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FINITE-DIMENSIONAL TWISTED GROUP ALGEBRAS OF
SEMI-WILD REPRESENTATION TYPE

BY

LEONID F. BARANNYK (Słupsk)

Abstract. Let G be a finite group, K a field of characteristic p > 0, and KλG the
twisted group algebra of G over K with a 2-cocycle λ ∈ Z2(G,K∗). We give necessary and
sufficient conditions for KλG to be of semi-wild representation type in the sense of Drozd.
We also introduce the concept of projectiveK-representation type for a finite group (tame,
semi-wild, purely semi-wild) and we exhibit finite groups of each type.

Introduction. Let K be a field, K̂ the separable closure of K, and A, B
algebras over K. Denote by Bim(A,B) the set of all A-B-bimodules M such
that M is a free right module of finite rank over B. Let F = K̂〈t1, t2〉 be the
free associative K̂-algebra of polynomials in two non-commutting indetermi-
nates t1, t2 with coefficients in K̂. We recall from [9] that a finite-dimensional
K-algebra A is said to be of semi-wild representation type (briefly, A is
semi-wild) if there is M ∈ Bim(A,F ) such that for any N ∈ Bim(F, K̂)
there exist only a finite number of non-isomorphic Ni ∈ Bim(F, K̂) with
M ⊗F N ∼= M ⊗F Ni. If, moreover, M ⊗F N ∼= M ⊗F N ′ implies N ∼= N ′,
we say that the algebra A is of wild representation type (briefly, A is wild).

We recall that the paper by Simson [22] gives various notions of wildness
of an algebra A and discusses relations between them. A detailed description
of basic concepts of the theory of tame and wild representation types of
algebras over an algebraically closed field can be found in monographs by
Simson [21] and Simson and Skowroński [23].

Let K be a field of characteristic p > 0, G a finite group and p | |G|.
Higman [14] proved that the group algebra KG is of finite representation
type if and only if Sylow p-subgroups of G are cyclic. Bashev [5] and Heller
and Reiner [13] have determined indecomposable representations of KG in
the case when p = 2 andG is the group of type (2, 2). Kruglyak showed in [17]
that if p > 2 and G is a non-cyclic p-group, then KG is wild. Brenner [8] has
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shown that KG is wild if p = 2, G is a non-cyclic 2-group and |G : G′| 6= 4.
Bondarenko [6] and Ringel [20] have independently shown that KG is not
wild if p = 2 and G is a dihedral 2-group. Finally, Bondarenko and Drozd [7]
have established that KG is not wild either if p = 2 and G is a semidihedral
2-group or a quaternion 2-group.

Let K be an algebraically closed field, A a finite-dimensional K-algebra,
G a finite group and AG the group algebra of G over A. The representa-
tion type of AG is determined by Meltzer and Skowroński [18, 19] and by
Skowroński [24, 25].

Let G be a finite group, Gp a Sylow p-subgroup of G, K a field of char-
acteristic p and λ ∈ Z2(G,K∗). We recall from [4] that the twisted group
algebra KλG is of finite representation type if and only if the algebra KλGp
is uniserial.

In this paper we determine the algebras KλG of semi-wild representation
type. We also introduce the concept of projective K-representation type for
G and exhibit finite groups of each type.

Let us briefly present the main results of the paper. Let G be a finite
group, Gp a Sylow p-subgroup of G, G′p the commutant of Gp, s the number
of invariants of the abelian group Gp/G′p, and Cp a Sylow p-subgroup of the
commutant G′ of G. We assume that Cp ⊂ Gp. Denote by D the subgroup
of Gp such that G′p ⊂ D and D/G′p = soc(Gp/G′p). Let K be a field of
characteristic p and let

i(K) =
{
n if [K : Kp] = pn,
∞ if [K : Kp] =∞.

In Section 1, we describe twisted group algebras of semi-wild represen-
tation type. Let λ ∈ Z2(G,K∗) and d = dimK(KλGp/radKλGp). Suppose
that p 6= 2 and if |G′p| = p, pd = |Gp : G′p| then D is abelian. We prove
that the algebra KλG is semi-wild if and only if the subalgebra KλGp is not
uniserial (Theorem 1.16). If p = 2 and one of the following conditions holds:

(i) 4d < |G2 : G′2|;
(ii) 4d = |G2 : G′2|, |G′2| ≥ 4 and KλG2/K

λG2 · radKλG′2 is a uniserial
algebra;

(iii) d = |G2 : G′2| and |G′2 : G′′2| 6= 4,

then the algebra KλG is semi-wild if and only if the subalgebra KλG2 is not
uniserial (Theorem 1.17).

We say that a finite group G is of purely semi-wild [wild ] projective K-
representation type if KλG is of semi-wild [wild] representation type for any
λ ∈ Z2(G,K∗).

In Section 2, we exhibit finite groups of purely semi-wild projective K-
representation type at characteristic p 6= 2. Assume that if |Cp| = p, s =
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i(K) + 1 and D is non-abelian, then expD = p2. We prove (Theorem 2.7)
that a group G is of purely semi-wild projective K-representation type if
and only if one of the following conditions is satisfied:

(i) Cp is a non-cyclic group;
(ii) s ≥ i(K) + 2;
(iii) s = i(K)+1, Cp = G′p = 〈c〉, |c| ≥ p2 and gp ∈ 〈cp〉 for every g ∈ D;
(iv) s = i(K) + 1, Cp = G′p, |G′p| = p and D is an elementary abelian

p-group.

As a consequence we obtain the following two corollaries:

1. Let p 6= 2 and [K : Kp] = ∞. A group G is of purely semi-wild
projective K-representation type if and only if Cp is non-cyclic.

2. Let p 6= 2 and G be a finite group such that Gp is abelian. Then G is
of purely semi-wild projective K-representation type if and only if Cp
is non-cyclic or s ≥ i(K) + 2.

In Section 3, we characterize finite groups of purely semi-wild projective
K-representation type at characteristic p = 2. Let G be a finite group such
that G2 is abelian and C2 is cyclic. We show in Theorem 3.2 that G is of
purely semi-wild projective K-representation type if and only if one of the
following conditions is satisfied:

(i) s ≥ i(K) + 3;
(ii) s = i(K) + 2 and |C2| ≥ 4;
(iii) s = i(K) + 2, |C2| ≤ 2 and G2 has at most one invariant equal to 2.

We also prove that if |C2 : C ′2| 6= 4 and [K : K2] = ∞, then the group G is
of purely semi-wild projective K-representation type if and only if C2 is not
cyclic (Corollary 3.4).

Preliminaries. Throughout this paper, we use the following notations:
K is a field of characteristic p > 0; K∗ is the multiplicative group of K;
Kp = {αp : α ∈ K}; G is a finite group, G′ is the commutant of G and
G′′ is the commutant of G′; Gp is a Sylow p-subgroup of G, Cp a Sylow
p-subgroup of G′, G′p the commutant of Gp, s the number of invariants of
Gp/G

′
p. Moreover, we assume that Cp ⊂ Gp, hence G′p ⊂ Cp. Let Z(G) be

the center of G, e the identity element of G, |g| the order of g ∈ G and socB
the socle of an abelian p-group B. We denote by Z2(G,K∗) the group of all
K∗-valued normalized 2-cocycles of the group G, where we assume that G
acts trivially on K∗ (see [15, Chapter 2] and [16, Chapter 1]).

Given a cocycle λ : G × G → K∗ in Z2(G,K∗), we denote by KλG
the twisted group algebra of G over K with the 2-cocycle λ. A K-basis
{ug : g ∈ G} of KλG satisfying uaub = λa,buab for all a, b ∈ G is called
natural (corresponding to λ). If H is a subgroup of G, we often use the same
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symbol for an element λ : G × G → K∗ of Z2(G,K∗) and its restriction to
H ×H. In this case, KλH is a subalgebra of KλG.

Let G be a finite p-group. Denote by radKλG the radical of KλG. We
set KλG = KλG/radKλG. We recall that in this case KλG is a finite
purely inseparable field extension of K [16, p. 74]. Given λ ∈ Z2(G,K∗), the
kernel Ker(λ) of λ is the union of all cyclic subgroups 〈g〉 of G such that the
restriction of λ to 〈g〉 × 〈g〉 is a coboundary. We recall from [3, p. 268] that
G′ ⊂ Ker(λ), Ker(λ) is a normal subgroup of G and the restriction of λ to
Ker(λ) × Ker(λ) is a coboundary (see also [2, p. 197] for a simple proof).
Up to cohomology in Z2(G,K∗), we have λg,a = λa,g = 1 for all g ∈ G and
a ∈ Ker(λ). In what follows, we assume that every cocycle λ ∈ Z2(G,K∗)
under consideration satisfies this condition.

Assume now that G is a finite group, λ ∈ Z2(G,K∗), µ is the restriction
of λ to Gp ×Gp and Hp = Ker(µ). Then Cp ⊂ Hp (see [16, p. 48]).

Let G be an abelian p-group, G = socG, λ ∈ Z2(G,K∗), and S =
Ker(λ). If KλG is not a field and G 6⊂ S, then there exists a direct product
decomposition G = H ×〈c1〉× · · · × 〈cm〉 such that H 6= {e}, KλH is a field
and KλDj is not a field for every j ∈ {1, . . . ,m}, where Dj = H × 〈cj〉.
The algebra KλG is not uniserial if and only if m ≥ 2 (see [4, p. 176]). If
G ⊂ S then KλG is the group algebra of G over K. In this case KλG is
not a uniserial algebra if and only if G is a non-cyclic group. Assume that
G = B × C, where C is a cyclic group and KλC is not a field. The algebra
KλG is not uniserial if and only if KλB is not a field (see [4, pp. 175–176]).

Let G be a p-group, H a normal subgroup of G, λ ∈ Z2(G,K∗), H ⊂
Ker(λ) and T = G/H. We put µxH,yH = λx,y for all x, y ∈ G. Then
µ ∈ Z2(T,K∗). Assume that {ug : g ∈ G} is a natural K-basis of KλG
corresponding to λ, and {vgH : g ∈ G} is a natural K-basis of KµT corre-
sponding to µ. The formula

f
(∑
g∈G

αgug

)
=
∑
g∈G

αgvgH

defines a K-algebra epimorphism f : KλG → KµT with the kernel U =
KλG · radKλH (see [15, p. 14] or [16, p. 88]). Hence, KλG/U ∼= KµT . We
recall that

radKλH =
⊕

h∈H\{e}

K(uh − ue)

is called the augmentation ideal of the group algebra KλH. If G′ ⊂ H then
KµT is a commutative algebra. Let d = dimK KλG. Then d divides |G : G′|.
Moreover, if G is an abelian p-group and KλG is not a uniserial algebra,
then p2d is a divisor of |G|.
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If V is a finite-dimensional vector space over K and Γ : G → GL(V ) a
projective representation of G with a 2-cocycle λ ∈ Z2(G,K∗), we refer to
Γ as a λ-representation of G over K. Let PGL(V ) = GL(V )/K∗ · 1V and
π : GL(V ) → PGL(V ) be the canonical group homomorphism. The kernel
of the composite homomorphism π ◦ Γ : G → PGL(V ) is called the kernel
of Γ and is denoted by Ker(Γ ). Let G be a p-group and K be a field of
characteristic p. If Γ is an irreducible λ-representation of G over K then
Ker(Γ ) = Ker(λ) (see [2, p. 198]).

We recall from [26, p. 129] that a set of elements α1, . . . , αm of a field
K is called p-independent if the pm monomials αi11 . . . α

im
m with 0 ≤ ir < p

for every r ∈ {1, . . . ,m} are linearly independent over the subfield Kp of K.
A subset {β1, . . . , βn} of K is said to be a p-basis if it is a p-independent set
and K = Kp(β1, . . . , βn). In this case [K : Kp] = pn.

It is not difficult to verify that a subset {α1, . . . , αm} of the field K is
p-independent if and only if the K-algebra

(1) K[t]/(tp − α1)⊗K · · · ⊗K K[t]/(tp − αm)

is a field. It follows that i(K) (definition on p. 278) is the supremum of the
set that consists of 0 and all positive integers m such that a K-algebra of
the form (1) is a field for some α1, . . . , αm ∈ K.

The reader is referred to [15] and [16] for basic facts and notation from
the theory of projective representations of finite groups and to [1] and [11]
for terminology, notation and introduction to the representation theory of
finite-dimensional algebras over a field.

1. Twisted group algebras of semi-wild representation type. Let
G be a finite group, K a field of characteristic p, K̂ the separable closure of
K, λ ∈ Z2(G,K∗) and A = KλG. Following Drozd [9, p. 109], we say that
A is of tame representation type (briefly, A is tame) if there exists a family
S = {Mi ∈ Bim(A, K̂[t]) : i ∈ I} of A-K̂[t]-bimodules Mi with the following
properties:

• for every positive integer d the set S has a finite number of Mi of
K̂[t]-rank d;
• for every indecomposable module V over the algebra Â = A ⊗K K̂

there exist Mi ∈ S, α ∈ K̂ and positive integer n such that

V ∼= Mi ⊗ bK[t]
K̂[t]/(t− α)n.

Here Bim(A, K̂[t]) is the set of all A-K̂[t]-bimodulesM such thatM is a free
right module of finite rank over the algebra K̂[t]. By [9, p. 110], no algebra
KλG is both semi-wild and tame.
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Now we collect basic facts we use throughout the paper.

Lemma 1.1. Let G be a finite group and λ ∈ Z2(G,K∗).

(i) If the algebra KλG is tame then the subalgebra KλH is also tame for
any subgroup H of G. If the subalgebra KλH of KλG is semi-wild
then the algebra KλG is semi-wild.

(ii) Let Gp be a Sylow p-subgroup of G. If the subalgebra KλGp of KλG
is tame then the algebra KλG is also tame. If the algebra KλG is
semi-wild then the subalgebra KλGp is semi-wild as well.

Proof. Apply [7, Proposition 2].

Lemma 1.2 ([7, p. 24]). Let G be a p-group. The group algebra KG is
wild if and only if G is non-cyclic and |G : G′| 6= 4. Otherwise KG is tame.

Lemma 1.3 ([4, p. 175]). Let G be a finite group and λ ∈ Z2(G,K∗). The
algebra KλG is of finite representation type if and only if KλGp is uniserial.

Lemma 1.4 ([12, p. 119]). Let G be an abelian p-group and T a subgroup
of socG. Then there exists a direct decomposition G = A × B such that
socB = T .

Lemma 1.5. Let G be a non-abelian p-group with G′ = 〈c〉, H = 〈cp〉,
and λ ∈ Z2(G,K∗).

(i) V := KλG · radKH is an ideal of KλG and there is an algebra
isomorphism KλG/V ∼= KµT , where T = G/H, T ′ = 〈cH〉 and
µxH,yH = λx,y for all x, y ∈ G.

(ii) The algebra KλG is uniserial if and only if KλG/V is uniserial.

Proof. We have G′ ⊂ Ker(λ), H / G and (G/H)′ = G′/H = 〈cH〉. The
set V is an ideal of KλG and KλG/V ∼= KµT . We put K̂λG = KλG/V and
ŵ = w + V for every w ∈ KλG. Since V is a nilpotent ideal, rad K̂λG =
(radKλG)/V . If KλG is uniserial then radKλG = KλG · θ for some θ ∈
radKλG (see [11, p. 170]). It follows that rad K̂λG = K̂λG · θ̂. Hence K̂λG
is a uniserial algebra.

Conversely, assume that K̂λG is uniserial. Then rad K̂λG = K̂λG · θ̂ for
some θ ∈ radKλG. Consequently, for any w ∈ radKλG, there is z ∈ KλG
such that w + V = (z + V )(θ + V ). It follows that w − zθ ∈ (radKλG)2,
since upc − ue = (uc − ue)p ∈ (radKλG)2. This implies

w + (radKλG)2 = [z + (radKλG)2] · [θ + (radKλG)2].

Therefore the radical of KλG/(radKλG)2 is a principal left ideal. Hence
KλG/(radKλG)2 is a uniserial algebra. But KλG/(radKλG)2 is uniserial
if and only if KλG is uniserial (see [11, p. 172]). Consequently, KλG is a
uniserial algebra.
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Lemma 1.6. Let G be a p-group, |G′| = p and λ ∈ Z2(G,K∗). Suppose
that KλG is not a uniserial algebra and KλG/KλG · radKG′ is a uniserial
algebra. If H is an abelian subgroup of G, G′ ⊂ H and KλH/KλH · radKG′

is not a field, then KλH is not a uniserial algebra either.

Proof. Let G′ = 〈c〉. If H = A × 〈c〉 then KλH ∼= KλA ⊗K KG′ and
KλA is not a field, since KλA ∼= KλH/KλH · radKG′. Therefore KλH is
not a uniserial algebra.

Now we assume that 〈c〉 is not a direct factor of H. By Lemma 1.4, there
exists a direct product decomposition H = 〈h1〉× · · · × 〈hn〉, where c ∈ 〈hn〉
and |c| < |hn|. Assume KλH is uniserial algebra, |hn| = pt+1 and c = hp

t

n .
Then

KλH =
|h1|−1⊕
i1=0

. . .

|hn|−1⊕
in=0

Kui1h1
. . . uinhn ,

where
u
|hj |
hj

= δjue, δj ∈ K∗ for j = 1, . . . , n− 1,

up
t

hn
= αuc, α ∈ K∗,

and

F :=
|h1|−1⊕
i1=0

. . .

|hn−1|−1⊕
in−1=0

Kui1h1
. . . u

in−1

hn−1

is a field. Since KλH/KλH(uc − ue) is not a field, we have αue = θp for
some θ ∈ F . From

(θ−1up
t−1

hn
− ue)p = uc − ue

it follows that uc−ue ∈ (radKλH)2. BecauseKλG is a local algebra, we have
radKλH ⊂ radKλG. Hence KλG(uc − ue) ⊂ (radKλG)2. By hypothesis,
the algebra KλG/KλG(uc − ue) is uniserial. Arguing as in the proof of
Lemma 1.5, we show that KλG/(radKλG)2 is a uniserial algebra. Then
KλG is also uniserial, a contradiction.

Lemma 1.7. Let G be a non-abelian p-group with non-cyclic commutant.
Then G contains a normal subgroup H such that H ⊂ G′ and (G/H)′ =
G′/H is an elementary abelian group of type (p, p).

Proof. By our assumption, G′/G′′ is a non-cyclic abelian p-group. Denote
by S the subgroup of G′ generated by G′′ and all elements xp, where x ∈ G′.
Clearly, S is a normal subgroup of G and G′/S is a non-cyclic elementary
abelian p-group. Since (G/S)′ = G′/S, in what follows we assume that G′ is
a non-cyclic elementary abelian p-group.

Let |G′| = pn and n > 2. Choose a 6= e in G′ such that a ∈ Z(G). Then
the commutant of G/〈a〉 is a non-cyclic elementary abelian group of order
pn−1. If n− 1 > 2, we inductively continue the above construction.
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Let H be a subgroup of a group G. If M is a KλG-module, we denote by
MH the module M viewed as a KλH-module. If N is a KλH-module, then
NG = KλG⊗KλH N is called the induced KλG-module.

Lemma 1.8. Let G be a finite group, H a subgroup of G and λ ∈
Z2(G,K∗). If H ⊂ Z(G) and KλH is a wild algebra, then KλG is also
wild.

Proof. Let V1 and V2 beKλH-modules. As (V G
i )H ∼= Vi⊕· · ·⊕Vi (|G : H|

summands) for i = 1, 2, by the Krull–Schmidt Theorem the modules V G
1 and

V G
2 are isomorphic if and only if the modules V1 and V2 are isomorphic.
Let K̂ be the separable closure of K and F = K̂〈t1, t2〉. By definition of

a wild algebra, there exists a bimodule M ∈ Bim(KλH,F ) such that, for
any N,N ′ ∈ Bim(F, K̂), M ⊗F N ∼= M ⊗F N ′ implies N ∼= N ′. We put
W = KλG⊗KλH M . If W ⊗F N ∼= W ⊗F N ′ for some N,N ′ ∈ Bim(F, K̂),
then

(M ⊗F N)G ∼= (M ⊗F N ′)G.
This implies M ⊗F N ∼= M ⊗F N ′, hence N ∼= N ′. Thus KλG is wild.

Lemma 1.9. Let G be an abelian p-group, λ∈Z2(G,K∗), d= dimK KλG
and 4d 6= |G|. If KλG is not a uniserial algebra then it is wild.

Proof. Let G = H × 〈b1〉 × · · · × 〈bm〉, Dj = H × 〈bj〉 for j = 1, . . . ,m,
where H may be the trivial group. Assume that KλH is a field and KλDj is
not a field for every j ∈ {1, . . . ,m}. Then m ≥ 2, since KλG is not uniserial.
First, we assume that m ≥ 3 in the case p = 2. Let B = 〈b1〉 × · · · × 〈bm〉,
G = socG, H = socH and B = socB. Then KλG ∼= KλH ⊗ KB. Since
|B| > 4, by Lemmas 1.2 and 1.8, the algebra KλG is wild. It follows, by
Lemma 1.8, that so is KλG.

Next we suppose that p = 2 and G = H × 〈b1〉 × 〈b2〉. Denote by F the
field KλH. We have KλG = F λB, where B = 〈b1〉 × 〈b2〉. Let {ug : g ∈ G}
be a natural K-basis of KλG. Then

KλG =
2n1−1⊕
i1=0

2n2−1⊕
i2=0

Fui1b1u
i2
b2
, u2nj

bj
= γjue for j ∈ {1, 2},

where 2nj = |bj |, γj ∈ K∗. Since

dimF (F λB/radF λB) =
d

[F : K]
, |G| = [F : K] · |B| and 4d 6= |G|,

we have 4 · dimF (F λB/radF λB) 6= |B|. The algebra F λB is not uniserial,
hence γj ∈ F 2 for every j and 4 · dimK F λB < |B|.

Assume that n1 ≥ 2, n2 ≥ 2, γ1 = δ21 , γ2 = δ22 , where δ1, δ2 ∈ F ∗ and
δ1 6∈ F 2. We set

cj = b2
nj−2

j for j = 1, 2.
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Then C = 〈c1〉× 〈c2〉 is of type (4, 4). Denote by θj a root of the polynomial
X2 − δj in the algebraic closure of the field F . Then [F (θ1, θ2) : F ] < 4,
hence δ2 ∈ F (θ1)2, that is, δ2 = (ρ1 +ρ2θ1)2 = ρ2

1 +ρ2
2δ1 for some ρ1, ρ2 ∈ F .

Put
vc1 = uc1 , vc2 = (ρ1 + ρ2uc1)

−1uc2 .

We have v4
c2 = ue. Hence, if D = H × C then

KλD = FµC =
3⊕

i1=0

3⊕
i2=0

Fvi1c1v
i2
c2 , v4

c1 = γ1ue, v4
c2 = ue.

We set T = H × 〈c21〉 × 〈c2〉 and N = 〈c21〉 × 〈c2〉. Then for the algebra

KµT =
1⊕

i1=0

3⊕
i2=0

KλH · vi1
c21
vi2c2 , v2

c21
= γ1ue, v4

c2 = ue,

we have KµT ∼= KλH ⊗K KN . Since |N | = 8, by Lemmas 1.2 and 1.8, the
algebra KµT is wild. By Lemma 1.8, so is KλD. Applying again Lemma 1.8,
we conclude that KλG is wild.

Now assume that n1 ≥ 2, n2 ≥ 1, and γ1 = δ41 , γ2 = δ22 for some
δ1, δ2 ∈ F ∗. Let

c1 = b2
n1−2

1 , c2 = b2
n2−1

2 .

Then C = 〈c1〉 × 〈c2〉 is of type (4, 2) and F λC is the group algebra of the
group C over the field F . We put D = H × C. We have KλD = F λC ∼=
KλH ⊗K KC. By Lemmas 1.2 and 1.8, KλD is wild. Hence, in view of
Lemma 1.8, KλG is also wild.

Lemma 1.10. Let G be a non-abelian p-group, λ ∈ Z2(G,K∗), and d =
dimK KλG. Assume that pd < |G : G′| if p 6= 2, and 4d < |G : G′| if p = 2.
If KλG is not a uniserial algebra then it is semi-wild.

Proof. Let {ug : g ∈ G} be a natural K-basis of the algebra KλG, U =

KλG·radKG′, K̃λG = KλG/U and w̃ = w+U for every w ∈ KλG. Suppose
that G/G′ = 〈a1G

′〉 × · · · × 〈amG′〉, where |ajG′| = psj for j = 1, . . . ,m.
Then

K̃λG =
l1⊕

i1=0

. . .

lm⊕
im=0

Kũi1a1
· · · ũimam ,

where lj = psj − 1,

ũp
sj

aj = γj ũe, γj ∈ K∗ for j = 1, . . . ,m.

The algebra K̃λG is a twisted group algebra of the non-cyclic abelian p-group
G/G′ over the field K.
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If K̃λG is not a uniserial algebra then, by Lemma 1.9, K̃λG is wild.
Then so is KλG. Assume now that K̃λG is a uniserial algebra and the
K-subalgebra

F =
l1⊕

i1=0

. . .

lm−1⊕
im−1=0

Kũi1a1
· · · ũim−1

am−1

is a field. We have F = (KλD + U)/U , where D is the subgroup of G
generated by G′ and the elements a1, . . . , am−1. Evidently,

K̃λG =
psm−1⊕
im=0

Fũimam .

Since dimK K̃λG = |G : G′|, dimK(K̃λG/rad K̃λG) = d and d < |G : G′|,
the algebra K̃λG is not a field. There exists an element

(2) ρ =
l1∑

i1=0

. . .

lm−1∑
im−1=0

αi1,...,im−1u
i1
a1
. . . uim−1

am−1
,

where αi1,...,im−1 ∈ K, lj = psj − 1 for every j ∈ {1, . . . ,m − 1}, such that
ρ̃p

r
= γ−1

m ũe with r satisfying one of the following two conditions:

(i) if p 6= 2 then 2 ≤ r ≤ sm, and ρ̃ 6∈ F p in the case r < sm;
(ii) if p = 2 then 3 ≤ r ≤ sm, and ρ̃ 6∈ F 2 in the case r < sm.

We have d = |D : G′| · psm−r, hence dpr = |G : G′|.
In view of Lemmas 1.1, 1.2, 1.5 and 1.7, we can assume that |G′| = p for

p 6= 2, while G′ is the elementary abelian group of type (2, 2) or the group
of order 2 for p = 2. Denote by H the subgroup of G generated by G′ and
the elements

ap1, . . . , a
p
m−1, a

psm−r+1

m .

We show that H is abelian. Assume that p = 2 and G′ = 〈c1〉 × 〈c2〉, where
|c1| = 2, |c2| = 2 and c1 ∈ Z(G). Since the center of G/〈c1〉 contains c2〈c1〉,
we have g−1c2g = c2c

i
1 for any g ∈ G. This implies c2g2 = g2c2 for every

g ∈ G. If h ∈ G then g−1hg = hcr1c
s
2 for some r, s ∈ {0, 1}. It follows that

g−2hg2 = hcis1 and g−2h2g2 = h2. In the case G′ = 〈c1〉, |c1| = p we obtain
g−1c1g = c1, g−1hg = hcr1, g−phgp = h for all g, h ∈ G.

Let S be the subgroup of H generated by G′ and the elements
ap1, . . . , a

p
m−1. Let T = S/G′ and

w =
l1∑

i1=0

. . .

lm−1∑
im−1=0

αpi1,...,im−1
upi1a1

. . . upim−1
am−1

(see (2)).
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Then w ∈ KλS and

(wup
sm−r+1

am )p
r−1 ≡ ue (mod KλH · radKG′).

It follows that KλH/KλH · radKG′ is the group algebra of the cyclic group
of order pr−1 over the field L = (KλS + KλH · radKG′)/KλH · radKG′.
Clearly, L ∼= KλS/KλS · radKG′ ∼= KµT , where µxG′,yG′ = λx,y for all
x, y ∈ S. Thus, dimK KλH = |T |.

By Lemma 1.6, the algebraKλH is not uniserial. Since |H|= |T |·|G′|·pr−1

and |G′|·pr−1 6= 4, Lemma 1.9 shows thatKλH is wild. By Lemma 1.1, KλG
is semi-wild.

Lemma 1.11. Let G be a non-abelian 2-group, |G′| ≥ 4, K a field of
characteristic 2, λ ∈ Z2(G,K∗), d = dimK KλG and 4d = |G : G′|. If KλG
is not a uniserial algebra and KλG/KλG radKG′ is uniserial, then KλG is
of semi-wild representation type.

Proof. Here we follow the proof of Lemma 1.10, and we keep the same
notations with p and 2 interchanged. There exists an element ρ of the form
(2) such that ρ̃4 = γ−1

m ũe, where ρ̃ 6∈ F 2 if 4 < sm.
If G′ is a non-cyclic group, we shall assume, by Lemma 1.7, that G′ is the

elementary abelian group of type (2, 2). Let G′ = 〈c〉, B = 〈c4〉, N = 〈c2〉,
V = KλG(u2

c − ue) and W = KλG(u4
c − ue). By Lemma 1.5, KλG/V is not

a uniserial algebra. Since

(KλG/W )/(V/W ) ∼= KλG/V,

the algebra KλG/W is not uniserial either. Moreover, KλG/W ∼= KνĜ,
where Ĝ = G/B and νxB,yB = λx,y for all x, y ∈ G. We also have

Ĝ′ = G′/B = 〈cB〉, |Ĝ : Ĝ′| = |G : G′| and dimK KνĜ = d.

This implies that |G′| = 4.
Denote by H the subgroup of G generated by G′ and the elements

a2
1, . . . , a

2
m−1, a

2sm−1

m .

We show that H is abelian. In case G′ is of type (2, 2), this was established in
the proof of Lemma 1.10. Let G′ = 〈c〉 and |c| = 4. Then c2 ∈ Z(G). If a ∈ G
then a−1ca = ci, where i ≡ 1 (mod 2). Let b ∈ G and b−1ab = acr. Then
b−1a2b = a2cr(1+i), and therefore b−2a2b2 = a2. We also have a−2ca2 = c.

Let S be the subgroup of H generated by G′ and the elements
a2

1, . . . , a
2
m−1. Let T = S/G′. The quotient algebra KλH/KλH · radKG′

is the group algebra of the cyclic group of order 2 over the field L ∼= KµT .
By Lemma 1.6, the algebra KλH is not uniserial. Since |H| = |T | · 2|G′| and
|G′| = 4, Lemma 1.9 shows that KλH is wild. It follows, by Lemma 1.1, that
KλG is semi-wild.
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Lemma 1.12. Let p 6= 2, G be a p-group with cyclic commutant and D
the subgroup of G such that G′ ⊂ D and D/G′ = soc(G/G′). Then |D′| ≤ p.

Proof. LetG′ = 〈c〉, |c| = pm andm ≥ 2. If g ∈ D then g−1cg = cr, where
r ≡ 1 (mod pm−1). It follows that g−1cpg = cp. Let a, b ∈ D, a−1ca = cr and
b−1ab = aci. Then b−1apb = apcit, where t = 1 + r+ · · ·+ rp−1. It is easy to
see that t ≡ p (mod pm). Hence b−1apb = apcip.

Let H = 〈cp〉. If ap ∈ H then b−1apb = ap, and we conclude that ip ≡ 0
(mod pm). If ap 6∈ H then we may assume that ap = c. This implies that
b−1ab = a1+ip. We have bp = apj for some j, since bp ∈ G′. Therefore
b−pabp = a and

b−pabp = a(1+pi)p .

Hence, (1 + pi)p ≡ 1 (mod pm+1). Thus pi ≡ 0 (mod pm) and [a, b]p = e.

Lemma 1.13. Let p 6= 2, G be a non-abelian p-group, K a non-perfect
field of characteristic p, λ ∈ Z2(G,K∗) and d = dimK KλG. Moreover,
assume that KλG is not a uniserial algebra, pd = |G : G′| and |G′| > p.
Then KλG is a semi-wild algebra.

Proof. If G′ is non-cyclic then, by Lemmas 1.1 and 1.2, the algebra KλG
is semi-wild. Let G′ = 〈c〉 and T = 〈cp〉. Denote by D the subgroup of G
such that G′ ⊂ D and D/G′ = soc(G/G′). By Lemma 1.12, D/T is abelian.
In view of Lemma 1.5, we can assume that |G′| = p and D is an abelian
group. By Lemma 1.6, KλD is not uniserial, since KλG/KλG · radKG′ is
uniserial and KλD/KλD · radKG′ is not a field. According to Lemma 1.9,
KλD is wild. By Lemma 1.1, KλG is semi-wild.

Proposition 1.14. Let G be a finite group, λ ∈ Z2(G,K∗) and d =
dimK KλGp. Assume that Gp is abelian and |Gp| 6= 4d. The algebra KλG is
semi-wild if and only if KλGp is not uniserial.

Proof. IfKλGp is not uniserial then, by Lemma 1.9,KλGp is wild. Hence,
by Lemma 1.1, KλG is semi-wild. If KλGp is uniserial then, by Lemma 1.3,
KλG is of finite representation type.

Proposition 1.15. Let G be a finite group, λ ∈ Z2(G,K∗) and d =
dimK KλGp. If d = |Gp : G′p| and |G′p : G′′p| 6= 4, then the algebra KλG is
semi-wild if and only if G′p is a non-cyclic group.

Proof. Since d = |Gp : G′p|, the algebra KλGp/K
λGp · radKG′p is a field

andKλGp·radKG′p is the radical ofKλGp. IfG′p is cyclic thenKλGp is unise-
rial, thus, by Lemma 1.3,KλG is of finite representation type. Hence,KλG is
not semi-wild. If G′p is a non-cyclic group then, by Lemma 1.2,KλG′p = KG′p
is a wild algebra. In view of Lemma 1.1, it follows that KλG is semi-wild.

We are now able to prove one of the main results of this paper.
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Theorem 1.16. Let p 6= 2, G be a finite group, λ ∈ Z2(G,K∗), µ the
restriction of λ to Gp ×Gp and d = dimK KλGp. Denote by D the subgroup
of Gp such that G′p ⊂ D and D/G′p = soc(Gp/G′p). Assume that if |G′p| = p

and pd = |Gp : G′p|, then Ker(µ) 6= G′p or D is abelian. The algebra KλG

is of semi-wild representation type if and only if the subalgebra KλGp is not
uniserial.

Proof. If KλGp is uniserial then, by Lemma 1.3, KλG is of finite rep-
resentation type. Suppose that KλGp is not uniserial. If pd < |Gp : G′p|
then, by Lemma 1.10, KλGp is semi-wild. If pd = |Gp : G′p| and |G′p| > p

then, by Lemma 1.13, KλGp is also semi-wild. Let d = |Gp : G′p|. Then
KλGp/K

λGp · radKG′p = KλGp, therefore G′p is non-cyclic. According to
Lemma 1.2, KG′p is wild. By Lemma 1.1, in all cases KλG is of semi-wild
representation type.

Now assume that pd = |Gp : G′p| and |G′p| = p. Then Ker(µ) 6= G′p or D
is abelian. Let Hp = Ker(µ) and Hp 6= G′p. Denote by U the ideal KλGp ·

radKHp of the algebra KλGp and by K̃λGp the quotient algebra KλGp/U .

Since G′p ⊂ Hp, G′p 6= Hp, dimK K̃λGp = |Gp : Hp| and K̃λGp/rad K̃λGp ∼=
KλGp, we have |Gp : Hp| = d and U = radKλGp. The algebra KλGp is
not uniserial, hence U is not a principal left ideal. This implies that Hp is
non-cyclic. By Lemma 1.2, KHp is wild. According to Lemma 1.1, KλG is
semi-wild.

Finally, we examine the case when D is abelian. Since KλGp/K
λGp ·

radKG′p is a uniserial algebra and KλD/KλD · radKG′p is not a field,
Lemma 1.6 shows that KλD is a non-uniserial algebra. By Lemma 1.9, KλD
is wild and, by Lemma 1.1, KλG is semi-wild.

Theorem 1.17. Let G be a finite group, K a field of characteristic 2,
λ ∈ Z2(G,K∗) and d = dimK KλG2. Assume that one of the following three
conditions holds:

(i) 4d < |G2 : G′2|;
(ii) 4d = |G2 : G′2|, |G′2| ≥ 4 and KλG2/K

λG2 · radKG′2 is a uniserial
algebra;

(iii) d = |G2 : G′2| and |G′2 : G′′2| 6= 4.

The algebra KλG is semi-wild if and only if KλG2 is not uniserial.

Proof. Apply Lemmas 1.1, 1.3, 1.9 – 1.11 and Proposition 1.15.

Proposition 1.18. Let G be a finite group, K a field of characteristic 2,
λ ∈ Z2(G,K∗), µ the restriction of λ to G2×G2 and H2 = Ker(µ). Assume
that H2 is non-cyclic and |H2 : H ′2| 6= 4. Then KλG is semi-wild.



290 L. F. BARANNYK

Proof. Apply Lemmas 1.1 and 1.2.

Proposition 1.19. Assume that p 6= 2 and keep the notation of Theo-
rem 1.16. Assume also that if |Cp| = |G′p| = p and s ≤ i(K) + 1, then D

is abelian. Then, for every λ ∈ Z2(G,K∗), KλG is of finite or semi-wild
representation type.

Proof. Let λ ∈ Z2(G,K∗), d = dimK KλGp, pd = |Gp : G′p| and U =
KλGp · radKG′p. We have KλGp/U ∼= KνHp, where Hp = Gp/G

′
p and

νxG′p,yG′p = λx,y for all x, y ∈ Gp. Since dimK K
νHp = |Hp| = pd and

d = dimK KνHp, KνHp is uniserial. Hence s ≤ i(K) + 1. Denote by µ the
restriction of λ to Gp×Gp . We have Cp ⊂ Ker(µ). If |G′p| = p and Cp 6= G′p,
then Ker(µ) 6= G′p. Now apply Lemma 1.3 and Theorem 1.16.

2. Groups of purely semi-wild projective representation type at
characteristic p 6= 2. We say that a finite group G is of tame projective
K-representation type if KλG is of tame representation type for every λ ∈
Z2(G,K∗). A group G is said to be of semi-wild projective K-representation
type if KλG is of semi-wild representation type for some λ ∈ Z2(G,K∗).
A group G is defined to be of purely semi-wild projective K-representation
type if KλG is of semi-wild representation type for any λ ∈ Z2(G,K∗).

Proposition 2.1. Let G be a finite group and K a field of characteristic
p ≥ 2. The group G is of semi-wild projective K-representation type if and
only if Gp is non-cyclic and |Gp : G′p| 6= 4. Otherwise G is of tame projective
K-representation type.

Proof. IfGp is non-cyclic and |Gp : G′p| 6= 4, then, by Lemmas 1.1 and 1.2,
KG is semi-wild. Hence G is of semi-wild projective K-representation type.
Assume that Gp is cyclic. For every λ ∈ Z2(G,K∗), the subalgebra KλGp
of KλG is uniserial. It now follows from Lemma 1.3 that KλG is of finite
representation type. Now let p = 2, G2 be non-cyclic and |G2 : G′2| = 4. For
every λ ∈ Z2(G,K∗), there exists a finite purely inseparable field extension
F ofK such that F⊗KKλG2

∼= FG2. By Lemma 1.2, FG2 is a tame algebra.
This implies that KλG2 is tame (see [10, p. 247]). Applying Lemma 1.1, we
conclude that KλG is tame for any λ ∈ Z2(G,K∗). Hence G is of tame
projective K-representation type.

Proposition 2.2. Let G be a finite group and K a perfect field of charac-
teristic p ≥ 2. The group G is of purely semi-wild projective K-representation
type if and only if Gp is non-cyclic and |Gp : G′p| 6= 4. Otherwise G is of
tame projective K-representation type.

Proof. Since K is a perfect field, KλGp is the group algebra of Gp over K
for every λ ∈ Z2(G,K∗) (see [15, p. 90] or [16, p. 43]). If Gp is non-cyclic and
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|Gp : G′p| 6= 4, then, by Lemma 1.2, KGp is wild. It follows, by Lemma 1.1,
that KλG is semi-wild for any λ. Hence G is of purely semi-wild projective
K-representation type. If Gp is cyclic or p = 2 and |G2 : G′2| = 4, then, in
view of Proposition 2.1, G is of tame projective K-representation type.

Let G be a finite group, G′ the commutant of G, Gp a Sylow p-subgroup
of G and Cp a Sylow p-subgroup of G′. We assume that Cp ⊂ Gp. Then
G′p ⊂ Cp, and hence Cp/Gp. We have GpG′/G′ ∼= Gp/Cp, since Gp∩G′ = Cp.
The group GpG

′/G′ is the Sylow p-subgroup of the abelian group G/G′.
Denote by A a normal subgroup of Gp such that Cp ⊂ A. Let ψ : G→ G/G′

be the canonical homomorphism, χ : G/G′ → GpG
′/G′ a projector, and

φ : GpG′/G′ → Gp/A the epimorphism defined by φ(xG′) = xA for any
x ∈ Gp. Then
(3) f := φχψ : G→ Gp/A

is a surjective group homomorphism. Moreover, the restriction of f to Gp is
the canonical homomorphism π : Gp → Gp/A.

Lemma 2.3. Assume that G is a finite group, H = Gp/A, f : G→ H is
the epimorphism (3), ν ∈ Z2(H,K∗) and λa,b = νf(a),f(b) for any a, b ∈ G.

(i) λ ∈ Z2(G,K∗) and λx,y = λy,x = 1 for all x ∈ Gp, y ∈ A.
(ii) If µ is the restriction of λ to Gp ×Gp, then µa,b = νπ(a),π(b) for all

a, b ∈ Gp and Ker(µ) = π−1(Ker(ν)).
(iii) If V = KλGp · radKA then V is an ideal of KλGp and KλGp/V ∼=

KνH.

Proof. Statements (i) and (iii) are obvious.
(ii) By Proposition 2.1 of [2], Ker(ν) = Ker(Γ ), where Γ is an irreducible

ν-representation of the group H over the field K. Since Γ ◦π is an irreducible
µ-representation of the group Gp over K, we get Ker(µ) = π−1

(
Ker(ν)

)
.

Proposition 2.4. Let G be a finite group such that Cp is cyclic, A a
cyclic subgroup of Gp, Cp ⊂ A and r the number of invariants of Gp/A. If
r ≤ i(K) then there exists a cocycle λ ∈ Z2(G,K∗) such that KλGp is a
uniserial algebra.

Proof. Let H = Gp/A. Since r ≤ i(K), there exists a cocycle ν ∈
Z2(H,K∗) such that KνH is a field. In view of Lemma 2.3, there exists
a cocycle λ ∈ Z2(G,K∗) satisfying the following conditions:

• if µ is the restriction of λ to Gp ×Gp then Ker(µ) = A;
• if V = KλGp ·radKA then V is the radical ofKλGp andKλGp/V ∼=
KνH.

Since A is cyclic, V is a principal left ideal and therefore KλGp is uniserial.
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Corollary 2.5. Let G be a finite group with Cp cyclic. If G is of purely
semi-wild projective K-representation type, then Gp/Cp = 〈a1Cp〉 × · · · ×
〈arCp〉, where r ≥ i(K) + 1 and if r = i(K) + 1 then Cp 6⊂ 〈aj〉 for every
j ∈ {1, . . . , r}.

Proof. Assume that r = i(K)+1 and Cp ⊂ 〈aj0〉 for some j0 ∈ {1, . . . , r}.
Let A = 〈aj0〉. Since the number of invariants of Gp/A is at most i(K),
there exists, by Proposition 2.4, a cocycle λ ∈ Z2(G,K∗) such that KλGp
is a uniserial algebra. Hence G is not of purely semi-wild projective K-
representation type.

Lemma 2.6. Let G be an elementary abelian p-group, s the number of
invariants of G, K a field of characteristic p and λ ∈ Z2(G,K∗). If s =
i(K) + r then KλG ∼= KλD ⊗K KT , where G = D × T and |T | ≥ pr.

Proof. Since s > i(K), KλG is not a field. Assume that KλG is not the
group algebra of G over K. There exists a direct product decomposition G =
D×〈c1〉×· · ·×〈cm〉 such that KλD is a field andKλTj is not a field for every
j ∈ {1, . . . ,m}, where Tj = D × 〈cj〉. It follows that KλG ∼= KλD ⊗K KT ,
where T = 〈c1〉 × · · · × 〈cm〉. The number of invariants of the group D is at
most i(K), hence m ≥ r.

Now we are able to prove the main result of this section.

Theorem 2.7. Let p 6= 2, G be a finite group and D the subgroup of
Gp such that G′p ⊂ D and D/G′p = soc(Gp/G′p). Assume that if |Cp| = p,
s = i(K) + 1 and D is non-abelian then expD = p2. Then G is of purely
semi-wild projective K-representation type if and only if one of the following
four conditions is satisfied:

(i) Cp is a non-cyclic group;
(ii) s ≥ i(K) + 2;
(iii) s = i(K)+1, Cp = G′p = 〈c〉, |c| ≥ p2 and gp ∈ 〈cp〉 for every g ∈ D;
(iv) s = i(K) + 1, Cp = G′p, |G′p| = p and D is an elementary abelian

p-group.

Proof. First we prove that if G satisfies one of conditions (i)–(iv), then it
is of purely semi-wild projective K-representation type. Let λ ∈ Z2(G,K∗).
The algebra KλGp contains the group algebra KCp = KλCp. If Cp is non-
cyclic then, by Lemma 1.2, KCp is wild. In view of Lemma 1.1, KλG is
semi-wild.

Assume that s ≥ i(K)+2. Since s is also the number of invariants of the
group D = D/G′p, by Lemma 2.6, we have KµD ∼= KµB1 ⊗K KB2, where
D = B1 × B2 and |B2| ≥ p2; moreover, µxG′p,yG′p = λx,y for any x, y ∈ D.
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According to Lemmas 1.2 and 1.8, the algebra KµD is wild, hence KλD is
also wild, and it follows from Lemma 1.1 that KλG is semi-wild.

Now we suppose that (iii) holds. Let T = 〈cp〉. By Lemma 1.12,H = D/T
is an abelian group. Let D/G′p = 〈b1G′p〉 × · · · × 〈bsG′p〉, s = i(K) + 1. Then
H = 〈cT 〉×〈b1T 〉×· · ·×〈bsT 〉. If V = KλD · radKT then KλD/V ∼= KµH,
where µxT,yT = λx,y for all x, y ∈ D. Denote by H the socle of H. By
Lemma 2.6, KµH ∼= KµN1 ⊗K KN2, where H = N1 × N2 and |N2| ≥ p2.
In view of Lemmas 1.2 and 1.8, KµH is wild. Applying again Lemma 1.8
we deduce that KµH is wild, hence so is KλD. By Lemma 1.1, KλG is
semi-wild.

If G satisfies (iv) then D is a direct product of s + 1 = i(K) + 2 cyclic
groups of order p. According to Lemmas 2.6, 1.2 and 1.8,KλD is wild. Hence,
by Lemma 1.1, KλG is semi-wild.

Conversely, letG be of purely semi-wild projectiveK-representation type.
If Cp = 〈c〉 then, by Corollary 2.5, Gp/Cp = 〈a1Cp〉 × · · · × 〈arCp〉, where
r ≥ i(K) + 1. We also have s ≥ r. Let r = i(K) + 1. By Corollary 2.5,
Cp 6= {e} and

a
|ajCp|
j ∈ 〈cp〉

for any j ∈ {1, . . . , r}. Let Cp 6= G′p and T = 〈cp〉. Then G′p ⊂ T and

Gp/T = 〈cT 〉 × 〈a1T 〉 × · · · × 〈arT 〉.
Since Gp/T ∼= (Gp/G′p)/(T/G

′
p), the number of invariants of the group Gp/T

is at most s. This implies r + 1 ≤ s. Hence s ≥ i(K) + 2. This means that
(ii) holds. Assume now that Cp = G′p. If |c| ≥ p2, we have (iii). If |c| = p
then gp = e for every g ∈ D. By hypothesis, D is abelian and (iv) fol-
lows.

Corollary 2.8. Let p 6= 2, G be a finite group and [K : Kp] =∞. The
group G is of purely semi-wild projective K-representation type if and only
if Cp is non-cyclic.

Corollary 2.9. Let p 6= 2, G be a finite group such that Gp is abelian.
The group G is of purely semi-wild projective K-representation type if and
only if Cp is non-cyclic or s ≥ i(K) + 2.

3. Groups of purely semi-wild projective representation type at
characteristic 2. In this section we assume that K is a field of character-
istic 2, G a finite group, 2 | |G|, G2 a Sylow 2-subgroup of G, C2 a Sylow
2-subgroup of the commutant G′ of G and C2 ⊂ G2. Denote by s the number
of invariants of the abelian group G2/G

′
2.

Lemma 3.1. Let G be an abelian 2-group of exponent 4, G = socG,
s = i(K) + 2 and λ ∈ Z2(G,K∗). If G has at most one invariant equal to 2
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then one of the following conditions holds:

(i) KλG ∼= KλB ⊗K KC, where G = B × C and |C| ≥ 8;
(ii) KλG ∼= KλD ⊗K KT , where G = D × T and |T | ≥ 8.

Proof. If K is a perfect field then KλG = KG (see [15, p. 90] or
[16, p. 43]). In this case i(K) = 0, G = T and (ii) holds. Let K be a
non-perfect field, m = i(K), G = 〈a1〉 × · · · × 〈as〉 and

KλG =
|a1|−1⊕
i1=0

. . .

|as|−1⊕
is=0

Kui1a1
. . . uisas , u

|aj |
aj = γjue,

where γj ∈ K∗ for j = 1, . . . , s. If KλG is not the group algebra of G
over K, then KλG ∼= KλB ⊗K KC, where KλB is a field and |B| ≤ 2m.
Since s = m + 2, we get |C| ≥ 4. If |C| > 4, then (i) holds. Assume that
|C| = 4. Renumbering a1, . . . , as if needed, we may suppose that γ1, . . . , γm
are 2-independent. Let D = 〈a1〉 × · · · × 〈am〉.

First we consider the case when |aj | = 4 for all j ∈ {1, . . . ,m}. Denote
by θj a root of the polynomial X4 − γj for j = 1, . . . ,m. For any δ ∈ K∗,
the set {γ1, . . . , γm, δ} is not 2-independent. Therefore δ = θ2 for some θ ∈
K(θ2

1, . . . , θ
2
m). We have

θ =
1∑

i1=0

. . .
1∑

im=0

βi1,...,imθ
2i1
1 . . . θ2im

m ,

where βi1,...,im∈K. Since βi1,...,im= ρ2
i1,...,im

for some ρi1,...,im∈K(θ2
1, . . . , θ

2
m),

we obtain

θ =
( 1∑
i1=0

. . .

1∑
im=0

ρi1,...,imθ
i1
1 . . . θimm

)2
.

Hence δ = z4 for some z ∈ K(θ1, . . . , θm). The element z is of the form

z =
3∑

j1=0

. . .
3∑

jm=0

αj1,...,jmθ
j1
1 . . . θjmm , αj1,...,jm ∈ K.

We put

w =
3∑

j1=0

. . .
3∑

jm=0

αj1,...,jmu
j1
a1
. . . ujmam .

Then w ∈ KλD and w4 = δue. It follows that KλG ∼= KλD ⊗K KT , where
T = 〈am+1〉 × 〈am+2〉 and |T | ≥ 8.

Now we examine the case when |am| = 2. By previous arguments, we may
assume that γ1, . . . , γm−1, γi are 2-dependent for every i ∈ {m + 1,m + 2}.
Denote by θj a root of the polynomial X4 − γj for every j ∈ {1, . . . ,m− 1}
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and by θm a root of the polynomial X2 − γm. Then γi = ρ2
i for some

ρi =
1∑

i1=0

. . .

1∑
im=0

αi,i1,...,im−1θ
2i1
1 . . . θ

2im−1

m−1 ,

where αi,i1,...,im−1 ∈ K. But αi,i1,...,im−1 = w2
i,i1,...,im−1

, where wi,i1,...,im−1 is
an element of the field K(θ2

1, . . . , θ
2
m−1, θm). This implies ρi = δ2i for some

δi ∈ K(θ1, . . . , θm−1, θm), hence γi = δ4i . Consequently, γiue = v4
i for some

vi ∈ KλD. Therefore KλG ∼= KλD ⊗K KT , where T = 〈am+1〉 × 〈am+2〉
and |T | = 16.

Our final main result of this paper is the following theorem.

Theorem 3.2. Let K be a field of characteristic 2 and G a finite group
such that G2 is abelian and C2 is cyclic. Then G is of purely semi-wild
projective K-representation type if and only if one of the following conditions
is satisfied:

(i) s ≥ i(K) + 3;
(ii) s = i(K) + 2 and |C2| ≥ 4;
(iii) s = i(K)+2, |C2| ≤ 2 and G2 has at most one invariant equal to 2.

Proof. By our assumption, we have C2 = 〈c〉. To prove the necessity, we
assume that G is of purely semi-wild projective K-representation type. By
Corollary 2.5, G2/C2 = 〈a1C2〉 × · · · × 〈arC2〉, where r ≥ i(K) + 1. We also
have s ≥ r. Let r = i(K) + 1. By Corollary 2.5, C2 6= {e} and

a
|ajC2|
j ∈ 〈c2〉

for every j ∈ {1, . . . , r}. Let T = 〈c2〉. Then G2/T = 〈cT 〉 × 〈a1T 〉 × · · · ×
〈arT 〉. It follows that r + 1 ≤ s. Consequently, s ≥ i(K) + 2. Assume that
s = i(K) + 2 and G2 = A × B, where A is the group of type (2, 2) and
C2 ⊂ A. There exists ν ∈ Z2(B,K∗) such that KνB is a field. In view of
Lemma 2.3, there exists λ ∈ Z2(G,K∗) satisfying the following condition: if
µ is the restriction of λ to G2 ×G2 then Ker(µ) = A. The algebra KλG2 is
the group algebra of A over the field KνB. By Lemma 1.2, KλG2 is tame.
Hence, by Lemma 1.1, KλG is also tame.

To prove the sufficiency, we assume that s ≥ i(K) + 3. Denote by G2

the socle of the group G2. By Lemma 2.6, KλG2
∼= KλD ⊗K KT , where

G2 = D×T and |T | ≥ 8. In view of Lemmas 1.2 and 1.8, the algebra KλG2 is
wild, and it follows from Lemma 1.8 that so is KλG2 for all λ ∈ Z2(G,K∗).

Now we assume that s = i(K) + 2. Let H = {g ∈ G2 : g4 = e}. If G2 has
at most one invariant equal to 2 then, by Lemmas 3.1, 1.2 and 1.8, KλH
is wild. Applying again Lemma 1.8, we deduce that KλG2 is wild for any
λ ∈ Z2(G,K∗). Suppose that |C2| ≥ 4. There exists a direct decomposition
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H = A × B such that B ⊂ C2 and |B| = 4. Let N = socA × B. By
Lemma 2.6, KλN ∼= KλD ⊗K KT , where B ⊂ T and |T | = 8. According to
Lemmas 1.2 and 1.8, KλG2 is wild for any λ ∈ Z2(G,K∗).

Proposition 3.3. Let G be a finite group such that one of the following
conditions is satisfied:

(i) C2 is non-cyclic and |C2 : C ′2| 6= 4;
(ii) s ≥ i(K) + 3;
(iii) s = i(K) + 2 and |C2 : G′2| ≥ 4;
(iv) s = i(K) + 2 and G2/G

′
2 has at most one invariant equal to 2.

Then G is of purely semi-wild projective K-representation type.

Proof. For any λ ∈ Z2(G,K∗), KλG contains the group algebra KC2 =
KλC2 and KλG2/K

λG2 · radKG′2 ∼= KµH, where H = G2/G
′
2. It remains

to apply Lemmas 1.1, 1.2 and Theorem 3.2.

Corollary 3.4. Let G be a finite group and K a field of characteristic 2.
Assume that |C2 : C ′2| 6= 4 and [K : K2] = ∞. The group G is of purely
semi-wild projective K-representation type if and only if C2 is not cyclic.

Proof. Apply Corollary 2.5 and Proposition 3.3.

Lemma 3.5. Let G be a non-abelian 2-group with cyclic commutant G′
and D the subgroup of G such that G′ ⊂ D and D/G′ = soc(G/G′).

(i) If |G′ ∩ Z(D)| ≥ 4 then |D′| ≤ 4.
(ii) If G′ ⊂ Z(D) then |D′| ≤ 2.

Proof. (i) Let G′ = 〈c〉 and |c| = 2m. If m = 2 then G′ ⊂ Z(D). First
we examine the case when m > 2. If g ∈ D then g−1cg = cr, where r ≡ 1
(mod 2m−1). It follows that g−1c2g = c2. Suppose that a, b ∈ D, a−1ca = cr

and b−1ab = aci. Then b−1a2b = a2ci(1+r). Let H = 〈c2〉. If a2 ∈ H then
b−1a2b = a2, hence i(1 + r) ≡ 0 (mod 2m). This implies 2i ≡ 0 (mod 2m).
If a2 6∈ H, we may assume that a2 = c and r = 1. Then b−1c2b = c2 and
b−1c2b = c2c4i, which yields c4i = e.

(ii) Now let G′ ⊂ Z(D). Then b−1a2b = a2c2i and b−1a2b = a2, hence
c2i = e.

Proposition 3.6. Let G be a non-abelian 2-group with cyclic commutant
G′ = 〈c〉 and D the subgroup of G such that G′ ⊂ D and D/G′ = soc(G/G′).
Assume that s = i(K) + 1 and |G′ : D′| ≥ 4. The group G is of purely
semi-wild projective K-representation type if and only if g2 ∈ 〈c2〉 for every
g ∈ D.

Proof. Let N = 〈c2〉. Since |G′ : N | = 2 and |G′ : D′| ≥ 4, we have
D′ ⊂ N . Suppose that G is of purely semi-wild projective K-representation
type. By Corollary 2.5, D/G′ = 〈d1G

′〉 × · · · × 〈dsG′〉, where d2
j ∈ N for



FINITE-DIMENSIONAL TWISTED GROUP ALGEBRAS 297

every j ∈ {1, . . . , s}. Since D/N = 〈cN〉 × 〈d1N〉 × · · · × 〈dsN〉, g2 ∈ N for
every g ∈ D.

Conversely, assume that h2 ∈ N for every h ∈ D. If g ∈ D then
g−1cg = cr, where cr−1 ∈ D′. Let g2 = c2t, t ∈ Z. We get

(gc−t)2 = g2c−rt−t = ct(1−r).

Therefore (gc−t)2 ∈ D′. As a consequence,

D/G′ = 〈x1G
′〉 × · · · × 〈xsG′〉,

where x2
j ∈ D′ for every j ∈ {1, . . . , s}. Let T = 〈c4〉. Then D′ ⊂ T and

D/T = 〈cT 〉 × 〈x1T 〉 × · · · × 〈xsT 〉.
Let H = D/T , λ ∈ Z2(G,K∗) and µxT,yT = λx,y for all x, y ∈ D. Then
µ ∈ Z2(H,K∗) and 〈cT 〉 ⊂ Ker(µ). Let Q = 〈x1T 〉 × · · · × 〈xsT 〉. According
to Lemma 2.6, KµQ ∼= KµQ1 ⊗K KQ2, where |Q2| ≥ 2. It follows that
KµH ∼= KµH1 ⊗K KH2, where H1 = Q1 and H2 = 〈cT 〉 × Q2. Since
|H2| ≥ 8, we deduce from Lemmas 1.2 and 1.8 that KµH is wild. Therefore,
KλD is wild for any λ ∈ Z2(G,K∗). Applying Lemma 1.1, we conclude that
G is of purely semi-wild projective K-representation type.

Corollary 3.7. Let G be a non-abelian 2-group with cyclic commutant
G′ = 〈c〉 of order 2m, D the subgroup of G such that G′ ⊂ D and D/G′ =
soc(G/G′). Assume that s = i(K) + 1 and one of the following conditions
holds:

(i) m ≥ 4 and |G′ ∩ Z(D)| ≥ 4;
(ii) m = 3 and G′ ⊂ Z(D).

The group G is of purely semi-wild projective K-representation type if and
only if g2 ∈ 〈c2〉 for every g ∈ D.

Proof. Apply Lemma 3.5 and Proposition 3.6.
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