FINITE-DIMENSIONAL TWISTED GROUP ALGEBRAS OF SEMI-WILD REPRESENTATION TYPE

BY

LEONID F. BARANNYK (Słupsk)

Abstract. Let G be a finite group, K a field of characteristic p > 0, and $K^{\lambda}G$ the twisted group algebra of G over K with a 2-cocycle $\lambda \in Z^2(G, K^*)$. We give necessary and sufficient conditions for $K^{\lambda}G$ to be of semi-wild representation type in the sense of Drozd. We also introduce the concept of projective K-representation type for a finite group (tame, semi-wild, purely semi-wild) and we exhibit finite groups of each type.

Introduction. Let K be a field, \widehat{K} the separable closure of K, and A, B algebras over K. Denote by $\operatorname{Bim}(A,B)$ the set of all A-B-bimodules M such that M is a free right module of finite rank over B. Let $F = \widehat{K}\langle t_1, t_2 \rangle$ be the free associative \widehat{K} -algebra of polynomials in two non-commutting indeterminates t_1, t_2 with coefficients in \widehat{K} . We recall from [9] that a finite-dimensional K-algebra A is said to be of semi-wild representation type (briefly, A is semi-wild) if there is $M \in \operatorname{Bim}(A,F)$ such that for any $N \in \operatorname{Bim}(F,\widehat{K})$ there exist only a finite number of non-isomorphic $N_i \in \operatorname{Bim}(F,\widehat{K})$ with $M \otimes_F N \cong M \otimes_F N_i$. If, moreover, $M \otimes_F N \cong M \otimes_F N'$ implies $N \cong N'$, we say that the algebra A is of wild representation type (briefly, A is wild).

We recall that the paper by Simson [22] gives various notions of wildness of an algebra A and discusses relations between them. A detailed description of basic concepts of the theory of tame and wild representation types of algebras over an algebraically closed field can be found in monographs by Simson [21] and Simson and Skowroński [23].

Let K be a field of characteristic p > 0, G a finite group and $p \mid |G|$. Higman [14] proved that the group algebra KG is of finite representation type if and only if Sylow p-subgroups of G are cyclic. Bashev [5] and Heller and Reiner [13] have determined indecomposable representations of KG in the case when p = 2 and G is the group of type (2, 2). Kruglyak showed in [17] that if p > 2 and G is a non-cyclic p-group, then KG is wild. Brenner [8] has

DOI: 10.4064/cm120-2-8

²⁰¹⁰ Mathematics Subject Classification: Primary 16G60; Secondary 20C20, 20C25. Key words and phrases: modular projective representation, modular representation, projective representation, semi-wild twisted group algebra, twisted group algebra, wild twisted group algebra.

shown that KG is wild if p=2, G is a non-cyclic 2-group and $|G:G'| \neq 4$. Bondarenko [6] and Ringel [20] have independently shown that KG is not wild if p=2 and G is a dihedral 2-group. Finally, Bondarenko and Drozd [7] have established that KG is not wild either if p=2 and G is a semidihedral 2-group or a quaternion 2-group.

Let K be an algebraically closed field, A a finite-dimensional K-algebra, G a finite group and AG the group algebra of G over A. The representation type of AG is determined by Meltzer and Skowroński [18, 19] and by Skowroński [24, 25].

Let G be a finite group, G_p a Sylow p-subgroup of G, K a field of characteristic p and $\lambda \in Z^2(G, K^*)$. We recall from [4] that the twisted group algebra $K^{\lambda}G$ is of finite representation type if and only if the algebra $K^{\lambda}G_p$ is uniserial.

In this paper we determine the algebras $K^{\lambda}G$ of semi-wild representation type. We also introduce the concept of projective K-representation type for G and exhibit finite groups of each type.

Let us briefly present the main results of the paper. Let G be a finite group, G_p a Sylow p-subgroup of G, G'_p the commutant of G_p , s the number of invariants of the abelian group G_p/G'_p , and C_p a Sylow p-subgroup of the commutant G' of G. We assume that $C_p \subset G_p$. Denote by D the subgroup of G_p such that $G'_p \subset D$ and $D/G'_p = \operatorname{soc}(G_p/G'_p)$. Let K be a field of characteristic p and let

$$i(K) = \begin{cases} n & \text{if } [K : K^p] = p^n, \\ \infty & \text{if } [K : K^p] = \infty. \end{cases}$$

In Section 1, we describe twisted group algebras of semi-wild representation type. Let $\lambda \in Z^2(G, K^*)$ and $d = \dim_K(K^{\lambda}G_p/\operatorname{rad} K^{\lambda}G_p)$. Suppose that $p \neq 2$ and if $|G'_p| = p$, $pd = |G_p : G'_p|$ then D is abelian. We prove that the algebra $K^{\lambda}G$ is semi-wild if and only if the subalgebra $K^{\lambda}G_p$ is not uniserial (Theorem 1.16). If p = 2 and one of the following conditions holds:

- (i) $4d < |G_2:G_2'|$;
- (ii) $4d = |G_2: G_2'|, |G_2'| \ge 4$ and $K^{\lambda}G_2/K^{\lambda}G_2 \cdot \operatorname{rad} K^{\lambda}G_2'$ is a uniserial algebra;
- (iii) $d = |G_2 : G_2'|$ and $|G_2' : G_2''| \neq 4$,

then the algebra $K^{\lambda}G$ is semi-wild if and only if the subalgebra $K^{\lambda}G_2$ is not uniserial (Theorem 1.17).

We say that a finite group G is of purely semi-wild [wild] projective Krepresentation type if $K^{\lambda}G$ is of semi-wild [wild] representation type for any $\lambda \in Z^2(G, K^*)$.

In Section 2, we exhibit finite groups of purely semi-wild projective Krepresentation type at characteristic $p \neq 2$. Assume that if $|C_p| = p$, s =

i(K) + 1 and D is non-abelian, then $\exp D = p^2$. We prove (Theorem 2.7) that a group G is of purely semi-wild projective K-representation type if and only if one of the following conditions is satisfied:

- (i) C_p is a non-cyclic group;
- (ii) $s \ge i(K) + 2$;
- (iii) s = i(K) + 1, $C_p = G'_p = \langle c \rangle$, $|c| \ge p^2$ and $g^p \in \langle c^p \rangle$ for every $g \in D$;
- (iv) s = i(K) + 1, $C_p = G'_p$, $|G'_p| = p$ and D is an elementary abelian p-group.

As a consequence we obtain the following two corollaries:

- 1. Let $p \neq 2$ and $[K : K^p] = \infty$. A group G is of purely semi-wild projective K-representation type if and only if C_p is non-cyclic.
- 2. Let $p \neq 2$ and G be a finite group such that G_p is abelian. Then G is of purely semi-wild projective K-representation type if and only if C_p is non-cyclic or $s \geq i(K) + 2$.

In Section 3, we characterize finite groups of purely semi-wild projective K-representation type at characteristic p=2. Let G be a finite group such that G_2 is abelian and G_2 is cyclic. We show in Theorem 3.2 that G is of purely semi-wild projective K-representation type if and only if one of the following conditions is satisfied:

- (i) s > i(K) + 3;
- (ii) s = i(K) + 2 and $|C_2| \ge 4$;
- (iii) s = i(K) + 2, $|C_2| \le 2$ and G_2 has at most one invariant equal to 2.

We also prove that if $|C_2: C_2'| \neq 4$ and $[K:K^2] = \infty$, then the group G is of purely semi-wild projective K-representation type if and only if C_2 is not cyclic (Corollary 3.4).

Preliminaries. Throughout this paper, we use the following notations: K is a field of characteristic p > 0; K^* is the multiplicative group of K; $K^p = \{\alpha^p : \alpha \in K\}$; G is a finite group, G' is the commutant of G and G'' is the commutant of G'; G_p is a Sylow p-subgroup of G, G_p a Sylow p-subgroup of G', G'_p the commutant of G_p , G the number of invariants of G_p/G'_p . Moreover, we assume that $C_p \subset G_p$, hence $G'_p \subset C_p$. Let Z(G) be the center of G, e the identity element of G, |g| the order of $g \in G$ and soc G the socle of an abelian G-group G. We denote by G-group of all G-valued normalized 2-cocycles of the group G, where we assume that G acts trivially on G-group G

Given a cocycle $\lambda: G \times G \to K^*$ in $Z^2(G, K^*)$, we denote by $K^{\lambda}G$ the twisted group algebra of G over K with the 2-cocycle λ . A K-basis $\{u_g: g \in G\}$ of $K^{\lambda}G$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a, b \in G$ is called natural (corresponding to λ). If H is a subgroup of G, we often use the same

symbol for an element $\lambda: G \times G \to K^*$ of $Z^2(G, K^*)$ and its restriction to $H \times H$. In this case, $K^{\lambda}H$ is a subalgebra of $K^{\lambda}G$.

Let G be a finite p-group. Denote by rad $K^{\lambda}G$ the radical of $K^{\lambda}G$. We set $K^{\lambda}G = K^{\lambda}G/\text{rad}\,K^{\lambda}G$. We recall that in this case $K^{\lambda}G$ is a finite purely inseparable field extension of K [16, p. 74]. Given $\lambda \in Z^2(G, K^*)$, the kernel $\text{Ker}(\lambda)$ of λ is the union of all cyclic subgroups $\langle g \rangle$ of G such that the restriction of λ to $\langle g \rangle \times \langle g \rangle$ is a coboundary. We recall from [3, p. 268] that $G' \subset \text{Ker}(\lambda)$, $\text{Ker}(\lambda)$ is a normal subgroup of G and the restriction of λ to $\text{Ker}(\lambda) \times \text{Ker}(\lambda)$ is a coboundary (see also [2, p. 197] for a simple proof). Up to cohomology in $Z^2(G, K^*)$, we have $\lambda_{g,a} = \lambda_{a,g} = 1$ for all $g \in G$ and $a \in \text{Ker}(\lambda)$. In what follows, we assume that every cocycle $\lambda \in Z^2(G, K^*)$ under consideration satisfies this condition.

Assume now that G is a finite group, $\lambda \in Z^2(G, K^*)$, μ is the restriction of λ to $G_p \times G_p$ and $H_p = \text{Ker}(\mu)$. Then $C_p \subset H_p$ (see [16, p. 48]).

Let G be an abelian p-group, $\overline{G} = \sec G$, $\lambda \in Z^2(G, K^*)$, and $S = \operatorname{Ker}(\lambda)$. If $K^{\lambda}G$ is not a field and $\overline{G} \not\subset S$, then there exists a direct product decomposition $G = H \times \langle c_1 \rangle \times \cdots \times \langle c_m \rangle$ such that $H \neq \{e\}$, $K^{\lambda}H$ is a field and $K^{\lambda}D_j$ is not a field for every $j \in \{1, \ldots, m\}$, where $D_j = H \times \langle c_j \rangle$. The algebra $K^{\lambda}G$ is not uniserial if and only if $m \geq 2$ (see [4, p. 176]). If $\overline{G} \subset S$ then $K^{\lambda}\overline{G}$ is the group algebra of \overline{G} over K. In this case $K^{\lambda}G$ is not a uniserial algebra if and only if G is a non-cyclic group. Assume that $G = B \times C$, where C is a cyclic group and $K^{\lambda}C$ is not a field. The algebra $K^{\lambda}G$ is not uniserial if and only if $K^{\lambda}B$ is not a field (see [4, pp. 175–176]).

Let G be a p-group, H a normal subgroup of G, $\lambda \in Z^2(G, K^*)$, $H \subset \operatorname{Ker}(\lambda)$ and T = G/H. We put $\mu_{xH,yH} = \lambda_{x,y}$ for all $x,y \in G$. Then $\mu \in Z^2(T,K^*)$. Assume that $\{u_g : g \in G\}$ is a natural K-basis of $K^{\lambda}G$ corresponding to λ , and $\{v_{gH} : g \in G\}$ is a natural K-basis of $K^{\mu}T$ corresponding to μ . The formula

$$f\Big(\sum_{g\in G}\alpha_g u_g\Big) = \sum_{g\in G}\alpha_g v_{gH}$$

defines a K-algebra epimorphism $f: K^{\lambda}G \to K^{\mu}T$ with the kernel $U = K^{\lambda}G \cdot \operatorname{rad} K^{\lambda}H$ (see [15, p. 14] or [16, p. 88]). Hence, $K^{\lambda}G/U \cong K^{\mu}T$. We recall that

$$\operatorname{rad} K^{\lambda} H = \bigoplus_{h \in H \setminus \{e\}} K(u_h - u_e)$$

is called the augmentation ideal of the group algebra $K^{\lambda}H$. If $G' \subset H$ then $K^{\mu}T$ is a commutative algebra. Let $d = \dim_K \overline{K^{\lambda}G}$. Then d divides |G:G'|. Moreover, if G is an abelian p-group and $K^{\lambda}G$ is not a uniserial algebra, then p^2d is a divisor of |G|.

If V is a finite-dimensional vector space over K and $\Gamma: G \to \operatorname{GL}(V)$ a projective representation of G with a 2-cocycle $\lambda \in Z^2(G, K^*)$, we refer to Γ as a λ -representation of G over K. Let $\operatorname{PGL}(V) = \operatorname{GL}(V)/K^* \cdot 1_V$ and $\pi: \operatorname{GL}(V) \to \operatorname{PGL}(V)$ be the canonical group homomorphism. The kernel of the composite homomorphism $\pi \circ \Gamma: G \to \operatorname{PGL}(V)$ is called the kernel of Γ and is denoted by $\operatorname{Ker}(\Gamma)$. Let G be a p-group and K be a field of characteristic p. If Γ is an irreducible λ -representation of G over K then $\operatorname{Ker}(\Gamma) = \operatorname{Ker}(\lambda)$ (see [2, p. 198]).

We recall from [26, p. 129] that a set of elements $\alpha_1, \ldots, \alpha_m$ of a field K is called p-independent if the p^m monomials $\alpha_1^{i_1} \ldots \alpha_m^{i_m}$ with $0 \leq i_r < p$ for every $r \in \{1, \ldots, m\}$ are linearly independent over the subfield K^p of K. A subset $\{\beta_1, \ldots, \beta_n\}$ of K is said to be a p-basis if it is a p-independent set and $K = K^p(\beta_1, \ldots, \beta_n)$. In this case $[K : K^p] = p^n$.

It is not difficult to verify that a subset $\{\alpha_1, \ldots, \alpha_m\}$ of the field K is p-independent if and only if the K-algebra

(1)
$$K[t]/(t^p - \alpha_1) \otimes_K \cdots \otimes_K K[t]/(t^p - \alpha_m)$$

is a field. It follows that i(K) (definition on p. 278) is the supremum of the set that consists of 0 and all positive integers m such that a K-algebra of the form (1) is a field for some $\alpha_1, \ldots, \alpha_m \in K$.

The reader is referred to [15] and [16] for basic facts and notation from the theory of projective representations of finite groups and to [1] and [11] for terminology, notation and introduction to the representation theory of finite-dimensional algebras over a field.

- 1. Twisted group algebras of semi-wild representation type. Let G be a finite group, K a field of characteristic p, \widehat{K} the separable closure of K, $\lambda \in Z^2(G, K^*)$ and $A = K^{\lambda}G$. Following Drozd [9, p. 109], we say that A is of tame representation type (briefly, A is tame) if there exists a family $S = \{M_i \in \text{Bim}(A, \widehat{K}[t]) : i \in I\}$ of A- $\widehat{K}[t]$ -bimodules M_i with the following properties:
 - for every positive integer d the set S has a finite number of M_i of $\widehat{K}[t]$ -rank d;
 - for every indecomposable module V over the algebra $\widehat{A} = A \otimes_K \widehat{K}$ there exist $M_i \in \mathcal{S}$, $\alpha \in \widehat{K}$ and positive integer n such that

$$V \cong M_i \otimes_{\widehat{K}[t]} \widehat{K}[t]/(t-\alpha)^n$$
.

Here $\operatorname{Bim}(A, \widehat{K}[t])$ is the set of all A- $\widehat{K}[t]$ -bimodules M such that M is a free right module of finite rank over the algebra $\widehat{K}[t]$. By [9, p. 110], no algebra $K^{\lambda}G$ is both semi-wild and tame.

Now we collect basic facts we use throughout the paper.

LEMMA 1.1. Let G be a finite group and $\lambda \in Z^2(G, K^*)$.

- (i) If the algebra $K^{\lambda}G$ is tame then the subalgebra $K^{\lambda}H$ is also tame for any subgroup H of G. If the subalgebra $K^{\lambda}H$ of $K^{\lambda}G$ is semi-wild then the algebra $K^{\lambda}G$ is semi-wild.
- (ii) Let G_p be a Sylow p-subgroup of G. If the subalgebra $K^{\lambda}G_p$ of $K^{\lambda}G$ is tame then the algebra $K^{\lambda}G$ is also tame. If the algebra $K^{\lambda}G$ is semi-wild then the subalgebra $K^{\lambda}G_p$ is semi-wild as well.

Proof. Apply [7, Proposition 2]. ■

LEMMA 1.2 ([7, p. 24]). Let G be a p-group. The group algebra KG is wild if and only if G is non-cyclic and $|G:G'| \neq 4$. Otherwise KG is tame.

LEMMA 1.3 ([4, p. 175]). Let G be a finite group and $\lambda \in Z^2(G, K^*)$. The algebra $K^{\lambda}G$ is of finite representation type if and only if $K^{\lambda}G_p$ is uniserial.

LEMMA 1.4 ([12, p. 119]). Let G be an abelian p-group and T a subgroup of soc G. Then there exists a direct decomposition $G = A \times B$ such that soc B = T.

LEMMA 1.5. Let G be a non-abelian p-group with $G' = \langle c \rangle$, $H = \langle c^p \rangle$, and $\lambda \in Z^2(G, K^*)$.

- (i) $V := K^{\lambda}G \cdot \operatorname{rad} KH$ is an ideal of $K^{\lambda}G$ and there is an algebra isomorphism $K^{\lambda}G/V \cong K^{\mu}T$, where T = G/H, $T' = \langle cH \rangle$ and $\mu_{xH,yH} = \lambda_{x,y}$ for all $x, y \in G$.
- (ii) The algebra $K^{\lambda}G$ is uniserial if and only if $K^{\lambda}G/V$ is uniserial.

Proof. We have $G' \subset \operatorname{Ker}(\lambda)$, $H \triangleleft G$ and $(G/H)' = G'/H = \langle cH \rangle$. The set V is an ideal of $K^{\lambda}G$ and $K^{\lambda}G/V \cong K^{\mu}T$. We put $\widehat{K^{\lambda}G} = K^{\lambda}G/V$ and $\widehat{w} = w + V$ for every $w \in K^{\lambda}G$. Since V is a nilpotent ideal, $\operatorname{rad} \widehat{K^{\lambda}G} = (\operatorname{rad} K^{\lambda}G)/V$. If $K^{\lambda}G$ is uniserial then $\operatorname{rad} K^{\lambda}G = K^{\lambda}G \cdot \theta$ for some $\theta \in \operatorname{rad} K^{\lambda}G$ (see [11, p. 170]). It follows that $\operatorname{rad} \widehat{K^{\lambda}G} = \widehat{K^{\lambda}G} \cdot \widehat{\theta}$. Hence $\widehat{K^{\lambda}G}$ is a uniserial algebra.

Conversely, assume that $\widehat{K^{\lambda}G}$ is uniserial. Then $\operatorname{rad}\widehat{K^{\lambda}G} = \widehat{K^{\lambda}G} \cdot \widehat{\theta}$ for some $\theta \in \operatorname{rad} K^{\lambda}G$. Consequently, for any $w \in \operatorname{rad} K^{\lambda}G$, there is $z \in K^{\lambda}G$ such that $w + V = (z + V)(\theta + V)$. It follows that $w - z\theta \in (\operatorname{rad} K^{\lambda}G)^2$, since $u_c^p - u_e = (u_c - u_e)^p \in (\operatorname{rad} K^{\lambda}G)^2$. This implies

$$w + (\operatorname{rad} K^{\lambda} G)^{2} = [z + (\operatorname{rad} K^{\lambda} G)^{2}] \cdot [\theta + (\operatorname{rad} K^{\lambda} G)^{2}].$$

Therefore the radical of $K^{\lambda}G/(\operatorname{rad} K^{\lambda}G)^2$ is a principal left ideal. Hence $K^{\lambda}G/(\operatorname{rad} K^{\lambda}G)^2$ is a uniserial algebra. But $K^{\lambda}G/(\operatorname{rad} K^{\lambda}G)^2$ is uniserial if and only if $K^{\lambda}G$ is uniserial (see [11, p. 172]). Consequently, $K^{\lambda}G$ is a uniserial algebra.

LEMMA 1.6. Let G be a p-group, |G'| = p and $\lambda \in Z^2(G, K^*)$. Suppose that $K^{\lambda}G$ is not a uniserial algebra and $K^{\lambda}G/K^{\lambda}G \cdot \operatorname{rad} KG'$ is a uniserial algebra. If H is an abelian subgroup of G, $G' \subset H$ and $K^{\lambda}H/K^{\lambda}H \cdot \operatorname{rad} KG'$ is not a field, then $K^{\lambda}H$ is not a uniserial algebra either.

Proof. Let $G' = \langle c \rangle$. If $H = A \times \langle c \rangle$ then $K^{\lambda}H \cong K^{\lambda}A \otimes_K KG'$ and $K^{\lambda}A$ is not a field, since $K^{\lambda}A \cong K^{\lambda}H/K^{\lambda}H \cdot \operatorname{rad} KG'$. Therefore $K^{\lambda}H$ is not a uniserial algebra.

Now we assume that $\langle c \rangle$ is not a direct factor of H. By Lemma 1.4, there exists a direct product decomposition $H = \langle h_1 \rangle \times \cdots \times \langle h_n \rangle$, where $c \in \langle h_n \rangle$ and $|c| < |h_n|$. Assume $K^{\lambda}H$ is uniserial algebra, $|h_n| = p^{t+1}$ and $c = h_n^{p^t}$. Then

$$K^{\lambda}H = \bigoplus_{i_1=0}^{|h_1|-1} \dots \bigoplus_{i_n=0}^{|h_n|-1} Ku_{h_1}^{i_1} \dots u_{h_n}^{i_n},$$

where

$$u_{h_j}^{|h_j|} = \delta_j u_e, \quad \delta_j \in K^* \quad \text{for } j = 1, \dots, n - 1,$$

 $u_{h_n}^{p^t} = \alpha u_c, \quad \alpha \in K^*,$

and

$$F := \bigoplus_{i_1 = 0}^{|h_1| - 1} \ldots \bigoplus_{i_{n-1} = 0}^{|h_{n-1}| - 1} Ku_{h_1}^{i_1} \ldots u_{h_{n-1}}^{i_{n-1}}$$

is a field. Since $K^{\lambda}H/K^{\lambda}H(u_c-u_e)$ is not a field, we have $\alpha u_e=\theta^p$ for some $\theta\in F$. From

$$(\theta^{-1}u_{h_n}^{p^{t-1}} - u_e)^p = u_c - u_e$$

it follows that $u_c - u_e \in (\operatorname{rad} K^{\lambda} H)^2$. Because $K^{\lambda} G$ is a local algebra, we have $\operatorname{rad} K^{\lambda} H \subset \operatorname{rad} K^{\lambda} G$. Hence $K^{\lambda} G(u_c - u_e) \subset (\operatorname{rad} K^{\lambda} G)^2$. By hypothesis, the algebra $K^{\lambda} G/K^{\lambda} G(u_c - u_e)$ is uniserial. Arguing as in the proof of Lemma 1.5, we show that $K^{\lambda} G/(\operatorname{rad} K^{\lambda} G)^2$ is a uniserial algebra. Then $K^{\lambda} G$ is also uniserial, a contradiction. \blacksquare

LEMMA 1.7. Let G be a non-abelian p-group with non-cyclic commutant. Then G contains a normal subgroup H such that $H \subset G'$ and (G/H)' = G'/H is an elementary abelian group of type (p,p).

Proof. By our assumption, G'/G'' is a non-cyclic abelian p-group. Denote by S the subgroup of G' generated by G'' and all elements x^p , where $x \in G'$. Clearly, S is a normal subgroup of G and G'/S is a non-cyclic elementary abelian p-group. Since (G/S)' = G'/S, in what follows we assume that G' is a non-cyclic elementary abelian p-group.

Let $|G'| = p^n$ and n > 2. Choose $a \neq e$ in G' such that $a \in Z(G)$. Then the commutant of $G/\langle a \rangle$ is a non-cyclic elementary abelian group of order p^{n-1} . If n-1>2, we inductively continue the above construction.

Let H be a subgroup of a group G. If M is a $K^{\lambda}G$ -module, we denote by M_H the module M viewed as a $K^{\lambda}H$ -module. If N is a $K^{\lambda}H$ -module, then $N^G = K^{\lambda}G \otimes_{K^{\lambda}H} N$ is called the induced $K^{\lambda}G$ -module.

LEMMA 1.8. Let G be a finite group, H a subgroup of G and $\lambda \in Z^2(G,K^*)$. If $H \subset Z(G)$ and $K^{\lambda}H$ is a wild algebra, then $K^{\lambda}G$ is also wild.

Proof. Let V_1 and V_2 be $K^{\lambda}H$ -modules. As $(V_i^G)_H \cong V_i \oplus \cdots \oplus V_i$ (|G:H| summands) for i=1,2, by the Krull–Schmidt Theorem the modules V_1^G and V_2^G are isomorphic if and only if the modules V_1 and V_2 are isomorphic.

Let \widehat{K} be the separable closure of K and $F = \widehat{K}\langle t_1, t_2 \rangle$. By definition of a wild algebra, there exists a bimodule $M \in \operatorname{Bim}(K^{\lambda}H, F)$ such that, for any $N, N' \in \operatorname{Bim}(F, \widehat{K})$, $M \otimes_F N \cong M \otimes_F N'$ implies $N \cong N'$. We put $W = K^{\lambda}G \otimes_{K^{\lambda}H} M$. If $W \otimes_F N \cong W \otimes_F N'$ for some $N, N' \in \operatorname{Bim}(F, \widehat{K})$, then

$$(M \otimes_F N)^G \cong (M \otimes_F N')^G.$$

This implies $M \otimes_F N \cong M \otimes_F N'$, hence $N \cong N'$. Thus $K^{\lambda}G$ is wild.

LEMMA 1.9. Let G be an abelian p-group, $\lambda \in Z^2(G, K^*)$, $d = \dim_K \overline{K^{\lambda}G}$ and $4d \neq |G|$. If $K^{\lambda}G$ is not a uniserial algebra then it is wild.

Proof. Let $G = H \times \langle b_1 \rangle \times \cdots \times \langle b_m \rangle$, $D_j = H \times \langle b_j \rangle$ for $j = 1, \ldots, m$, where H may be the trivial group. Assume that $K^{\lambda}H$ is a field and $K^{\lambda}D_j$ is not a field for every $j \in \{1, \ldots, m\}$. Then $m \geq 2$, since $K^{\lambda}G$ is not uniserial. First, we assume that $m \geq 3$ in the case p = 2. Let $B = \langle b_1 \rangle \times \cdots \times \langle b_m \rangle$, $\overline{G} = \sec G$, $\overline{H} = \sec H$ and $\overline{B} = \sec B$. Then $K^{\lambda}\overline{G} \cong K^{\lambda}\overline{H} \otimes K\overline{B}$. Since $|\overline{B}| > 4$, by Lemmas 1.2 and 1.8, the algebra $K^{\lambda}\overline{G}$ is wild. It follows, by Lemma 1.8, that so is $K^{\lambda}G$.

Next we suppose that p=2 and $G=H\times\langle b_1\rangle\times\langle b_2\rangle$. Denote by F the field $K^{\lambda}H$. We have $K^{\lambda}G=F^{\lambda}B$, where $B=\langle b_1\rangle\times\langle b_2\rangle$. Let $\{u_g:g\in G\}$ be a natural K-basis of $K^{\lambda}G$. Then

$$K^{\lambda}G = \bigoplus_{i_1=0}^{2^{n_1}-1} \bigoplus_{i_2=0}^{2^{n_2}-1} Fu_{b_1}^{i_1} u_{b_2}^{i_2}, \quad u_{b_j}^{2^{n_j}} = \gamma_j u_e \quad \text{for } j \in \{1, 2\},$$

where $2^{n_j} = |b_j|, \ \gamma_j \in K^*$. Since

$$\dim_F(F^{\lambda}B/\operatorname{rad} F^{\lambda}B) = \frac{d}{[F:K]}, \quad |G| = [F:K] \cdot |B| \quad \text{and} \quad 4d \neq |G|,$$

we have $4 \cdot \dim_F(F^{\lambda}B/\operatorname{rad} F^{\lambda}B) \neq |B|$. The algebra $F^{\lambda}B$ is not uniserial, hence $\gamma_j \in F^2$ for every j and $4 \cdot \dim_K \overline{F^{\lambda}B} < |B|$.

Assume that $n_1 \geq 2$, $n_2 \geq 2$, $\gamma_1 = \delta_1^2$, $\gamma_2 = \delta_2^2$, where $\delta_1, \delta_2 \in F^*$ and $\delta_1 \notin F^2$. We set

$$c_j = b_j^{2^{n_j - 2}}$$
 for $j = 1, 2$.

Then $C = \langle c_1 \rangle \times \langle c_2 \rangle$ is of type (4, 4). Denote by θ_j a root of the polynomial $X^2 - \delta_j$ in the algebraic closure of the field F. Then $[F(\theta_1, \theta_2) : F] < 4$, hence $\delta_2 \in F(\theta_1)^2$, that is, $\delta_2 = (\rho_1 + \rho_2 \theta_1)^2 = \rho_1^2 + \rho_2^2 \delta_1$ for some $\rho_1, \rho_2 \in F$. Put

$$v_{c_1} = u_{c_1}, \quad v_{c_2} = (\rho_1 + \rho_2 u_{c_1})^{-1} u_{c_2}.$$

We have $v_{c2}^4 = u_e$. Hence, if $D = H \times C$ then

$$K^{\lambda}D = F^{\mu}C = \bigoplus_{i_1=0}^{3} \bigoplus_{i_2=0}^{3} Fv_{c_1}^{i_1}v_{c_2}^{i_2}, \quad v_{c_1}^4 = \gamma_1 u_e, \quad v_{c_2}^4 = u_e.$$

We set $T = H \times \langle c_1^2 \rangle \times \langle c_2 \rangle$ and $N = \langle c_1^2 \rangle \times \langle c_2 \rangle$. Then for the algebra

$$K^{\mu}T = \bigoplus_{i_1=0}^{1} \bigoplus_{i_2=0}^{3} K^{\lambda}H \cdot v_{c_1^2}^{i_1} v_{c_2}^{i_2}, \quad v_{c_1^2}^2 = \gamma_1 u_e, \quad v_{c_2}^4 = u_e,$$

we have $K^{\mu}T \cong K^{\lambda}H \otimes_K KN$. Since |N| = 8, by Lemmas 1.2 and 1.8, the algebra $K^{\mu}T$ is wild. By Lemma 1.8, so is $K^{\lambda}D$. Applying again Lemma 1.8, we conclude that $K^{\lambda}G$ is wild.

Now assume that $n_1 \geq 2$, $n_2 \geq 1$, and $\gamma_1 = \delta_1^4$, $\gamma_2 = \delta_2^2$ for some $\delta_1, \delta_2 \in F^*$. Let

$$c_1 = b_1^{2^{n_1-2}}, \quad c_2 = b_2^{2^{n_2-1}}.$$

Then $C = \langle c_1 \rangle \times \langle c_2 \rangle$ is of type (4, 2) and $F^{\lambda}C$ is the group algebra of the group C over the field F. We put $D = H \times C$. We have $K^{\lambda}D = F^{\lambda}C \cong K^{\lambda}H \otimes_K KC$. By Lemmas 1.2 and 1.8, $K^{\lambda}D$ is wild. Hence, in view of Lemma 1.8, $K^{\lambda}G$ is also wild. \blacksquare

LEMMA 1.10. Let G be a non-abelian p-group, $\lambda \in Z^2(G, K^*)$, and $d = \dim_K \overline{K^{\lambda}G}$. Assume that pd < |G:G'| if $p \neq 2$, and 4d < |G:G'| if p = 2. If $K^{\lambda}G$ is not a uniserial algebra then it is semi-wild.

Proof. Let $\{u_g: g \in G\}$ be a natural K-basis of the algebra $K^{\lambda}G$, $U = K^{\lambda}G \cdot \operatorname{rad} KG'$, $\widetilde{K^{\lambda}G} = K^{\lambda}G/U$ and $\widetilde{w} = w + U$ for every $w \in K^{\lambda}G$. Suppose that $G/G' = \langle a_1G' \rangle \times \cdots \times \langle a_mG' \rangle$, where $|a_jG'| = p^{s_j}$ for $j = 1, \ldots, m$. Then

$$\widetilde{K^{\lambda}G} = \bigoplus_{i_1=0}^{l_1} \dots \bigoplus_{i_m=0}^{l_m} K\widetilde{u}_{a_1}^{i_1} \cdots \widetilde{u}_{a_m}^{i_m},$$

where $l_j = p^{s_j} - 1$,

$$\tilde{u}_{a_j}^{p^{s_j}} = \gamma_j \tilde{u}_e, \quad \gamma_j \in K^* \quad \text{for } j = 1, \dots, m.$$

The algebra $K^{\lambda}G$ is a twisted group algebra of the non-cyclic abelian p-group G/G' over the field K.

If $\widetilde{K^{\lambda}G}$ is not a uniserial algebra then, by Lemma 1.9, $\widetilde{K^{\lambda}G}$ is wild. Then so is $K^{\lambda}G$. Assume now that $\widetilde{K^{\lambda}G}$ is a uniserial algebra and the K-subalgebra

$$F = \bigoplus_{i_1=0}^{l_1} \dots \bigoplus_{i_{m-1}=0}^{l_{m-1}} K\tilde{u}_{a_1}^{i_1} \cdots \tilde{u}_{a_{m-1}}^{i_{m-1}}$$

is a field. We have $F = (K^{\lambda}D + U)/U$, where D is the subgroup of G generated by G' and the elements a_1, \ldots, a_{m-1} . Evidently,

$$\widetilde{K^{\lambda}G} = \bigoplus_{i_m=0}^{p^{s_m}-1} F\widetilde{u}_{a_m}^{i_m}.$$

Since $\dim_K \widetilde{K^{\lambda}G} = |G: G'|$, $\dim_K (\widetilde{K^{\lambda}G}/\operatorname{rad} \widetilde{K^{\lambda}G}) = d$ and d < |G: G'|, the algebra $\widetilde{K^{\lambda}G}$ is not a field. There exists an element

(2)
$$\rho = \sum_{i_1=0}^{l_1} \dots \sum_{i_{m-1}=0}^{l_{m-1}} \alpha_{i_1,\dots,i_{m-1}} u_{a_1}^{i_1} \dots u_{a_{m-1}}^{i_{m-1}},$$

where $\alpha_{i_1,\dots,i_{m-1}} \in K$, $l_j = p^{s_j} - 1$ for every $j \in \{1,\dots,m-1\}$, such that $\tilde{\rho}^{p^r} = \gamma_m^{-1} \tilde{u}_e$ with r satisfying one of the following two conditions:

- (i) if $p \neq 2$ then $2 \leq r \leq s_m$, and $\tilde{\rho} \notin F^p$ in the case $r < s_m$;
- (ii) if p = 2 then $3 \le r \le s_m$, and $\tilde{\rho} \notin F^2$ in the case $r < s_m$.

We have $d = |D:G'| \cdot p^{s_m-r}$, hence $dp^r = |G:G'|$.

In view of Lemmas 1.1, 1.2, 1.5 and 1.7, we can assume that |G'| = p for $p \neq 2$, while G' is the elementary abelian group of type (2,2) or the group of order 2 for p = 2. Denote by H the subgroup of G generated by G' and the elements

$$a_1^p, \dots, a_{m-1}^p, a_m^{p^{s_m-r+1}}.$$

We show that H is abelian. Assume that p=2 and $G'=\langle c_1\rangle \times \langle c_2\rangle$, where $|c_1|=2,\ |c_2|=2$ and $c_1\in Z(G)$. Since the center of $G/\langle c_1\rangle$ contains $c_2\langle c_1\rangle$, we have $g^{-1}c_2g=c_2c_1^i$ for any $g\in G$. This implies $c_2g^2=g^2c_2$ for every $g\in G$. If $h\in G$ then $g^{-1}hg=hc_1^rc_2^s$ for some $r,s\in\{0,1\}$. It follows that $g^{-2}hg^2=hc_1^{is}$ and $g^{-2}h^2g^2=h^2$. In the case $G'=\langle c_1\rangle,\ |c_1|=p$ we obtain $g^{-1}c_1g=c_1,\ g^{-1}hg=hc_1^r,\ g^{-p}hg^p=h$ for all $g,h\in G$.

Let S be the subgroup of H generated by G' and the elements $a_1^p,\ldots,a_{m-1}^p.$ Let T=S/G' and

$$w = \sum_{i_1=0}^{l_1} \dots \sum_{i_{m-1}=0}^{l_{m-1}} \alpha_{i_1,\dots,i_{m-1}}^p u_{a_1}^{pi_1} \dots u_{a_{m-1}}^{pi_{m-1}} \quad \text{(see (2))}.$$

Then $w \in K^{\lambda}S$ and

$$(wu_{a_m}^{p^{s_m-r+1}})^{p^{r-1}} \equiv u_e \pmod{K^{\lambda}H \cdot \operatorname{rad} KG'}.$$

It follows that $K^{\lambda}H/K^{\lambda}H \cdot \operatorname{rad} KG'$ is the group algebra of the cyclic group of order p^{r-1} over the field $L = (K^{\lambda}S + K^{\lambda}H \cdot \operatorname{rad} KG')/K^{\lambda}H \cdot \operatorname{rad} KG'$. Clearly, $L \cong K^{\lambda}S/K^{\lambda}S \cdot \operatorname{rad} KG' \cong K^{\mu}T$, where $\mu_{xG',yG'} = \lambda_{x,y}$ for all $x, y \in S$. Thus, $\dim_K \overline{K^{\lambda}H} = |T|$.

By Lemma 1.6, the algebra $K^{\lambda}H$ is not uniserial. Since $|H| = |T| \cdot |G'| \cdot p^{r-1}$ and $|G'| \cdot p^{r-1} \neq 4$, Lemma 1.9 shows that $K^{\lambda}H$ is wild. By Lemma 1.1, $K^{\lambda}G$ is semi-wild.

Lemma 1.11. Let G be a non-abelian 2-group, $|G'| \geq 4$, K a field of characteristic 2, $\lambda \in Z^2(G, K^*)$, $d = \dim_K \overline{K^{\lambda}G}$ and 4d = |G: G'|. If $K^{\lambda}G$ is not a uniserial algebra and $K^{\lambda}G/K^{\lambda}G$ rad KG' is uniserial, then $K^{\lambda}G$ is of semi-wild representation type.

Proof. Here we follow the proof of Lemma 1.10, and we keep the same notations with p and 2 interchanged. There exists an element ρ of the form (2) such that $\tilde{\rho}^4 = \gamma_m^{-1} \tilde{u}_e$, where $\tilde{\rho} \notin F^2$ if $4 < s_m$.

If G' is a non-cyclic group, we shall assume, by Lemma 1.7, that G' is the elementary abelian group of type (2,2). Let $G' = \langle c \rangle$, $B = \langle c^4 \rangle$, $N = \langle c^2 \rangle$, $V = K^{\lambda}G(u_c^2 - u_e)$ and $W = K^{\lambda}G(u_c^4 - u_e)$. By Lemma 1.5, $K^{\lambda}G/V$ is not a uniserial algebra. Since

$$(K^{\lambda}G/W)/(V/W) \cong K^{\lambda}G/V,$$

the algebra $K^{\lambda}G/W$ is not uniserial either. Moreover, $K^{\lambda}G/W \cong K^{\nu}\widehat{G}$, where $\widehat{G} = G/B$ and $\nu_{xB,yB} = \lambda_{x,y}$ for all $x, y \in G$. We also have

$$\widehat{G}' = G'/B = \langle cB \rangle, \quad |\widehat{G}: \widehat{G}'| = |G:G'| \text{ and } \dim_K \overline{K^{\nu} \widehat{G}} = d.$$

This implies that |G'| = 4.

Denote by H the subgroup of G generated by G' and the elements

$$a_1^2, \ldots, a_{m-1}^2, a_m^{2^{s_m-1}}.$$

We show that H is abelian. In case G' is of type (2,2), this was established in the proof of Lemma 1.10. Let $G' = \langle c \rangle$ and |c| = 4. Then $c^2 \in Z(G)$. If $a \in G$ then $a^{-1}ca = c^i$, where $i \equiv 1 \pmod{2}$. Let $b \in G$ and $b^{-1}ab = ac^r$. Then $b^{-1}a^2b = a^2c^{r(1+i)}$, and therefore $b^{-2}a^2b^2 = a^2$. We also have $a^{-2}ca^2 = c$.

Let S be the subgroup of H generated by G' and the elements a_1^2,\ldots,a_{m-1}^2 . Let T=S/G'. The quotient algebra $K^\lambda H/K^\lambda H\cdot \operatorname{rad} KG'$ is the group algebra of the cyclic group of order 2 over the field $L\cong K^\mu T$. By Lemma 1.6, the algebra $K^\lambda H$ is not uniserial. Since $|H|=|T|\cdot 2|G'|$ and |G'|=4, Lemma 1.9 shows that $K^\lambda H$ is wild. It follows, by Lemma 1.1, that $K^\lambda G$ is semi-wild. \blacksquare

LEMMA 1.12. Let $p \neq 2$, G be a p-group with cyclic commutant and D the subgroup of G such that $G' \subset D$ and $D/G' = \operatorname{soc}(G/G')$. Then $|D'| \leq p$.

Proof. Let $G' = \langle c \rangle$, $|c| = p^m$ and $m \geq 2$. If $g \in D$ then $g^{-1}cg = c^r$, where $r \equiv 1 \pmod{p^{m-1}}$. It follows that $g^{-1}c^pg = c^p$. Let $a, b \in D$, $a^{-1}ca = c^r$ and $b^{-1}ab = ac^i$. Then $b^{-1}a^pb = a^pc^{it}$, where $t = 1 + r + \cdots + r^{p-1}$. It is easy to see that $t \equiv p \pmod{p^m}$. Hence $b^{-1}a^pb = a^pc^{ip}$.

Let $H = \langle c^p \rangle$. If $a^p \in H$ then $b^{-1}a^pb = a^p$, and we conclude that $ip \equiv 0 \pmod{p^m}$. If $a^p \notin H$ then we may assume that $a^p = c$. This implies that $b^{-1}ab = a^{1+ip}$. We have $b^p = a^{pj}$ for some j, since $b^p \in G'$. Therefore $b^{-p}ab^p = a$ and

$$b^{-p}ab^p = a^{(1+pi)^p}.$$

Hence, $(1+pi)^p \equiv 1 \pmod{p^{m+1}}$. Thus $pi \equiv 0 \pmod{p^m}$ and $[a,b]^p = e$.

Lemma 1.13. Let $p \neq 2$, G be a non-abelian p-group, \underline{K} a non-perfect field of characteristic p, $\lambda \in Z^2(G,K^*)$ and $d = \dim_K \overline{K^{\lambda}G}$. Moreover, assume that $K^{\lambda}G$ is not a uniserial algebra, pd = |G:G'| and |G'| > p. Then $K^{\lambda}G$ is a semi-wild algebra.

Proof. If G' is non-cyclic then, by Lemmas 1.1 and 1.2, the algebra $K^{\lambda}G$ is semi-wild. Let $G' = \langle c \rangle$ and $T = \langle c^p \rangle$. Denote by D the subgroup of G such that $G' \subset D$ and $D/G' = \operatorname{soc}(G/G')$. By Lemma 1.12, D/T is abelian. In view of Lemma 1.5, we can assume that |G'| = p and D is an abelian group. By Lemma 1.6, $K^{\lambda}D$ is not uniserial, since $K^{\lambda}G/K^{\lambda}G \cdot \operatorname{rad} KG'$ is uniserial and $K^{\lambda}D/K^{\lambda}D \cdot \operatorname{rad} KG'$ is not a field. According to Lemma 1.9, $K^{\lambda}D$ is wild. By Lemma 1.1, $K^{\lambda}G$ is semi-wild. ■

PROPOSITION 1.14. Let G be a finite group, $\lambda \in Z^2(G, K^*)$ and $d = \dim_K \overline{K^{\lambda}G_p}$. Assume that G_p is abelian and $|G_p| \neq 4d$. The algebra $K^{\lambda}G$ is semi-wild if and only if $K^{\lambda}G_p$ is not uniserial.

Proof. If $K^{\lambda}G_p$ is not uniserial then, by Lemma 1.9, $K^{\lambda}G_p$ is wild. Hence, by Lemma 1.1, $K^{\lambda}G$ is semi-wild. If $K^{\lambda}G_p$ is uniserial then, by Lemma 1.3, $K^{\lambda}G$ is of finite representation type. \blacksquare

PROPOSITION 1.15. Let G be a finite group, $\lambda \in Z^2(G, K^*)$ and $d = \dim_K \overline{K^{\lambda}G_p}$. If $d = |G_p : G'_p|$ and $|G'_p : G''_p| \neq 4$, then the algebra $K^{\lambda}G$ is semi-wild if and only if G'_p is a non-cyclic group.

Proof. Since $d = |G_p : G'_p|$, the algebra $K^{\lambda}G_p/K^{\lambda}G_p \cdot \operatorname{rad} KG'_p$ is a field and $K^{\lambda}G_p \cdot \operatorname{rad} KG'_p$ is the radical of $K^{\lambda}G_p$. If G'_p is cyclic then $K^{\lambda}G_p$ is uniserial, thus, by Lemma 1.3, $K^{\lambda}G$ is of finite representation type. Hence, $K^{\lambda}G$ is not semi-wild. If G'_p is a non-cyclic group then, by Lemma 1.2, $K^{\lambda}G'_p = KG'_p$ is a wild algebra. In view of Lemma 1.1, it follows that $K^{\lambda}G$ is semi-wild.

We are now able to prove one of the main results of this paper.

Theorem 1.16. Let $p \neq 2$, G be a finite group, $\lambda \in Z^2(G, K^*)$, μ the restriction of λ to $G_p \times G_p$ and $d = \dim_K \overline{K^{\lambda}G_p}$. Denote by D the subgroup of G_p such that $G'_p \subset D$ and $D/G'_p = \operatorname{soc}(G_p/G'_p)$. Assume that if $|G'_p| = p$ and $pd = |G_p : G'_p|$, then $\operatorname{Ker}(\mu) \neq G'_p$ or D is abelian. The algebra $K^{\lambda}G$ is of semi-wild representation type if and only if the subalgebra $K^{\lambda}G_p$ is not uniserial.

Proof. If $K^{\lambda}G_p$ is uniserial then, by Lemma 1.3, $K^{\lambda}G$ is of finite representation type. Suppose that $K^{\lambda}G_p$ is not uniserial. If $pd < |G_p:G'_p|$ then, by Lemma 1.10, $K^{\lambda}G_p$ is semi-wild. If $pd = |G_p:G'_p|$ and $|G'_p| > p$ then, by Lemma 1.13, $K^{\lambda}G_p$ is also semi-wild. Let $d = |G_p:G'_p|$. Then $K^{\lambda}G_p/K^{\lambda}G_p \cdot \operatorname{rad} KG'_p = \overline{K^{\lambda}G_p}$, therefore G'_p is non-cyclic. According to Lemma 1.2, KG'_p is wild. By Lemma 1.1, in all cases $K^{\lambda}G$ is of semi-wild representation type.

Now assume that $pd = |G_p : G'_p|$ and $|G'_p| = p$. Then $\operatorname{Ker}(\mu) \neq G'_p$ or D is abelian. Let $H_p = \operatorname{Ker}(\mu)$ and $H_p \neq G'_p$. Denote by U the ideal $K^{\lambda}G_p$ rad KH_p of the algebra $K^{\lambda}G_p$ and by $K^{\lambda}G_p$ the quotient algebra $K^{\lambda}G_p/U$. Since $G'_p \subset H_p$, $G'_p \neq H_p$, $\dim_K K^{\lambda}G_p = |G_p : H_p|$ and $K^{\lambda}G_p/\operatorname{rad} K^{\lambda}G_p \cong K^{\lambda}G_p$, we have $|G_p : H_p| = d$ and $U = \operatorname{rad} K^{\lambda}G_p$. The algebra $K^{\lambda}G_p$ is not uniserial, hence U is not a principal left ideal. This implies that H_p is non-cyclic. By Lemma 1.2, KH_p is wild. According to Lemma 1.1, $K^{\lambda}G$ is semi-wild.

Finally, we examine the case when D is abelian. Since $K^{\lambda}G_p/K^{\lambda}G_p$ rad KG'_p is a uniserial algebra and $K^{\lambda}D/K^{\lambda}D$ rad KG'_p is not a field, Lemma 1.6 shows that $K^{\lambda}D$ is a non-uniserial algebra. By Lemma 1.9, $K^{\lambda}D$ is wild and, by Lemma 1.1, $K^{\lambda}G$ is semi-wild.

THEOREM 1.17. Let G be a finite group, K a field of characteristic 2, $\lambda \in Z^2(G, K^*)$ and $d = \dim_K \overline{K^{\lambda}G_2}$. Assume that one of the following three conditions holds:

- (i) $4d < |G_2: G_2'|$;
- (ii) $4d = |G_2|$; $|G_2|$, $|G_2| \ge 4$ and $K^{\lambda}G_2/K^{\lambda}G_2 \cdot \operatorname{rad} KG_2'$ is a uniserial algebra;
- (iii) $d = |G_2 : G_2'|$ and $|G_2' : G_2''| \neq 4$.

The algebra $K^{\lambda}G$ is semi-wild if and only if $K^{\lambda}G_2$ is not uniserial.

Proof. Apply Lemmas 1.1, 1.3, 1.9–1.11 and Proposition 1.15. \blacksquare

PROPOSITION 1.18. Let G be a finite group, K a field of characteristic 2, $\lambda \in Z^2(G, K^*)$, μ the restriction of λ to $G_2 \times G_2$ and $H_2 = \text{Ker}(\mu)$. Assume that H_2 is non-cyclic and $|H_2: H_2'| \neq 4$. Then $K^{\lambda}G$ is semi-wild.

Proof. Apply Lemmas 1.1 and 1.2. \blacksquare

PROPOSITION 1.19. Assume that $p \neq 2$ and keep the notation of Theorem 1.16. Assume also that if $|C_p| = |G'_p| = p$ and $s \leq i(K) + 1$, then D is abelian. Then, for every $\lambda \in Z^2(G, K^*)$, $K^{\lambda}G$ is of finite or semi-wild representation type.

Proof. Let $\lambda \in Z^2(G,K^*)$, $d=\dim_K \overline{K^\lambda G_p}$, $pd=|G_p:G'_p|$ and $U=K^\lambda G_p\cdot \operatorname{rad} KG'_p$. We have $K^\lambda G_p/U\cong K^\nu H_p$, where $H_p=G_p/G'_p$ and $\nu_{xG'_p,yG'_p}=\lambda_{x,y}$ for all $x,y\in G_p$. Since $\dim_K K^\nu H_p=|H_p|=pd$ and $d=\dim_K \overline{K^\nu H_p}$, $K^\nu H_p$ is uniserial. Hence $s\leq i(K)+1$. Denote by μ the restriction of λ to $G_p\times G_p$. We have $C_p\subset \operatorname{Ker}(\mu)$. If $|G'_p|=p$ and $C_p\neq G'_p$, then $\operatorname{Ker}(\mu)\neq G'_p$. Now apply Lemma 1.3 and Theorem 1.16. \blacksquare

2. Groups of purely semi-wild projective representation type at characteristic $p \neq 2$. We say that a finite group G is of tame projective K-representation type if $K^{\lambda}G$ is of tame representation type for every $\lambda \in Z^2(G, K^*)$. A group G is said to be of semi-wild projective K-representation type if $K^{\lambda}G$ is of semi-wild representation type for some $\lambda \in Z^2(G, K^*)$. A group G is defined to be of purely semi-wild projective K-representation type if $K^{\lambda}G$ is of semi-wild representation type for any $\lambda \in Z^2(G, K^*)$.

PROPOSITION 2.1. Let G be a finite group and K a field of characteristic $p \geq 2$. The group G is of semi-wild projective K-representation type if and only if G_p is non-cyclic and $|G_p:G'_p| \neq 4$. Otherwise G is of tame projective K-representation type.

Proof. If G_p is non-cyclic and $|G_p:G_p'| \neq 4$, then, by Lemmas 1.1 and 1.2, KG is semi-wild. Hence G is of semi-wild projective K-representation type. Assume that G_p is cyclic. For every $\lambda \in Z^2(G,K^*)$, the subalgebra $K^{\lambda}G_p$ of $K^{\lambda}G$ is uniserial. It now follows from Lemma 1.3 that $K^{\lambda}G$ is of finite representation type. Now let p=2, G_2 be non-cyclic and $|G_2:G_2'|=4$. For every $\lambda \in Z^2(G,K^*)$, there exists a finite purely inseparable field extension F of K such that $F \otimes_K K^{\lambda}G_2 \cong FG_2$. By Lemma 1.2, FG_2 is a tame algebra. This implies that $K^{\lambda}G_2$ is tame (see [10, p. 247]). Applying Lemma 1.1, we conclude that $K^{\lambda}G$ is tame for any $\lambda \in Z^2(G,K^*)$. Hence G is of tame projective K-representation type. \blacksquare

PROPOSITION 2.2. Let G be a finite group and K a perfect field of characteristic $p \geq 2$. The group G is of purely semi-wild projective K-representation type if and only if G_p is non-cyclic and $|G_p:G'_p| \neq 4$. Otherwise G is of tame projective K-representation type.

Proof. Since K is a perfect field, $K^{\lambda}G_p$ is the group algebra of G_p over K for every $\lambda \in Z^2(G, K^*)$ (see [15, p. 90] or [16, p. 43]). If G_p is non-cyclic and

 $|G_p:G'_p| \neq 4$, then, by Lemma 1.2, KG_p is wild. It follows, by Lemma 1.1, that $K^{\lambda}G$ is semi-wild for any λ . Hence G is of purely semi-wild projective K-representation type. If G_p is cyclic or p=2 and $|G_2:G'_2|=4$, then, in view of Proposition 2.1, G is of tame projective K-representation type. \blacksquare

Let G be a finite group, G' the commutant of G, G_p a Sylow p-subgroup of G and C_p a Sylow p-subgroup of G'. We assume that $C_p \subset G_p$. Then $G'_p \subset C_p$, and hence $C_p \triangleleft G_p$. We have $G_p G'/G' \cong G_p/C_p$, since $G_p \cap G' = C_p$. The group $G_p G'/G'$ is the Sylow p-subgroup of the abelian group G/G'. Denote by A a normal subgroup of G_p such that $C_p \subset A$. Let $\psi: G \to G/G'$ be the canonical homomorphism, $\chi: G/G' \to G_p G'/G'$ a projector, and $\phi: G_p G'/G' \to G_p/A$ the epimorphism defined by $\phi(xG') = xA$ for any $x \in G_p$. Then

(3)
$$f := \phi \chi \psi : G \to G_p/A$$

is a surjective group homomorphism. Moreover, the restriction of f to G_p is the canonical homomorphism $\pi: G_p \to G_p/A$.

LEMMA 2.3. Assume that G is a finite group, $H = G_p/A$, $f : G \to H$ is the epimorphism (3), $\nu \in Z^2(H, K^*)$ and $\lambda_{a,b} = \nu_{f(a),f(b)}$ for any $a, b \in G$.

- (i) $\lambda \in Z^2(G, K^*)$ and $\lambda_{x,y} = \lambda_{y,x} = 1$ for all $x \in G_p$, $y \in A$.
- (ii) If μ is the restriction of λ to $G_p \times G_p$, then $\mu_{a,b} = \nu_{\pi(a),\pi(b)}$ for all $a, b \in G_p$ and $\operatorname{Ker}(\mu) = \pi^{-1}(\operatorname{Ker}(\nu))$.
- (iii) If $V = K^{\lambda}G_p \cdot \operatorname{rad} KA$ then V is an ideal of $K^{\lambda}G_p$ and $K^{\lambda}G_p/V \cong K^{\nu}H$.

Proof. Statements (i) and (iii) are obvious.

(ii) By Proposition 2.1 of [2], $\operatorname{Ker}(\nu) = \operatorname{Ker}(\Gamma)$, where Γ is an irreducible ν -representation of the group H over the field K. Since $\Gamma \circ \pi$ is an irreducible μ -representation of the group G_p over K, we get $\operatorname{Ker}(\mu) = \pi^{-1}(\operatorname{Ker}(\nu))$.

PROPOSITION 2.4. Let G be a finite group such that C_p is cyclic, A a cyclic subgroup of G_p , $C_p \subset A$ and r the number of invariants of G_p/A . If $r \leq i(K)$ then there exists a cocycle $\lambda \in Z^2(G,K^*)$ such that $K^{\lambda}G_p$ is a uniserial algebra.

Proof. Let $H = G_p/A$. Since $r \leq i(K)$, there exists a cocycle $\nu \in Z^2(H, K^*)$ such that $K^{\nu}H$ is a field. In view of Lemma 2.3, there exists a cocycle $\lambda \in Z^2(G, K^*)$ satisfying the following conditions:

- if μ is the restriction of λ to $G_p \times G_p$ then $\operatorname{Ker}(\mu) = A$;
- if $V = K^{\lambda}G_p \cdot \operatorname{rad} KA$ then V is the radical of $K^{\lambda}G_p$ and $K^{\lambda}G_p/V \cong K^{\nu}H$.

Since A is cyclic, V is a principal left ideal and therefore $K^{\lambda}G_{p}$ is uniserial.

COROLLARY 2.5. Let G be a finite group with C_p cyclic. If G is of purely semi-wild projective K-representation type, then $G_p/C_p = \langle a_1 C_p \rangle \times \cdots \times \langle a_r C_p \rangle$, where $r \geq i(K) + 1$ and if r = i(K) + 1 then $C_p \not\subset \langle a_j \rangle$ for every $j \in \{1, \ldots, r\}$.

Proof. Assume that r = i(K) + 1 and $C_p \subset \langle a_{j_0} \rangle$ for some $j_0 \in \{1, \ldots, r\}$. Let $A = \langle a_{j_0} \rangle$. Since the number of invariants of G_p/A is at most i(K), there exists, by Proposition 2.4, a cocycle $\lambda \in Z^2(G, K^*)$ such that $K^{\lambda}G_p$ is a uniserial algebra. Hence G is not of purely semi-wild projective K-representation type. \blacksquare

LEMMA 2.6. Let G be an elementary abelian p-group, s the number of invariants of G, K a field of characteristic p and $\lambda \in Z^2(G, K^*)$. If s = i(K) + r then $K^{\lambda}G \cong K^{\lambda}D \otimes_K KT$, where $G = D \times T$ and $|T| \geq p^r$.

Proof. Since s > i(K), $K^{\lambda}G$ is not a field. Assume that $K^{\lambda}G$ is not the group algebra of G over K. There exists a direct product decomposition $G = D \times \langle c_1 \rangle \times \cdots \times \langle c_m \rangle$ such that $K^{\lambda}D$ is a field and $K^{\lambda}T_j$ is not a field for every $j \in \{1, \ldots, m\}$, where $T_j = D \times \langle c_j \rangle$. It follows that $K^{\lambda}G \cong K^{\lambda}D \otimes_K KT$, where $T = \langle c_1 \rangle \times \cdots \times \langle c_m \rangle$. The number of invariants of the group D is at most i(K), hence $m \geq r$.

Now we are able to prove the main result of this section.

Theorem 2.7. Let $p \neq 2$, G be a finite group and D the subgroup of G_p such that $G'_p \subset D$ and $D/G'_p = \operatorname{soc}(G_p/G'_p)$. Assume that if $|C_p| = p$, s = i(K) + 1 and D is non-abelian then $\exp D = p^2$. Then G is of purely semi-wild projective K-representation type if and only if one of the following four conditions is satisfied:

- (i) C_p is a non-cyclic group;
- (ii) $s \ge i(K) + 2$;
- (iii) s = i(K) + 1, $C_p = G'_p = \langle c \rangle$, $|c| \ge p^2$ and $g^p \in \langle c^p \rangle$ for every $g \in D$;
- (iv) s = i(K) + 1, $C_p = G'_p$, $|G'_p| = p$ and D is an elementary abelian p-group.

Proof. First we prove that if G satisfies one of conditions (i)–(iv), then it is of purely semi-wild projective K-representation type. Let $\lambda \in Z^2(G, K^*)$. The algebra $K^{\lambda}G_p$ contains the group algebra $KC_p = K^{\lambda}C_p$. If C_p is non-cyclic then, by Lemma 1.2, KC_p is wild. In view of Lemma 1.1, $K^{\lambda}G$ is semi-wild.

Assume that $s \geq i(K) + 2$. Since s is also the number of invariants of the group $\overline{D} = D/G'_p$, by Lemma 2.6, we have $K^{\mu}\overline{D} \cong K^{\mu}B_1 \otimes_K KB_2$, where $\overline{D} = B_1 \times B_2$ and $|B_2| \geq p^2$; moreover, $\mu_{xG'_p,yG'_p} = \lambda_{x,y}$ for any $x,y \in D$.

According to Lemmas 1.2 and 1.8, the algebra $K^{\mu}\overline{D}$ is wild, hence $K^{\lambda}D$ is also wild, and it follows from Lemma 1.1 that $K^{\lambda}G$ is semi-wild.

Now we suppose that (iii) holds. Let $T = \langle c^p \rangle$. By Lemma 1.12, H = D/T is an abelian group. Let $D/G_p' = \langle b_1 G_p' \rangle \times \cdots \times \langle b_s G_p' \rangle$, s = i(K) + 1. Then $H = \langle cT \rangle \times \langle b_1 T \rangle \times \cdots \times \langle b_s T \rangle$. If $V = K^\lambda D \cdot \mathrm{rad} \ KT$ then $K^\lambda D/V \cong K^\mu H$, where $\mu_{xT,yT} = \lambda_{x,y}$ for all $x,y \in D$. Denote by \overline{H} the socle of H. By Lemma 2.6, $K^\mu \overline{H} \cong K^\mu N_1 \otimes_K K N_2$, where $\overline{H} = N_1 \times N_2$ and $|N_2| \geq p^2$. In view of Lemmas 1.2 and 1.8, $K^\mu \overline{H}$ is wild. Applying again Lemma 1.8 we deduce that $K^\mu H$ is wild, hence so is $K^\lambda D$. By Lemma 1.1, $K^\lambda G$ is semi-wild.

If G satisfies (iv) then D is a direct product of s+1=i(K)+2 cyclic groups of order p. According to Lemmas 2.6, 1.2 and 1.8, $K^{\lambda}D$ is wild. Hence, by Lemma 1.1, $K^{\lambda}G$ is semi-wild.

Conversely, let G be of purely semi-wild projective K-representation type. If $C_p = \langle c \rangle$ then, by Corollary 2.5, $G_p/C_p = \langle a_1C_p \rangle \times \cdots \times \langle a_rC_p \rangle$, where $r \geq i(K) + 1$. We also have $s \geq r$. Let r = i(K) + 1. By Corollary 2.5, $C_p \neq \{e\}$ and

$$a_i^{|a_j C_p|} \in \langle c^p \rangle$$

for any $j \in \{1, ..., r\}$. Let $C_p \neq G_p'$ and $T = \langle c^p \rangle$. Then $G_p' \subset T$ and $G_p/T = \langle cT \rangle \times \langle a_1T \rangle \times \cdots \times \langle a_rT \rangle$.

Since $G_p/T \cong (G_p/G_p')/(T/G_p')$, the number of invariants of the group G_p/T is at most s. This implies $r+1 \leq s$. Hence $s \geq i(K)+2$. This means that (ii) holds. Assume now that $C_p = G_p'$. If $|c| \geq p^2$, we have (iii). If |c| = p then $g^p = e$ for every $g \in D$. By hypothesis, D is abelian and (iv) follows. \blacksquare

COROLLARY 2.8. Let $p \neq 2$, G be a finite group and $[K : K^p] = \infty$. The group G is of purely semi-wild projective K-representation type if and only if C_p is non-cyclic.

COROLLARY 2.9. Let $p \neq 2$, G be a finite group such that G_p is abelian. The group G is of purely semi-wild projective K-representation type if and only if C_p is non-cyclic or $s \geq i(K) + 2$.

3. Groups of purely semi-wild projective representation type at characteristic 2. In this section we assume that K is a field of characteristic 2, G a finite group, $2 \mid |G|$, G_2 a Sylow 2-subgroup of G, C_2 a Sylow 2-subgroup of the commutant G' of G and $C_2 \subset G_2$. Denote by s the number of invariants of the abelian group G_2/G_2' .

LEMMA 3.1. Let G be an abelian 2-group of exponent 4, $\overline{G} = \sec G$, s = i(K) + 2 and $\lambda \in Z^2(G, K^*)$. If G has at most one invariant equal to 2

then one of the following conditions holds:

- (i) $K^{\lambda}\overline{G} \cong K^{\lambda}B \otimes_K KC$, where $\overline{G} = B \times C$ and $|C| \geq 8$;
- (ii) $K^{\lambda}G \cong K^{\lambda}D \otimes_K KT$, where $G = D \times T$ and $|T| \geq 8$.

Proof. If K is a perfect field then $K^{\lambda}G = KG$ (see [15, p. 90] or [16, p. 43]). In this case i(K) = 0, G = T and (ii) holds. Let K be a non-perfect field, m = i(K), $G = \langle a_1 \rangle \times \cdots \times \langle a_s \rangle$ and

$$K^{\lambda}G = \bigoplus_{i_1=0}^{|a_1|-1} \dots \bigoplus_{i_s=0}^{|a_s|-1} Ku_{a_1}^{i_1} \dots u_{a_s}^{i_s}, \quad u_{a_j}^{|a_j|} = \gamma_j u_e,$$

where $\gamma_j \in K^*$ for $j=1,\ldots,s$. If $K^{\lambda}\overline{G}$ is not the group algebra of \overline{G} over K, then $K^{\lambda}\overline{G} \cong K^{\lambda}B \otimes_K KC$, where $K^{\lambda}B$ is a field and $|B| \leq 2^m$. Since s=m+2, we get $|C| \geq 4$. If |C| > 4, then (i) holds. Assume that |C|=4. Renumbering a_1,\ldots,a_s if needed, we may suppose that γ_1,\ldots,γ_m are 2-independent. Let $D=\langle a_1\rangle \times \cdots \times \langle a_m\rangle$.

First we consider the case when $|a_j| = 4$ for all $j \in \{1, ..., m\}$. Denote by θ_j a root of the polynomial $X^4 - \gamma_j$ for j = 1, ..., m. For any $\delta \in K^*$, the set $\{\gamma_1, ..., \gamma_m, \delta\}$ is not 2-independent. Therefore $\delta = \theta^2$ for some $\theta \in K(\theta_1^2, ..., \theta_m^2)$. We have

$$\theta = \sum_{i_1=0}^{1} \dots \sum_{i_m=0}^{1} \beta_{i_1,\dots,i_m} \theta_1^{2i_1} \dots \theta_m^{2i_m},$$

where $\beta_{i_1,...,i_m} \in K$. Since $\beta_{i_1,...,i_m} = \rho_{i_1,...,i_m}^2$ for some $\rho_{i_1,...,i_m} \in K(\theta_1^2,\ldots,\theta_m^2)$, we obtain

$$\theta = \left(\sum_{i_1=0}^{1} \dots \sum_{i_m=0}^{1} \rho_{i_1,\dots,i_m} \theta_1^{i_1} \dots \theta_m^{i_m}\right)^2.$$

Hence $\delta = z^4$ for some $z \in K(\theta_1, \dots, \theta_m)$. The element z is of the form

$$z = \sum_{j_1=0}^{3} \dots \sum_{j_m=0}^{3} \alpha_{j_1,\dots,j_m} \theta_1^{j_1} \dots \theta_m^{j_m}, \quad \alpha_{j_1,\dots,j_m} \in K.$$

We put

$$w = \sum_{j_1=0}^{3} \dots \sum_{j_m=0}^{3} \alpha_{j_1,\dots,j_m} u_{a_1}^{j_1} \dots u_{a_m}^{j_m}.$$

Then $w \in K^{\lambda}D$ and $w^4 = \delta u_e$. It follows that $K^{\lambda}G \cong K^{\lambda}D \otimes_K KT$, where $T = \langle a_{m+1} \rangle \times \langle a_{m+2} \rangle$ and $|T| \geq 8$.

Now we examine the case when $|a_m| = 2$. By previous arguments, we may assume that $\gamma_1, \ldots, \gamma_{m-1}, \gamma_i$ are 2-dependent for every $i \in \{m+1, m+2\}$. Denote by θ_j a root of the polynomial $X^4 - \gamma_j$ for every $j \in \{1, \ldots, m-1\}$

and by θ_m a root of the polynomial $X^2 - \gamma_m$. Then $\gamma_i = \rho_i^2$ for some

$$\rho_i = \sum_{i_1=0}^{1} \dots \sum_{i_m=0}^{1} \alpha_{i,i_1,\dots,i_{m-1}} \theta_1^{2i_1} \dots \theta_{m-1}^{2i_{m-1}},$$

where $\alpha_{i,i_1,\dots,i_{m-1}} \in K$. But $\alpha_{i,i_1,\dots,i_{m-1}} = w_{i,i_1,\dots,i_{m-1}}^2$, where $w_{i,i_1,\dots,i_{m-1}}$ is an element of the field $K(\theta_1^2,\dots,\theta_{m-1}^2,\theta_m)$. This implies $\rho_i = \delta_i^2$ for some $\delta_i \in K(\theta_1,\dots,\theta_{m-1},\theta_m)$, hence $\gamma_i = \delta_i^4$. Consequently, $\gamma_i u_e = v_i^4$ for some $v_i \in K^{\lambda}D$. Therefore $K^{\lambda}G \cong K^{\lambda}D \otimes_K KT$, where $T = \langle a_{m+1} \rangle \times \langle a_{m+2} \rangle$ and |T| = 16.

Our final main result of this paper is the following theorem.

THEOREM 3.2. Let K be a field of characteristic 2 and G a finite group such that G_2 is abelian and C_2 is cyclic. Then G is of purely semi-wild projective K-representation type if and only if one of the following conditions is satisfied:

- (i) $s \ge i(K) + 3$;
- (ii) s = i(K) + 2 and $|C_2| \ge 4$;
- (iii) s = i(K) + 2, $|C_2| \le 2$ and G_2 has at most one invariant equal to 2.

Proof. By our assumption, we have $C_2 = \langle c \rangle$. To prove the necessity, we assume that G is of purely semi-wild projective K-representation type. By Corollary 2.5, $G_2/C_2 = \langle a_1C_2 \rangle \times \cdots \times \langle a_rC_2 \rangle$, where $r \geq i(K) + 1$. We also have $s \geq r$. Let r = i(K) + 1. By Corollary 2.5, $C_2 \neq \{e\}$ and

$$a_i^{|a_j C_2|} \in \langle c^2 \rangle$$

for every $j \in \{1, \ldots, r\}$. Let $T = \langle c^2 \rangle$. Then $G_2/T = \langle cT \rangle \times \langle a_1T \rangle \times \cdots \times \langle a_rT \rangle$. It follows that $r+1 \leq s$. Consequently, $s \geq i(K)+2$. Assume that s = i(K)+2 and $G_2 = A \times B$, where A is the group of type (2,2) and $C_2 \subset A$. There exists $\nu \in Z^2(B,K^*)$ such that $K^{\nu}B$ is a field. In view of Lemma 2.3, there exists $\lambda \in Z^2(G,K^*)$ satisfying the following condition: if μ is the restriction of λ to $G_2 \times G_2$ then $\operatorname{Ker}(\mu) = A$. The algebra $K^{\lambda}G_2$ is the group algebra of A over the field $K^{\nu}B$. By Lemma 1.2, $K^{\lambda}G_2$ is tame. Hence, by Lemma 1.1, $K^{\lambda}G$ is also tame.

To prove the sufficiency, we assume that $s \geq i(K) + 3$. Denote by \overline{G}_2 the socle of the group G_2 . By Lemma 2.6, $K^{\lambda}\overline{G}_2 \cong K^{\lambda}D \otimes_K KT$, where $\overline{G}_2 = D \times T$ and $|T| \geq 8$. In view of Lemmas 1.2 and 1.8, the algebra $K^{\lambda}\overline{G}_2$ is wild, and it follows from Lemma 1.8 that so is $K^{\lambda}G_2$ for all $\lambda \in Z^2(G, K^*)$.

Now we assume that s = i(K) + 2. Let $H = \{g \in G_2 : g^4 = e\}$. If G_2 has at most one invariant equal to 2 then, by Lemmas 3.1, 1.2 and 1.8, $K^{\lambda}H$ is wild. Applying again Lemma 1.8, we deduce that $K^{\lambda}G_2$ is wild for any $\lambda \in Z^2(G, K^*)$. Suppose that $|C_2| \geq 4$. There exists a direct decomposition

 $H = A \times B$ such that $B \subset C_2$ and |B| = 4. Let $N = \sec A \times B$. By Lemma 2.6, $K^{\lambda}N \cong K^{\lambda}D \otimes_K KT$, where $B \subset T$ and |T| = 8. According to Lemmas 1.2 and 1.8, $K^{\lambda}G_2$ is wild for any $\lambda \in Z^2(G, K^*)$.

PROPOSITION 3.3. Let G be a finite group such that one of the following conditions is satisfied:

- (i) C_2 is non-cyclic and $|C_2:C_2'| \neq 4$;
- (ii) $s \ge i(K) + 3$;
- (iii) s = i(K) + 2 and $|C_2 : G_2'| \ge 4$;
- (iv) s = i(K) + 2 and G_2/G'_2 has at most one invariant equal to 2.

Then G is of purely semi-wild projective K-representation type.

Proof. For any $\lambda \in Z^2(G, K^*)$, $K^{\lambda}G$ contains the group algebra $KC_2 = K^{\lambda}C_2$ and $K^{\lambda}G_2/K^{\lambda}G_2 \cdot \operatorname{rad} KG_2' \cong K^{\mu}H$, where $H = G_2/G_2'$. It remains to apply Lemmas 1.1, 1.2 and Theorem 3.2.

COROLLARY 3.4. Let G be a finite group and K a field of characteristic 2. Assume that $|C_2:C_2'| \neq 4$ and $[K:K^2] = \infty$. The group G is of purely semi-wild projective K-representation type if and only if C_2 is not cyclic.

Proof. Apply Corollary 2.5 and Proposition 3.3.

LEMMA 3.5. Let G be a non-abelian 2-group with cyclic commutant G' and D the subgroup of G such that $G' \subset D$ and $D/G' = \operatorname{soc}(G/G')$.

- (i) If $|G' \cap Z(D)| \ge 4$ then $|D'| \le 4$.
- (ii) If $G' \subset Z(D)$ then $|D'| \leq 2$.
- Proof. (i) Let $G' = \langle c \rangle$ and $|c| = 2^m$. If m = 2 then $G' \subset Z(D)$. First we examine the case when m > 2. If $g \in D$ then $g^{-1}cg = c^r$, where $r \equiv 1 \pmod{2^{m-1}}$. It follows that $g^{-1}c^2g = c^2$. Suppose that $a, b \in D$, $a^{-1}ca = c^r$ and $b^{-1}ab = ac^i$. Then $b^{-1}a^2b = a^2c^{i(1+r)}$. Let $H = \langle c^2 \rangle$. If $a^2 \in H$ then $b^{-1}a^2b = a^2$, hence $i(1+r) \equiv 0 \pmod{2^m}$. This implies $2i \equiv 0 \pmod{2^m}$. If $a^2 \notin H$, we may assume that $a^2 = c$ and r = 1. Then $b^{-1}c^2b = c^2$ and $b^{-1}c^2b = c^2c^{4i}$, which yields $c^{4i} = e$.
- (ii) Now let $G' \subset Z(D)$. Then $b^{-1}a^2b = a^2c^{2i}$ and $b^{-1}a^2b = a^2$, hence $c^{2i} = e$.

PROPOSITION 3.6. Let G be a non-abelian 2-group with cyclic commutant $G' = \langle c \rangle$ and D the subgroup of G such that $G' \subset D$ and $D/G' = \operatorname{soc}(G/G')$. Assume that s = i(K) + 1 and $|G' : D'| \geq 4$. The group G is of purely semi-wild projective K-representation type if and only if $g^2 \in \langle c^2 \rangle$ for every $g \in D$.

Proof. Let $N = \langle c^2 \rangle$. Since |G': N| = 2 and $|G': D'| \geq 4$, we have $D' \subset N$. Suppose that G is of purely semi-wild projective K-representation type. By Corollary 2.5, $D/G' = \langle d_1G' \rangle \times \cdots \times \langle d_sG' \rangle$, where $d_i^2 \in N$ for

every $j \in \{1, ..., s\}$. Since $D/N = \langle cN \rangle \times \langle d_1N \rangle \times ... \times \langle d_sN \rangle$, $g^2 \in N$ for every $g \in D$.

Conversely, assume that $h^2 \in N$ for every $h \in D$. If $g \in D$ then $g^{-1}cg = c^r$, where $c^{r-1} \in D'$. Let $g^2 = c^{2t}$, $t \in \mathbb{Z}$. We get

$$(gc^{-t})^2 = g^2c^{-rt-t} = c^{t(1-r)}.$$

Therefore $(gc^{-t})^2 \in D'$. As a consequence,

$$D/G' = \langle x_1 G' \rangle \times \cdots \times \langle x_s G' \rangle,$$

where $x_j^2 \in D'$ for every $j \in \{1, \dots, s\}$. Let $T = \langle c^4 \rangle$. Then $D' \subset T$ and

$$D/T = \langle cT \rangle \times \langle x_1 T \rangle \times \cdots \times \langle x_s T \rangle.$$

Let H=D/T, $\lambda \in Z^2(G,K^*)$ and $\mu_{xT,yT}=\lambda_{x,y}$ for all $x,y \in D$. Then $\mu \in Z^2(H,K^*)$ and $\langle cT \rangle \subset \operatorname{Ker}(\mu)$. Let $Q=\langle x_1T \rangle \times \cdots \times \langle x_sT \rangle$. According to Lemma 2.6, $K^{\mu}Q\cong K^{\mu}Q_1\otimes_K KQ_2$, where $|Q_2|\geq 2$. It follows that $K^{\mu}H\cong K^{\mu}H_1\otimes_K KH_2$, where $H_1=Q_1$ and $H_2=\langle cT \rangle \times Q_2$. Since $|H_2|\geq 8$, we deduce from Lemmas 1.2 and 1.8 that $K^{\mu}H$ is wild. Therefore, $K^{\lambda}D$ is wild for any $\lambda \in Z^2(G,K^*)$. Applying Lemma 1.1, we conclude that G is of purely semi-wild projective K-representation type. \blacksquare

COROLLARY 3.7. Let G be a non-abelian 2-group with cyclic commutant $G' = \langle c \rangle$ of order 2^m , D the subgroup of G such that $G' \subset D$ and D/G' = soc(G/G'). Assume that s = i(K) + 1 and one of the following conditions holds:

- (i) $m \ge 4 \text{ and } |G' \cap Z(D)| \ge 4$;
- (ii) m = 3 and $G' \subset Z(D)$.

The group G is of purely semi-wild projective K-representation type if and only if $g^2 \in \langle c^2 \rangle$ for every $g \in D$.

Proof. Apply Lemma 3.5 and Proposition 3.6. ■

REFERENCES

- [1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
- [2] L. F. Barannyk, On faithful irreducible projective representations of finite groups over a field of characteristic p, J. Algebra 321 (2009), 194–204.
- [3] L. F. Barannyk and D. Klein, Twisted group rings of strongly unbounded representation type, Colloq. Math. 100 (2004), 265–287.
- [4] L. F. Barannyk and K. Sobolewska, On indecomposable projective representations of finite groups over fields of characteristic p > 0, ibid. 98 (2003), 171–187.
- [5] V. A. Bashev, Representations of the group Z₂ × Z₂ in a field of characteristic 2, Dokl. Akad. Nauk SSSR 141 (1961), 1015–1018 (in Russian).

- V. M. Bondarenko, Representations of dihedral groups over a field of characteristic 2, Mat. Sb. 96 (1975), 63–74 (in Russian).
- V. M. Bondarenko and Y. A. Drozd, The representation type of finite groups, in: [7] Modules and Representations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 57 (1977), 24–41 (in Russian).
- S. Brenner, Modular representations of p-groups, J. Algebra 15 (1970), 89–102.
- Y. A. Drozd, On tame and wild matrix problems, in: Matrix Problems, Inst. Mat., Akad. Nauk Ukrain. SSR, Kiev, 1977, 104–114 (in Russian).
- [10]—, Tame and wild matrix problems, in: Lecture Notes in Math. 831, Springer, 1980, 242 - 258.
- Y. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, Berlin, [11] 1994.
- [12]L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, New York, 1970.
- A. Heller and I. Reiner, Indecomposable representations, Illinois J. Math. 5 (1961), |13|314 - 323.
- D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J. [14] 21 (1954), 377–381.
- G. Karpilovsky, Projective Representations of Finite Groups, Dekker, New York, [15]
- [16] —, Group Representations, Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
- [17]S. A. Kruglyak, On representations of the group (p,p) over a field of characteristic p, Dokl. Akad. Nauk SSSR 153 (1963), 1253–1256 (in Russian).
- [18] H. Meltzer and A. Skowroński, Group algebras of finite representation type, Math. Z. 182 (1983), 129–148.
- —, —, Correction to "Group algebras of finite representation type", ibid. 187 (1984), [19] 563 - 569.
- [20] C. M. Ringel, The indecomposable 2-groups, Math. Ann. 214 (1975), 19–34.
- [21] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992.
- [22]—, On Corner type endo-wild algebras, J. Pure Appl. Algebra 202 (2005), 118–132.
- D. Simson and A. Skowroński, Elements of the Representation Theory of Associa-[23]tive Algebras, Vol. 3: Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, 2007.
- [24]A. Skowroński, The representation type of group algebras, in: CISM Courses and Lectures 287, Springer, 1984, 517–531.
- —, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499–516. [25]
- O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Springer, New York, 1975. |26|

Leonid F. Barannyk Institute of Mathematics Pomeranian University of Słupsk Arciszewskiego 22b 76-200 Słupsk, Poland E-mail: barannykleo@poczta.onet.pl

barannyk@apsl.edu.pl

Received 27 October 2009: revised 21 December 2009