# |G|,

we have 4 - dimp(F*B/rad FAB) # |B|. The algebra FAB is not uniserial,
hence v; € F? for every j and 4 - dimyg FAB < |B|.

Assume that nqy > 2, no > 2, 11 = 5%, Yo = 5%, where 01,02 € F* and
81 & F?. We set
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Then C = (c1) x (c2) is of type (4,4). Denote by 6; a root of the polynomial
X2 — §; in the algebraic closure of the field F. Then [F(6;,62) : F] < 4,
hence 8 € F(61)2, that is, d2 = (p1 + p261)? = p? + p36; for some p1, ps € F.
Put

Vey = Ueyy  Vep = (p1+ p2u61)_1u62'

We have vé = ue. Hence, if D = H x C then

3 3
K*D = FrC = @ @ Fulvg, ’Uéll = Y1 Ue, vé = Ue.
i1=0 i2=0
We set T = H x (c3) x {e2) and N = (c}) x (c2). Then for the algebra
13
K*T = @ @ K H - U%vf};, U% = VlUe,  Vpy = Ue,
i1=0 i2=0
we have K*T =~ K*H @ KN. Since |[N| = 8, by Lemmas and the
algebra K*T is wild. By Lemma so is K*D. Applying again Lemma
we conclude that K G is wild.
Now assume that ny > 2, ng > 1, and v = 5‘11, Yo = 5% for some
01,00 € F*. Let
C1 = b%n172, Cy = b%nQil.
Then C = (c1) x {cg) is of type (4,2) and FAC is the group algebra of the
group C over the field F. We put D = H x C. We have K*D = FAC =
K*H ®k KC. By Lemmas and K*D is wild. Hence, in view of
Lemma KAG is also wild. w

LEMMA 1.10. Let G be a non-abelian p-group, A € Z*(G,K*), and d =
dimg KXG. Assume that pd < |G : G'| if p#2, and 4d < |G : G'| if p = 2.
If K*G is not a uniserial algebra then it is semi-wild.

Proof. Let {u, : g € G} be a natural K-basis of the algebra K*G, U =

K Grad KG', KA\G = K*G /U and @ = w+U for every w € K*G. Suppose
that G/G' = (a1G’) x -+ x (a,,G'), where |a;G'| = p% for j =1,...,m.

Then
P ll lm
i i,
K G = @ @ Kag - -ag"
11=0 im=0
where [; = p% — 1,

ﬂgjj =jle, v; € K" forj=1,...,m.

The algebra I?XEJ is a twisted group algebra of the non-cyclic abelian p-group
G /G’ over the field K.
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If I/(T\E? is not a uniserial algebra then, by Lemma I/(\AE? is wild.

Then so is K*G. Assume now that K G is a uniserial algebra and the
K-subalgebra

ll lm—l
_ ~11 L im—1
F—@ @ Kag ---agm "
i1=0 tm—1=0

is a field. We have F' = (KD + U)/U, where D is the subgroup of G
generated by G’ and the elements ay, ..., a,_1. Evidently,

p'm—1
K\G = @ Fair.
m

im=0

Since dimKI/(;‘E’ = |G : G, dimK(I/(\’\E?/radI/(;‘a) =dand d < |G : G,
the algebra KAG is not a field. There exists an element

ll lmfl
_ . . i1 im—1
(2) p= E e E Qi i1 gy -+ - ullTn—l’

11=0 im—1=0

where o, ;. € K, l; =p% — 1 for every j € {1,...,m — 1}, such that
PP = ~yli. with r satisfying one of the following two conditions:

(i) if p# 2 then 2 < r < s,,, and p & FP in the case r < s;;
(ii) if p =2 then 3 <r < 5., and p € F? in the case © < sy,.

We have d = |D : G’| - p*»~", hence dp” = |G : G'|.

In view of Lemmas [1.2} [L.5| and we can assume that |G'| = p for
p # 2, while G’ is the elementary abelian group of type (2,2) or the group
of order 2 for p = 2. Denote by H the subgroup of G generated by G’ and
the elements
;,1, P psm—r-&—l.

a

Yy Uy 15 Qo

We show that H is abelian. Assume that p = 2 and G’ = (¢1) x (c2), where
le1| =2, |e2] = 2 and ¢; € Z(G). Since the center of G/(c1) contains ca(c1),
we have g lcag = cacl for any g € G. This implies cag® = g%cy for every
g € G. If h € G then g~thg = hclc§ for some r, s € {0,1}. It follows that
g 2hg? = hci® and g~2h%g% = h2. In the case G’ = (c1), |c1| = p we obtain
g leig=c1, g7thg = hef, g Phg? = h for all g, h € G.

Let S be the subgroup of H generated by G’ and the elements
al,...,al . Let T =S/G" and

I lm—1
w= Z . Z ap i ubt bt (see (2).

11=0 im—1=0
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Then w € K*S and
(wupsm—r+l)p

am

" =, (mod K H -rad KG').
It follows that K*H/K*H -rad KG' is the group algebra of the cyclic group
of order p"~! over the field L = (K*S + K H -rad KG')/K*H - rad KG'.
Clearly, L & K*S/K*S - rad KG' & KMT, where fiz¢ryer = Agy for all
z,y € S. Thus, dimg K H = |T.

By Lemma the algebra K* H is not uniserial. Since |H|=|T|-|G’|-p"~*
and |G|-p"~1 # 4, Lemmashows that K*H is wild. By Lemmal(l.1, K*G

is semi-wild. m

LEMMA 1.11. Let G be a non-abelian 2-group, |G'| > 4, K a field of
characteristic 2, A € Z*(G,K*), d = dimgx KAG and 4d = |G : G'|. If K*G
is not a uniserial algebra and K*G /K G rad KG' is uniserial, then K*G is
of semi-wild representation type.

Proof. Here we follow the proof of Lemma [1.10] and we keep the same
notations with p and 2 interchanged. There exists an element p of the form
such that p* = 1., where p & F? if 4 < s,,.

If G’ is a non-cyclic group, we shall assume, by Lemma that G’ is the
elementary abelian group of type (2,2). Let G’ = (c), B = (c*), N = (c?),
V = K \G(u? — ue) and W = K G(u? — u.). By Lemma K*G/V is not
a uniserial algebra. Since

(KAG/W)/(V/W) = K*G/V,

the algebra K*G/W is not uniserial either. Moreover, K*G/W = K v@,
where G = G/B and vypyp = Az y for all z,y € G. We also have

G'=G/B=(cB), |G:G|=|G:G| and dimg K*G =d.

This implies that |G'| = 4.
Denote by H the subgroup of G generated by G’ and the elements

2 2 2sm—1
A5y Qpy 15 Ay .

We show that H is abelian. In case G' is of type (2, 2), this was established in
the proof of Lemma Let G' = (c) and |c| = 4. Then ¢? € Z(G). Ifa € G
then a~!ca = ¢!, where i = 1 (mod 2). Let b € G and b~ 'ab = ac”. Then
b 1a2b = a2¢" (M9 | and therefore b=2a2b% = a2. We also have a2ca? = c.

Let S be the subgroup of H generated by G’ and the elements
a?,...,a2,_4. Let T = S/G'. The quotient algebra K*H/K*H - rad KG'
is the group algebra of the cyclic group of order 2 over the field L = K*T.
By Lemma the algebra K*H is not uniserial. Since |H| = |T|-2|G’| and
|G| =4, Lemma shows that K*H is wild. It follows, by Lemma|l.1} that
K*G is semi-wild. m
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LEMMA 1.12. Let p # 2, G be a p-group with cyclic commutant and D
the subgroup of G such that G' C D and D/G" = soc(G/G"). Then |D'| < p.

Proof. Let G' = (c), |c| = p™and m > 2.1f g € D then g 'cg = ¢", where
r =1 (mod p™~1). It follows that g~ 'cPg = cP. Let a,b € D, a~'ca = ¢" and
b=lab = ac’. Then b~'aPb = aPc®, where t = 147+ --- + 1P~ It is easy to
see that ¢t = p (mod p™). Hence b~ 'aPb = aPc’P.

Let H = (cP). If a? € H then b~!aPb = aP, and we conclude that ip = 0
(mod p™). If a? ¢ H then we may assume that a” = c. This implies that
btab = a'*P. We have b? = aPJ for some j, since b? € G’. Therefore
b™PabP = a and

bPabP = a1+7P)"
Hence, (14 pi)? =1 (mod p™*1). Thus pi = 0 (mod p™) and [a, b’ = e. =

LEMMA 1.13. Let p # 2, G be a non-abelian p-group, K a non-perfect
field of characteristic p, A\ € Z*(G,K*) and d = dimyx K*G. Moreover,
assume that K G is not a uniserial algebra, pd = |G : G| and |G'| > p.
Then K*G is a semi-wild algebra.

Proof. If G’ is non-cyclic then, by Lemmas and the algebra K*G
is semi-wild. Let G’ = (¢) and T = (c?). Denote by D the subgroup of G
such that G’ C D and D/G’ = soc(G/G'). By Lemma[1.12] D/T is abelian.
In view of Lemma we can assume that |G'| = p and D is an abelian
group. By Lemma K/\D is not uniserial, since K*G/K*G - rad KG' is
uniserial and K*D/K*D - rad KG' is not a field. According to Lemma
K*D is wild. By Lemma K*G is semi-wild. =

PROPOSITION 1.14. Let G be a finite group, A € Z*(G,K*) and d =
dimg K AG,. Assume that G, is abelian and |G| # 4d. The algebra K G is
semi-wild if and only if K/\Gp s not uniserial.

Proof. 1f K’\Gp is not uniserial then, by Lemma KAGp is wild. Hence,
by Lemma KAG is semi-wild. If K /\Gp is uniserial then, by Lemma
K@ is of finite representation type. =

PROPOSITION 1.15. Let G be a finite group, N € Z*(G,K*) and d =
dimg KAGy. If d = |G, : G| and |G, : G| # 4, then the algebra K*G is
semi-wild if and only if G]’D is a non-cyclic group.

Proof. Since d = |Gy, : G|, the algebra K*G,/K*G) - rad KG), is a field
and K*G),rad KG), is the radical of KG). If G, is cyclic then K*G) is unise-
rial, thus, by Lemma K?G is of finite representation type. Hence, K*G is
not semi-wild. If G, is a non-cyclic group then, by Lemma K ’\G;) = KG,
is a wild algebra. In view of Lemma it follows that K*G is semi-wild. m

We are now able to prove one of the main results of this paper.
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THEOREM 1.16. Let p # 2, G be a finite group, A € Z*(G,K*), u the
restriction of A to Gp X Gp and d = dimg K*G),. Denote by D the subgroup
of Gy such that G}, C D and D/G), = soc(G)/G},). Assume that if |G},| = p
and pd = |Gy, : G|, then Ker(u) # G, or D is abelian. The algebra K*G

is of semi-wild representation type if and only if the subalgebra K)‘Gp s not
uniserial.

Proof. If K ’\Gp is uniserial then, by Lemma K@ is of finite rep-
resentation type. Suppose that K G, is not uniserial. If pd < |G, : Gyl
then, by Lemma K*G) is semi-wild. If pd = |G), : Gyl and |G| > p
then, by Lemma [1.13], K*G), is also semi-wild. Let d = |G}, : Gyl Then
K G,/K*G) - rad KG), = K*G), therefore G}, is non-cyclic. According to
Lemma , K G;, is wild. By Lemma in all cases K*G is of semi-wild
representation type.

Now assume that pd = |G, : G| and |G| = p. Then Ker(u) # G}, or D
is abelian. Let H, = Ker(u) and H, # G),. Denote by U the ideal K*G), -

rad K Hy, of the algebra KAGp and by K*G, the quotient algebra KAGp/U.

Since G}, C Hy, G}, # Hp, dimg K*G), = |Gy, : Hy| and K*G)/rad K*G),
K*G)p, we have |G, : Hy| = d and U = rad K*G,,. The algebra K*G), is
not uniserial, hence U is not a principal left ideal. This implies that H), is
non-cyclic. By Lemma , K H, is wild. According to Lemma K*G is
semi-wild.

Finally, we examine the case when D is abelian. Since K*G,/K*G,, -
rad KG/, is a uniserial algebra and K*D/K*D - rad KG), is not a field,
Lemma shows that K* D is a non-uniserial algebra. By Lemma K*D
is wild and, by Lemma , K*G is semi-wild. m

THEOREM 1.17. Let G be a finite group, K a field of characteristic 2,
)\ € Z2(G,K*) and d = dimg K*Go. Assume that one of the following three
conditions holds:

(i) 4d < |Ge : GY|;

(i) 4d = |Gy : G|, |Gh| > 4 and K G2/ K*Gy - rad KGY is a uniserial

algebra;

(iii) d =|G2: Gy and |G, : GY| # 4.

The algebra K G is semi-wild if and only if K*G3 is not uniserial.

Proof. Apply Lemmas [I.9]-[I.11] and Proposition [I.15] =

PROPOSITION 1.18. Let G be a finite group, K a field of characteristic 2,
A € Z3(G, K*), u the restriction of X to Go x G2 and Hy = Ker(u). Assume
that Hy is non-cyclic and |Hy : HY| # 4. Then K G is semi-wild.

1
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Proof. Apply Lemmas and [1.2] =

PROPOSITION 1.19. Assume that p # 2 and keep the notation of Theo-
rem |1.16| Assume also that if |Cy| = |G}| = p and s < i(K) + 1, then D
is abelian. Then, for every A € Z%*(G,K*), K G is of finite or semi-wild
representation type.

Proof. Let A € Z*(G,K*), d = dimg K*Gy, pd = |G, : G)| and U =
K*G, - rad KG). We have K*G,/U = K"H,, where H, = G,/G), and
VaGlyGl, = Aay for all z,y € Gp. Since dimg K”H, = [Hy| = pd and
d = dimg KVH,, K¥H, is uniserial. Hence s < i(K) + 1. Denote by p the
restriction of A to Gy, x G, . We have C), C Ker(u). If |G| = p and C), # G,
then Ker () # Gj,- Now apply Lemma and Theorem m .

2. Groups of purely semi-wild projective representation type at
characteristic p # 2. We say that a finite group G is of tame projective
K -representation type if K*G is of tame representation type for every \ €
Z%(G,K*). A group G is said to be of semi-wild projective K -representation
type if K*G is of semi-wild representation type for some A € Z2(G, K*).
A group G is defined to be of purely semi-wild projective K -representation
type if K*G is of semi-wild representation type for any A € Z2(G, K*).

PROPOSITION 2.1. Let G be a finite group and K « field of characteristic
p > 2. The group G is of semi-wild projective K -representation type if and
only if G is non-cyclic and |G, : GJ’D] # 4. Otherwise G is of tame projective
K -representation type.

Proof. If G is non-cyclic and |G}, : G| # 4, then, by Lemmasand
K is semi-wild. Hence G is of semi-wild projective K-representation type.
Assume that G, is cyclic. For every A\ € Z%(G,K*), the subalgebra K ’\Gp
of K*G is uniserial. It now follows from Lemma that K*G is of finite
representation type. Now let p = 2, G2 be non-cyclic and |Gy : G| = 4. For
every A\ € Z2(G, K*), there exists a finite purely inseparable field extension
F of K such that Fox K Gs = FGs. By Lemma F(@5 is a tame algebra.
This implies that K*G5 is tame (see [10, p. 247]). Applying Lemma we
conclude that K*G is tame for any A € Z%(G, K*). Hence G is of tame
projective K-representation type. m

PROPOSITION 2.2. Let G be a finite group and K a perfect field of charac-
teristic p > 2. The group G is of purely semi-wild projective K -representation
type if and only if Gy, is non-cyclic and |G : G;,| % 4. Otherwise G is of
tame projective K -representation type.

Proof. Since K is a perfect field, K )‘Gp is the group algebra of G, over K
for every A € Z?(G, K*) (see [15] p. 90] or [16} p. 43]). If G, is non-cyclic and
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|Gy : G},| # 4, then, by Lemma KG, is wild. It follows, by Lemma

that K G is semi-wild for any \. Hence G is of purely semi-wild projective
K-representation type. If G, is cyclic or p = 2 and |Gg : G4| = 4, then, in
view of Proposition 2.1} G is of tame projective K-representation type. m

Let G be a finite group, G’ the commutant of G, G, a Sylow p-subgroup
of G and C, a Sylow p-subgroup of G'. We assume that C, C Gp. Then
Gy, C Cp, and hence Cp<G,. We have G,G' /G’ = G,/ Cy, since GpNG" = C),.
The group G,G'/G’ is the Sylow p-subgroup of the abelian group G/G’.
Denote by A a normal subgroup of G), such that C, C A. Let ¢ : G — G/G’
be the canonical homomorphism, x : G/G' — G,G'/G’ a projector, and
¢ : G,G'/G'" — Gp/A the epimorphism defined by ¢(zG’) = zA for any
x € Gp. Then

(3) f=ox¢:G—G,/A
is a surjective group homomorphism. Moreover, the restriction of f to G, is
the canonical homomorphism 7 : G, — G,/A.

LEMMA 2.3. Assume that G is a finite group, H = Gp/A, f: G — H is
the epimorphism , v e Z?(H,K*) and Aab = Vi(a),f(b) Jor any a,b € G.

(i) M€ Z2(G,K*) and Ay y = Ayx =1 for all x € Gp, y € A.
(ii) If pu is the restriction of A to Gy x Gy, then lap = Vr(a)xp) for all
a,b € G, and Ker(p) = m1(Ker(v)).
(iii) If V = K*G,-rad KA then V is an ideal of K*G), and K*G,|V =
KYH.
Proof. Statements (i) and (iii) are obvious.
(i) By Proposition 2.1 of |2], Ker(v) = Ker(I"), where I is an irreducible
v-representation of the group H over the field K. Since I'o7 is an irreducible
pi-representation of the group G, over K, we get Ker(u) = 71 (Ker(y)). "

PROPOSITION 2.4. Let G be a finite group such that C), is cyclic, A a
cyclic subgroup of G, C, C A and r the number of invariants of Gp/A. If
r < i(K) then there exists a cocycle A\ € Z*(G,K*) such that K Gy, is a
uniserial algebra.

Proof. Let H = Gp/A. Since r < i(K), there exists a cocycle v €
Z%(H,K*) such that KH is a field. In view of Lemma there exists
a cocycle A € Z2(G, K*) satisfying the following conditions:

e if y is the restriction of A to G x G), then Ker(p) = A;
e if V = K*G,-rad K A then V is the radical of K*G), and K*G,/V =
K'H.

Since A is cyclic, V is a principal left ideal and therefore K )‘Gp is uniserial. m
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COROLLARY 2.5. Let G be a finite group with C, cyclic. If G is of purely
semi-wild projective K-representation type, then Gp/Cp, = (a1Cp) X -+ X
(a,Cp), where r > i((K) + 1 and if r = i(K) + 1 then C, ¢ (a;) for every
jed{l,...,r}

Proof. Assume that r = i(K)+1 and C}, C (aj,) for some jo € {1,...,r}.
Let A = (aj,). Since the number of invariants of G,/A is at most i(K),
there exists, by Proposition a cocycle A € Z%(G, K*) such that K*G,,
is a uniserial algebra. Hence G is not of purely semi-wild projective K-
representation type. m

LEMMA 2.6. Let G be an elementary abelian p-group, s the number of
invariants of G, K a field of characteristic p and \ € Z*(G,K*). If s =
i(K)+r then KNG = K*D @ KT, where G =D x T and |T| > p".

Proof. Since s > i(K), K*G is not a field. Assume that K*G is not the
group algebra of G over K. There exists a direct product decomposition G =
D x (1) %+ -+ x {c,) such that K*D is a field and K*T} is not a field for every
j €{1,...,m}, where T; = D x (c;). It follows that K*G = K*D @ KT,
where T' = (c1) X -+ X {¢p,). The number of invariants of the group D is at
most i(K), hence m > r. m

Now we are able to prove the main result of this section.

THEOREM 2.7. Let p # 2, G be a finite group and D the subgroup of
Gyp such that Gi, C D and D/G), = soc(Gp/G},). Assume that if |Cp| = p,
s = i(K) + 1 and D is non-abelian then exp D = p*. Then G is of purely
semi-wild projective K -representation type if and only if one of the following
four conditions is satisfied:

(i)

(i) s >i(K)+2;

(ili) s =i(K)+1, Cp =G}, = (c), || > p* and g* € (cP) for every g € D;

(iv) s = ¢(K) + 1, Cp = G’ |G1’D| = p and D is an elementary abelian
p-group.

Cp is a non-cyclic group;

Proof. First we prove that if G satisfies one of conditions (i)—(iv), then it
is of purely semi-wild projective K-representation type. Let A € Z2(G, K*).
The algebra K ’\Gp contains the group algebra KC) = K )‘C’p. If ¢}, is non-
cyclic then, by Lemma KC, is wild. In view of Lemma K G is
semi-wild.

Assume that s > i(K)+ 2. Since s is also the number of invariants of the
group D = D/G,, by Lemma we have K*D = KMBy @k K Bs, where
D = B; x By and |Bs| > p?; moreover, oGl yGl = Azy for any z,y € D.
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According to Lemmas and the algebra K*D is wild, hence K D is
also wild, and it follows from Lemma that K*G is semi-wild.

Now we suppose that (iii) holds. Let T = (cf). By Lemma[l.12) H = D/T
is an abelian group. Let D/G), = (b1G}) x - -+ x (bsG}), s = i(K) + 1. Then
H = (cT)x (/T) x ---x (bsT). If V.= K D -rad KT then K*D/V = K'H,
where pyryr = Agy for all z,y € D. Denote by H the socle of H. By
Lemma KMH = KFNy @ KNa, where H = Ny x Ny and |No| > p?.
In view of Lemmas and K*H is wild. Applying again Lemma
we deduce that K*H is wild, hence so is K*D. By Lemma K*G is
semi-wild.

If G satisfies (iv) then D is a direct product of s +1 = i(K) + 2 cyclic
groups of order p. According to Lemmas and , KD is wild. Hence,
by Lemma K*G is semi-wild.

Conversely, let G be of purely semi-wild projective K-representation type.
If C, = (c) then, by Corollary Gp/Cp = (a1Cyp) x -+ x (a,Cp), where
r > i(K)+ 1. We also have s > r. Let r = i(K) + 1. By Corollary
Cp # {e} and

a;C,
for any j € {1,...,r}. Let Cp # G}, and T = (cP). Then G}, C T and
Gp/T = (T) x (a1 T) x -+ x (a,T).

Since G/T = (Gp/G,)/(T/G},), the number of invariants of the group G,/T
is at most s. This implies r + 1 < s. Hence s > i(K) + 2. This means that
(i) holds. Assume now that C, = GJ,. If || > p*, we have (iii). If [¢| = p
then ¢gP = e for every g € D. By hypothesis, D is abelian and (iv) fol-
lows. m

COROLLARY 2.8. Letp # 2, G be a finite group and [K : KP| = co. The
group G is of purely semi-wild projective K-representation type if and only
if Cp is non-cyclic.

COROLLARY 2.9. Let p # 2, G be a finite group such that G, is abelian.
The group G is of purely semi-wild projective K-representation type if and
only if Cp is non-cyclic or s > i(K) + 2.

3. Groups of purely semi-wild projective representation type at
characteristic 2. In this section we assume that K is a field of character-
istic 2, G a finite group, 2| |G|, G2 a Sylow 2-subgroup of G, Cy a Sylow
2-subgroup of the commutant G’ of G and Cy C Gs. Denote by s the number
of invariants of the abelian group G2/Gj.

LEMMA 3.1. Let G be an abelian 2-group of exponent 4, G = soc@,
s=i(K)+2 and A\ € Z*(G,K*). If G has at most one invariant equal to 2
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then one of the following conditions holds:

(i) K*G = K*B®k KC, where G = B x C and |C| > 8;
(ii) K*G = K*D®x KT, where G =D x T and |T| > 8.
Proof. If K is a perfect field then K’G = KG (see [I5, p. 90| or

[16, p. 43|). In this case i(K) = 0, G = T and (ii) holds. Let K be a
non-perfect field, m = i(K), G = (a1) x --- X {as) and

la1]—1 las|—1 ]
A % ) aj
K*G= P ... P Kull .. .uls, w? =jue,
i1=0 1s=0

where v; € K* for j = 1,...,s. If K*G is not the group algebra of G
over K, then K*G = K*B ® KC, where K*B is a field and |B| < 2™.
Since s = m + 2, we get |C| > 4. If |C| > 4, then (i) holds. Assume that

|C| = 4. Renumbering ay, ..., as if needed, we may suppose that vi,...,vm
are 2-independent. Let D = (a1) X -+ X (am).
First we consider the case when |a;| = 4 for all j € {1,...,m}. Denote

by 6, a root of the polynomial X4 — v for 5 =1,...,m. For any § € K",
the set {71,...,%m,d} is not 2-independent. Therefore § = 62 for some 6 €
K(62,...,6%). We have

1 1
z : § : 27 21
9 = e ﬁi17u~,im91 E e gmm,
11=0

im=0

: _ 9 . 2 2
where 3, i, € K. Since B;,,.._i,, = p;, _;, forsomep;, ., € K(01,...,0z),

we obtain
1 1 ' 9
0= ( Z e Z pilwimé? .. 9%”) .
i1=0  im=0

Hence § = z* for some z € K (61, ...,0,,). The element z is of the form

3 3 ‘

2= 0> a0 0 ., €K
71=0 Jm=0

We put

3 3
w= Z Z Qoo Uiy - UL
J1=0  jm=0

Then w € K*D and w* = du,. It follows that K*G = K*D @k KT, where

T = (am+1) X <am+2> and |T‘ > 8.
Now we examine the case when |a,,| = 2. By previous arguments, we may
assume that v1,...,9m—1,7 are 2-dependent for every i € {m + 1,m + 2}.
Denote by 6; a root of the polynomial X4 —~; for every j € {1,...,m —1}
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and by 6y, a root of the polynomial X2 — ~,,. Then v; = p? for some
1

1
— 211 2i’l’VL71

pi = E E iy oim 01 0,77
i1=0  im=0

€ K. But o, 4, , = w2 where wi i i, 18

where o ;.. im—1 4815yt —17

T —1 Tm—1
an element of the field K (07,...,6% _1,0). This implies p; = 67 for some
6 € K(01,...,0m-1,0m), hence v; = §}. Consequently, v;u. = v} for some
v; € K*D. Therefore K*G = K*D ®@j KT, where T = {(am+1) X (ami2)

and |T| = 16. =
Our final main result of this paper is the following theorem.

THEOREM 3.2. Let K be a field of characteristic 2 and G a finite group
such that Go is abelian and Cy is cyclic. Then G is of purely semi-wild
projective K -representation type if and only if one of the following conditions
1s satisfied:

(i) s >i(K) +3;
(ii) s =4(K)+2 and |Ca| > 4;
(i) s =i(K)+2, |C2| <2 and Gy has at most one invariant equal to 2.

Proof. By our assumption, we have Cy = (c). To prove the necessity, we
assume that G is of purely semi-wild projective K-representation type. By
Corollary 2.5 Go/Cy = (a1C3) x - -+ x (a,C3), where r > i(K) + 1. We also
have s > r. Let r = i(K) + 1. By Corollary 2.5, Cs # {e} and

la;Ca| 2
a;”"" € (c%)

for every j € {1,...,7}. Let T = (¢?). Then Go/T = (cT) x {(a1T) x --- X
(a,T). It follows that r + 1 < s. Consequently, s > i(K) + 2. Assume that
s = i(K)+ 2 and Go = A x B, where A is the group of type (2,2) and
Cy C A. There exists v € Z?(B, K*) such that KB is a field. In view of
Lemma , there exists A € Z2(G, K*) satisfying the following condition: if
p is the restriction of A to G x Go then Ker(u) = A. The algebra K Gy is
the group algebra of A over the field K¥B. By Lemma K*Gy is tame.
Hence, by Lemma , K*G is also tame.

To prove the sufficiency, we assume that s > i(K) + 3. Denote by Gs
the socle of the group G3. By Lemma K Gy = K*D ®k KT, where
Gy = D xT and |T| > 8. In view of Lemmasand the algebra K G is
wild, and it follows from Lemma that so is K*Gy for all A € Z2(G, K*).

Now we assume that s = i(K) +2. Let H = {g € Go : g* = e}. If G5 has
at most one invariant equal to 2 then, by Lemmas , and K*H
is wild. Applying again Lemma we deduce that K*Gy is wild for any
)\ € Z2(G, K*). Suppose that |Cy| > 4. There exists a direct decomposition
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H = A x B such that B C Cy and |B| = 4. Let N = socA x B. By
Lemma KN = K*D @ KT, where B C T and |T| = 8. According to
Lemmas and K*Gy is wild for any \ € Z%(G, K*). =

PROPOSITION 3.3. Let G be a finite group such that one of the following
conditions is satisfied:

(i) Cy is non-cyclic and |Cy : C| # 4;
(i) s >i(K)+3;
(iii) s =i(K)+2 and |Cy : G| > 4;
(iv) s =i(K) 4 2 and G2/GY% has at most one invariant equal to 2.

Then G is of purely semi-wild projective K -representation type.

Proof. For any A € Z2(G, K*), K*G contains the group algebra KCy =
K*Cy and K*Gy/K*Go - rad KGY, = K*H, where H = G3/GY%. Tt remains
to apply Lemmas and Theorem [3.2] =

COROLLARY 3.4. Let G be a finite group and K a field of characteristic 2.
Assume that |Cy : C5| # 4 and [K : K?] = co. The group G is of purely
semi-wild projective K-representation type if and only if Cs is not cyclic.

Proof. Apply Corollary [2.5] and Proposition [3.3] =

LEMMA 3.5. Let G be a non-abelian 2-group with cyclic commutant G’
and D the subgroup of G such that G' C D and D/G" = soc(G/G’).

(i) If |G'NZ(D)| > 4 then |D'| < 4.
(i) If G' C Z(D) then |D'| < 2.

Proof. (i) Let G' = (¢) and |¢| = 2™. If m = 2 then G’ C Z(D). First
we examine the case when m > 2. If ¢ € D then g 'cg = ¢, where r = 1
(mod 2™~ 1). It follows that g~ 'c?g = 2. Suppose that a,b € D, a~'ca = ¢
and b~'ab = ac’. Then b~ 'a?b = a?¢™"). Let H = (¢?). If a®> € H then
b~1a?b = a?, hence i(1 +r) = 0 (mod 2™). This implies 2i = 0 (mod 2™).
If a®> ¢ H, we may assume that > = ¢ and r = 1. Then b~ '¢?b = ¢? and
b~ 1c?b = 2c*, which yields ¢* =

(ii) Now let G’ C Z(D). Then b~ 'a?b = a?c* and b~ 'a%b = a2, hence
C2i — €. n

PROPOSITION 3.6. Let G be a non-abelian 2-group with cyclic commutant
G’ = {(c) and D the subgroup of G such that G' C D and D/G" = soc(G/G").
Assume that s = i(K) + 1 and |G' : D'| > 4. The group G is of purely
semi-wild projective K -representation type if and only if g*> € (c?) for every
geD.

Proof. Let N = (c?). Since |G’ : N| = 2 and |G’ : D'| > 4, we have

D’ € N. Suppose that G is of purely semi-wild projective K-representation
type. By Corollary , D/G" = (d1G") x -+ x (dsG"), where d? € N for
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every j € {1,...,s}. Since D/N = (¢N) x (d1N) x --- x (dsN), g*> € N for
every g € D.

Conversely, assume that h? € N for every h € D. If g € D then
g teg = c", where ¢! € D'. Let ¢> = ¢, t € Z. We get

(gc—t)Q _ g2c—rt—t _ ct(l—r)'
Therefore (gc=%)? € D'. As a consequence,
D/G" = (1G') x - x (x,G"),
where 2% € D' for every j € {1,...,s}. Let T = (¢*). Then D’ C T and
D/T = {(cT) x (x1T) x -+ x (x:T).

Let H = D/T, A € Z*(G,K*) and piyryr = Mgy for all z,y € D. Then
p € Z2(H,K*) and (cT) C Ker(u). Let Q = (21T) x - - - x (2T). According
to Lemma KHQ =2 KMQy @k KQ2, where |Q2| > 2. It follows that
K'MH = KHFHy @ KHs, where Hi = @1 and Hy = (cT') x Q3. Since
|Hs| > 8, we deduce from Lemmas|(1.2{and |1.8that K*H is wild. Therefore,
KD is wild for any A € Z%(G, K*). Applying Lemma we conclude that
G is of purely semi-wild projective K-representation type. m

COROLLARY 3.7. Let G be a non-abelian 2-group with cyclic commutant
G’ = (¢) of order 2™, D the subgroup of G such that G' C D and D/G’ =
soc(G/G"). Assume that s = i(K) + 1 and one of the following conditions
holds:

(i) m >4 and |G' N Z(D)| > 4;
(i) m =3 and G’ C Z(D).

The group G is of purely semi-wild projective K -representation type if and
only if g? € (c?) for every g € D.

Proof. Apply Lemma [3.5 and Proposition [3.6] =
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