INERTIAL SUBRINGS OF A LOCALLY FINITE ALGEBRA

BY

YOUSEF ALKHAMEES and SURJEET SINGH (Riyadh)

Abstract. I. S. Cohen proved that any commutative local noetherian ring \(R \) that is \(J(R) \)-adic complete admits a coefficient subring. Analogous to the concept of a coefficient subring is the concept of an inertial subring of an algebra \(A \) over a commutative ring \(K \). In case \(K \) is a Hensel ring and the module \(A_K \) is finitely generated, under some additional conditions, as proved by Azumaya, \(A \) admits an inertial subring. In this paper the question of existence of an inertial subring in a locally finite algebra is discussed.

Introduction. Let \(S \) be a commutative generalized local ring in the sense of Cohen [3]. Cohen introduced the concept of a coefficient subring of \(S \). If \(S \) is \(J(S) \)-adic complete, Cohen proved that \(S \) has a coefficient subring \(T \), which is unique to within isomorphisms. On the other hand, Azumaya [1] introduced the concept of an inertial subalgebra of an algebra \(A \) over a Hensel ring \(R \). In case \(A_R \) is finitely generated and \(\overline{A} = A/J(A) \) is separable over \(\overline{R} = R/J(R) \), \(A \) has an inertial subalgebra, which is unique to within conjugations [1, Theorem 33]; this result generalizes the Wedderburn–Mal’tsev Principal Theorem. A special case of Azumaya’s theorem, in case \(A \) is a finite ring, is given in Clark [2]. The concept of an inertial subring is analogous to that of a coefficient subring. Let \(A \) be a local ring which is an algebra over a Hensel ring \(R, J(R) = R \cap J(A) \) and \(\overline{A} = A/J(A) \) is a countably generated separable algebraic field extension of \(\overline{R} \). In case \(A \) is a locally finite \(R \)-algebra, the existence of a subalgebra \(T \) of \(A \) analogous to an inertial subring is shown in Theorem 2.5. This subalgebra is shown to be unique to within \(R \)-isomorphisms. In case \(A \) is commutative, this subalgebra is unique. In case \(A \) is not commutative, an example is given to show that unlike in Azumaya’s theorem, two such subalgebras need not be conjugate. In case \(A \) is an artinian duo ring and \(J(R) \) is nilpotent, in Theorem 2.7 the existence of a commutative local subring \(T \) analogous to an inertial subring is established. In Theorem 2.8 a locally finite algebra \(A \) over a Hensel ring \(R \) such that \(A \) is semi-perfect ring is studied. Some sufficient conditions for the existence of a subring \(T \) of \(A \) analogous to an inertial subring are given.

2000 Mathematics Subject Classification: Primary 16H05; Secondary 16L30, 13J15.
1. Preliminaries. All rings considered here are with identity $1 \neq 0$, and all modules are unital right modules unless otherwise stated. For general concepts on rings and modules one may refer to Faith [4]. For any ring A, $J(A)$, $Z(A)$ will denote its Jacobson radical and center respectively. For any $c \in J(A)$ and any subset Y of A, Y^c denotes the conjugate $(1-c)^{-1}Y(1-c)$ of Y. For any module M over A of finite composition length, $d_A(M)$ denotes the composition length of M. Let K be any commutative ring. Then a ring A is called a K-algebra if A is a K-module such that for any $a, b \in A$ and $x \in K$, $(ab)x = (ax)b = a(bx)$.

Let A be a K-algebra and A' be a K-algebra anti-isomorphic to A. If A_K is finitely generated, then A is called a finite K-algebra. If every finite subset S of A generates a finite subalgebra of A, then A is called a locally finite K-algebra. A is called a faithful K-algebra if for any $x \in K$, $Ax = 0$ implies $x = 0$. A is called an unramified K-algebra if $J(A) = J(K)A$. A finite K-algebra A is called a proper maximally central algebra if $A \otimes_K A'$ is isomorphic to the ring of endomorphisms of the module A_K [1, p. 128]. A finite K-algebra A is called maximally central if it is a finite direct sum of ideals A_1, \ldots, A_k such that each A_i is proper maximally central over $Z(A_i)$ [1, p. 132]. Proper maximally central algebras are also called Azumaya algebras [4, (13.7.6)]. For results on central simple algebras over a field one may consult Pierce [7]. Any proper maximally central algebra over a field is a central simple algebra [1, Theorem 14].

A ring R is called a local ring if $R/J(R)$ is a division ring. Let R be a local, commutative ring. R is called a Hensel ring if for any monic polynomial $f(x) \in R[x]$, any factorization of $f(x)$ modulo $J(R)$ into two co-prime monic polynomials can be lifted to a factorization into co-prime monic polynomials in $R[x]$. Any local commutative ring R which is noetherian and $J(R)$-adic complete, is a Hensel ring [3, Theorem 3].

Let A be a finite K-algebra. A finite subalgebra T of A is called an inertial subalgebra if $A = T + J(A)$, $T \cap J(A) = J(T)$ and T is unramified over K.

The following fundamental theorem is due to Azumaya [1, Theorem 33].

Theorem 1.1 (Generalized Wedderburn–Mal’tsev Theorem). Let A be a finite K-algebra, where K is a Hensel ring, such that $A/J(A)$ is separable over $K/J(K)$. Then there exists a maximally central inertial subalgebra of A, and such an inertial algebra is uniquely determined up to inner automorphisms of A generated by the elements of $J(A)$, in the sense that given any two inertial subalgebras T and T' of A, we have $T' = T^c$ for some $c \in J(A)$.

A local ring R with maximal ideal M will also be denoted by (R, M). Consider any commutative local ring (R, M), and any monic polynomial $f(x) \in R[x]$ such that for some monic polynomial $g(x) \in R[x]$ irreducible modulo M, $f(x) \equiv g(x)^t \pmod{M[x]}$. It follows, by using the fact that
$R[x]/(f(x))$ is a finite R-module, that $R[x]/(f(x))$ is a local ring with radical $(M, g(x))//(f(x))$. In particular if $t = 1$, then the radical of $R[x]/(f(x))$ is $M[x] = (M, f(x))//(f(x))$, so that this ring is unramified over R.

2. Inertial subrings. Let R be a commutative local ring. Then a ring S is called an R-separable algebra if it is a commutative, local, faithful, finite, unramified R-algebra such that $S/J(S)$ is a finite separable field extension of $\bar{R} = R/J(R)$. If a local ring S is R-separable, where R is a special primary ring (i.e., R is a local artinian principal ideal ring [5, p. 200]), then S is also a special primary ring and the indices of nilpotency of $J(S)$ and $J(R)$ are the same. Let R be a Hensel ring and S be an R-separable algebra. Then S is a Hensel ring [1, Theorem 23]. If $\bar{S} = S/J(S)$ is generated by an \bar{a} over \bar{R}, and $f(x) \in R[x]$ is a monic polynomial which, modulo $J(R)$, is the minimal polynomial of \bar{a} over \bar{R}, then we can find a lifting $a \in S$ of \bar{a} such that $f(a) = 0$.

Lemma 2.1. Let A be a commutative local ring and R be a local subring of A such that $J(R) = R \cap J(A)$. Let some \bar{a} in $\bar{A} = A/J(A)$ be separable over \bar{R}. If $f(x) \in R[x]$ is a monic polynomial which modulo $J(R)$ is the minimal polynomial of \bar{a} over \bar{R}, then \bar{a} has at most one lifting a in A satisfying $f(a) = 0$.

Proof. Let b and c be two liftings of \bar{a} in A such that $f(b) = f(c) = 0$. Now $c = b + h$ for some $h \in J(A)$. Let $f'(x)$ denote the derivative of $f(x)$. Then $0 = f(b + h) = f(b) + h(f'(b) + hd) = h(f'(b) + hd)$ for some $d \in A$. As \bar{a} is separable over \bar{R}, $f'(b)$ is a unit. This gives $h = 0$, and hence $b = c$.

Let A be a ring and R be a subring of A contained in the center $Z(A)$. Any $a \in A$ is said to be algebraic over R if $f(a) = 0$ for some monic $f(x) \in R[x]$. In case A is a Hensel ring and R is a local subring such that $R \cap J(A) = J(R)$, if an element $a \in A$ is algebraic over R and \bar{a} is separable over $\bar{R} = R/J(R)$, it follows from the definition of a Hensel ring that there exists a monic polynomial $f(x) \in R[x]$ which modulo $J(R)$ is irreducible over \bar{R} and there exists a lifting b of \bar{a} such that $f(b) = 0$. In case A is a local ring, an $a \in A$ is said to be lift algebraic over R if there exists a monic polynomial $f(x) \in R[x]$ such that $f(a) = 0$ and $f(x)$ modulo $J(R)$ is irreducible over \bar{R}.

Lemma 2.2. Let R be a Hensel ring and S be a local finite unramified R-algebra such that S is maximally central and $S/J(S)$ is commutative. Then:

(i) S is a Hensel ring.

(ii) If $\bar{S} = S/J(S)$ is separable over $R/J(R)$, then $S = R[a]$ for some a lift algebraic over R.

(iii) If R is a special primary ring, then S is also a special primary ring.
Proof. Clearly $Z(S)$ is a local ring. As S is proper maximally central over $Z(S)$, by [1, Theorem 13], there exists one-to-one correspondence between the ideals of $Z(S)$ and the ideals of S given by $A \leftrightarrow AS$, where A is an ideal of $Z(S)$. We get $J(S) = J(Z(S))S$. By the hypothesis $J(S) = J(R)S$. So $J(Z(S))S = J(R)Z(S)S$. Consequently, $J(Z(S)) = J(R)Z(S)$. By [1, Theorem 13], $S/J(S)$ is proper maximally central over $Z(S)/J(Z(S))$. But by [1, Theorem 14], any proper maximally central algebra over a field is central simple. Consequently, $S = Z(S) + J(R)S$. This gives a finite basis B of the $R/J(R)$-module $S/J(S)$ that has a lifting B in $Z(S)$. Then $S = R[B] = Z(S)$. By [1, Theorem 23], S is a Hensel ring. This proves (i).

Let S satisfy the hypothesis in (ii). There exists $a \in S$ such that a is lift algebraic over R and \overline{a} generates S over \overline{R}. Then $S = R[a]$. There exists a monic polynomial $f(x) \in R[x]$ irreducible modulo $J(R)$ satisfying $f(a) = 0$. As $R[x]/(f(x))$ is a local ring unramified over R, so is $R[a]$. This proves (ii).

Finally, let R be a special primary ring. Then $J(R)$ is principal and nilpotent. This shows that $J(S)$ is principal and nilpotent, so S is a special primary ring. This proves (iii).

Let A be any locally finite algebra over a commutative ring R, and S be any subalgebra of A. Consider any $a \in J(A) \cap S$ and let $b \in A$ be its quasi-inverse. As $R[a, b]$ is a finite R-algebra, by [1, Corollary to Theorem 9], $b \in R[a]$. Hence $J(A) \cap S \subseteq J(S)$.

Lemma 2.3. Let A be a local, locally finite, faithful algebra over a local ring R such that $R \cap J(A) = J(R)$ and $\overline{A} = A/J(A)$ is an algebraic field extension of \overline{R}. Then any R-subalgebra S of A is a local ring and $J(S) = S \cap J(A)$.

Proof. As remarked above, $J(A) \cap S \subseteq J(S)$. That $\overline{S} = S/J(A) \cap S$ is a field follows from the hypothesis that \overline{A} is an algebraic field extension of \overline{R}. This proves the result.

Lemma 2.4. Let A be a local, locally finite faithful algebra over a Hensel ring R such that $R \cap J(A) = J(R)$ and $\overline{A} = A/J(A)$ is a separable algebraic field extension of \overline{R}. Let $a, b \in A$ be lift algebraic over R, $ab = ba$ and let $f(x) \in R[x]$ be a monic polynomial irreducible modulo $J(R)$ such that $f(a) = 0$. Then:

(i) $R[a]$ is a Hensel ring unramified over R.
(ii) If $\overline{R[a]} \subseteq \overline{R[b]}$, then $R[a] \subseteq R[b]$.
(iii) If $c, d \in A$ both lift \overline{a} and $f(c) = f(d) = 0$, then they are conjugate in A.
(iv) Any finite, unramified R-subalgebra of A is a Hensel ring and is of the form $R[d]$ for some d lift algebraic over R.
Proof. By 2.3, $R[a]$ is a local ring, and it satisfies the hypothesis of 1.1. So $R[a]$ has an inertial subring T. By definition, T is unramified over R. By 2.2(i), T is a Hensel ring. As $\alpha \in \overline{T}$, there exists an $a' \in T$ lifting α such that $f(a') = 0$. By 2.1, $a = a'$. So $T = R[a]$. This proves (i).

As $R[b]$ is a Hensel ring, 2.1 gives (ii).

Consider $S = R[c, d]$. Now $\bar{c} = \bar{d} = \bar{a}$. By 2.3, $R[c] \cap J(S) = J(R[c])$. Also $R[c]$ is an unramified commutative R-algebra. This shows that $R[c]$ is an inertial subring of S; similarly $R[d]$ is also an inertial subring of S. By 1.1, there exists $g \in S$ such that $g^{-1}R[c]g = R[d]$. In $R[d]$, d and $g^{-1}cg$ both lift a and both are roots of $f(x)$. By 2.1, $d = g^{-1}cg$.

Let S be a finite unramified R-subalgebra of A. As \overline{S} is a simple extension of \overline{R}, there exists a $d \in S$ lift algebraic over R such that $\overline{S} = \overline{R}[d]$. As $\overline{S} \cong S/J(R)S$, by [1, Corollary to Theorem 5], $S = R[d]$. Thus S is commutative. By (i), S is a Hensel ring.

Theorem 2.5. Let A be a local, locally finite, faithful algebra over a Hensel ring R such that $J(R) = R \cap J(A)$, $A = A/J(A)$ is a countably generated, separable algebraic field extension of \overline{R}. Then there exists a commutative local unramified R-subalgebra T of A such that

(i) T is the union of a filter of unramified R-subalgebras of the form $R[a]$, where a is lift algebraic over R,

(ii) $J(T) = T \cap J(A)$,

(iii) $A = T + J(A)$.

Further, any two such subrings are R-isomorphic. In case A is commutative, T is unique.

Proof. Let K be a finite unramified R-subalgebra of A. By 2.4, $K = R[a]$, where a is some lift algebraic element over R. Choose any lift algebraic element $b \in A$ such that $\overline{b} \notin \overline{K}$. Consider $L = R[a, b]$. By 2.3, L is a local, finite R-subalgebra. By 1.1, L has an inertial subalgebra S. As S is maximally central, by 2.2, it is a Hensel ring. As S is unramified over R, by 2.4, $S = R[c]$ for some lift algebraic element c over R. Let $f(x) \in R[x]$ be a monic polynomial irreducible modulo $J(R)$ such that $f(a) = 0$. There exists $d \in S$ lifting α such that $f(d) = 0$. By 2.4(iii), $a = u^{-1}du$ for some $u \in A$. Then $K \subset u^{-1}Su$ and $\overline{b} \in u^{-1}Su$. Thus $K' = u^{-1}Su$ is a finite unramified R-subalgebra containing K, and $\overline{K'}$ contains \overline{b}. As \overline{A} is countably generated over \overline{R}, the above construction gives an ascending sequence $\{S_n\}$, where each S_n is a Hensel ring which is a finite R-subalgebra of A unramified over R and for $T = \bigcup S_n$, $\overline{T} = \overline{A}$. Then $A = T + J(A)$, T is unramified over R, and 2.3 gives $J(T) = T \cap J(A)$.

Let T' be another subalgebra of A satisfying (i)–(iii). Thus T' is an unramified R-algebra, and a Hensel ring. Consider any $a \in T$ which is lift
algebraic over \(R \). Let \(f(x) \in R[x] \) be a monic polynomial which is irreducible modulo \(J(R) \) and \(f(a) = 0 \). As \(\overline{a} \in \overline{T}' \), by (i) and 2.1 there exists a unique \(a' \in T' \) lifting \(\overline{a} \) and satisfying \(f(a') = 0 \). As \(a \) and \(a' \) are conjugate, we get an \(R \)-isomorphism \(\sigma : R[a] \to R[a'] \) such that \(\sigma(a) = a' \). Consider any other lift algebraic element \(b \in T \) such that \(R[a] \subseteq R[b] \). We get a unique \(b' \in T' \) for which we have an \(R \)-isomorphism \(\eta : R[b] \to R[b'] \). As \(R[b'] \) is a Hensel ring and \(\overline{a'} \in \overline{R[b']} \), by 2.4 \(a' \in R[b'] \). It is now obvious that \(\eta \) extends \(\sigma \). Thus (i) and the above construction of partial isomorphisms gives an \(R \)-monomorphism \(\lambda : T \to T' \). That \(\lambda \) is an isomorphism follows from condition (i). In case \(A \) is commutative, the above proof itself shows that \(T \) is unique.

Let us call such a \(T \) an inertial subring of \(A \).

Corollary 2.6. Let \(A \) be a finite local ring of characteristic \(p^k \), where \(p \) is a prime number. If \(A \) modulo \(J(A) \) is isomorphic to the Galois field \(GF(p^k) \), then \(A \) has a subring \(T \) isomorphic to \(GR(p^k,k) \) and \(A = T + J(A) \). This \(T \) is unique to within isomorphisms.

Proof. In the above theorem take \(R = \mathbb{Z}/(p^k) \).

Example. Consider fields \(K \subset F_1 \subset F_2 \subset F \) with \(F_1, F_2 \) different finite normal extensions of \(K \). Let there exist two commuting automorphisms \(\sigma, \eta \) of \(F \) such that the fixed fields of \(\sigma \) and \(\eta \) are \(F_1 \) and \(F_2 \) respectively. Consider the left skew polynomial ring \(F[x, \sigma] \) with \(xa = \sigma(a)x \) for \(a \in F \). Let \(R_1 = F[x, \sigma]/(x^3) \). For \(u = \overline{1 + x + x^2} \in R_1 \), \(u^{-1} = \overline{1 - x} \). For any \(b \in F \),

\[
 u^{-1}bu = b + (b - \sigma(b))x + (b - \sigma(b))x^2.
\]

Thus as \(F_2 \) is not contained in the fixed field of \(\sigma \), \(u^{-1}F_2u \not\subseteq F \). As \(\sigma\eta = \eta\sigma \), \(\eta \) induces an automorphism \(\lambda \) of \(F[x, \sigma] \) such that \(\lambda(ax^i) = \eta(a)x^i \); \(\lambda \) is identity over \(F_2[x, \sigma] \). We still denote \(\lambda \) by \(\eta \). We can form \(F[x, \sigma][y, \eta] = F[x, y, \sigma, \eta] \) with \(xy = yx \). Consider \(R_2 = F[x, y, \sigma, \eta]/(x^3, y^3) \). For \(v = \overline{1 + y + y^2} \in R_2 \), it is immediate that \(v^{-1}F_2v = F_2 \), and if \(F \neq F_2 \), then \(v^{-1}Fv \not\subseteq R_1 \).

We now extend this construction. Consider a field \(F \) which admits an infinite properly ascending sequence \(\{F_n\} \) of subfields indexed by the set of natural numbers, with \(K = F_0 \), such that each \(F_n \) is a finite separable normal extension of \(K \). Further suppose that there exists a sequence \(\{\eta_n\} \) of pairwise commuting automorphisms of \(F \) such that the fixed field of any \(\eta_n \) is \(F_n \), and \(F = \bigcup_n F_n \). Consider a sequence of indeterminates \(x_j, j \geq 1 \). Set \(R_0 = F \), \(R_{n+1} = F[x_{n+1}, \eta_{n+1}]/(x_{n+1}^3) \) with \(x_ix_j = \eta_jx_i \), and \(R = \bigcup_n R_n \). Then \(R \) is a local, locally finite \(K \)-algebra such that \(R/J(R) \) is a countably generated, separable algebraic field extension of \(K \). Obviously \(F \) is an inertial subring of \(R \).
We now construct another inertial subring F' of R such that F and F' are not conjugate. Consider any $k \geq 1$. Set $v_k = \frac{1+x_k+x_k^2}{2} \in R_k$, $w_k = v_1 \ldots v_k$. Set $F'_1 = F_1$, $F'_{k+1} = w_k^{-1}F_{k+1}w_k$ for $k \geq 1$. As η_k is identity on F_k but not on F_{k+1}, it follows that $w_k^{-1}F_{k+1}w_k \subset R_k$, but $w_k^{-1}F_{k+1}w_k \not\subset R_{k-1}$. That means that $F'_1 \subset R_k$, but $F'_{k+1} \not\subset R_{k-1}$. Now $v_k^{-1}F_kw_k = F'_k$ gives $F'_k \subseteq F_{k+1}$. Then $F' = \bigcup_n F'_n$ is an inertial subring of R. As F' is not contained in any R_k, it cannot be conjugate to F. To get a field F of the above type, consider $K = \mathbb{Z}_2$. This gives rise to an ascending sequence of Galois fields F_i of orders 2^n where $n_i = 2^i$.

A ring R in which every one-sided ideal is two-sided, is called a duo ring.

Theorem 2.7. Let A be a local artinian duo ring which is an algebra over a commutative local ring (R,M) with M nilpotent and $\bar{A} = A/J(A)$ a countably generated separable algebraic field extension of \bar{R}. Then A has a commutative local subring T unramified over R such that $A = T + J(A)$. Further T is unique to within R-isomorphisms.

Proof. Any R-subalgebra S of A is local with $J(S) = J(A) \cap S$, and $J(S)$ is nilpotent. Let $d_A(A) = n$. We apply induction on n. The result holds for $n = 1$. Let $n > 1$ and suppose that the result holds for $n - 1$. Let L be a minimal ideal of A. Then for some $\pi \in L$, $L = \pi A = A\pi = \pi \bar{A}$ and there exists an \bar{R}-automorphism σ of \bar{A} such that $\bar{a}\pi = \pi \sigma(\bar{a})$ for any $\bar{a} \in \bar{A}$. By the induction hypothesis $B = A/L$ has a commutative local subring T/L which satisfies the conclusion of the theorem. Then $A = T + J(A)$ and $L = \pi T$ is a minimal ideal of T. Let K be any commutative unramified R-subalgebra of T such that \bar{K} is a finite extension of \bar{R}. Then $K = R[a]$ for some a lift algebraic over R. Let $\bar{K} \neq \bar{T}$. Consider any $b \in T$ algebraic over R modulo L. As T/L is commutative, we can choose b algebraic modulo L over R/C, where $C = \text{ann}_R(T/L)$. So there exists a monic polynomial $g(x) \in R[x]$ such that $g(b) \in L$. Consequently, $g(b) = \pi c$ for some $c \in T$. As T/L is commutative, $ba - ab = \pi d$ for some $d \in T$. Let $\deg g(x) = n$. There exists a finite field extension \bar{G} of \bar{R} in \bar{T} such that \bar{a}, \bar{b}, \bar{c}, \bar{d} are in \bar{G} and for any \bar{R}-automorphism η of \bar{T}, $\eta(\bar{G}) \subseteq \bar{G}$. Then

$$S = \sum_{i=1}^{n-1} R[a]b^i + \pi \bar{G}$$

is a finite R-subalgebra of T. Let W be an inertial subring of S. Suppose first that $\bar{a} = \bar{b}$. Then $\bar{W} = \bar{R[a]} = \bar{S}$. So $R[a]$ is also an inertial subring of S, and W is a conjugate of $R[a]$. So W contains a conjugate of a. Now suppose that $\bar{b} \not\in \bar{K}$. As $\bar{a} \in \bar{W}$, we can find a lifting a' of \bar{a} in W. Then a is a conjugate of a'. So, for some unit $u \in S$, $K \subseteq u^{-1}Wu$ and clearly $\bar{b} \in \bar{W}$. Now to conclude the proof we can follow the arguments of 2.5.
A part of the following result bears a similarity to the main result in Clark [2].

Theorem 2.8. Let A be a semi-perfect ring which is a locally finite faithful algebra over a Hensel ring R such that $J(R) = R \cap J(A)$ and $\overline{A} = A/J(A)$ is a direct sum of matrix rings over fields which are countably generated separable algebraic extensions of \overline{R}. Then A has a subalgebra T such that $A = T + J(A)$ and $T \cap J(A) = J(T)$. Moreover T is a direct sum of full matrix rings over commutative local rings T' such that if R' is the homomorphic image of R in T', then T' is the union of a filter of unramified local R'-subalgebras of the form $R'[a]$. Further, T is unique to within R-isomorphisms.

Proof. Since the proof is similar to that of [1, Theorem 33], we only outline it. Observe that for any idempotent $e \in A$, eAe is a locally finite R-algebra. As in the proof of [1, Theorem 33], we first consider the case when $A/J(A)$ is simple. As idempotents can be lifted modulo $J(A)$, A is a full $n \times n$-matrix ring over a local ring B. Let $D = \{e_{ij} : 1 \leq i, j \leq n\}$ be the corresponding system of matrix units in A. The hypothesis on A gives that B is an R-algebra satisfying the hypothesis of 2.5. Consequently, B has an inertial subring S. Then $T = M_n(S)$ is the desired subring of A.

Let T' be another such subring of A. As T' is a full matrix ring over a local ring and $T'/J(T') \cong A/J(A)$, we can find a system $L = \{f_{ij} : 1 \leq i, j \leq n\}$ of matrix units of T' that is also a system of matrix units of A. Now $T' = M_n(S')$, where S' is the centralizer of L in T'. If A' is the centralizer of L in A, then A' is a local ring and S' is an inertial subring of A'. By [1, Theorem 4], there exists a $c \in J(A)$ such that $f_{ij}^c = e_{ij}$. As in the proof of [1, Theorem 33] we see that $(S')^c$ is an inertial subring of B. By 2.5, S and $(S')^c$ are R-isomorphic. This proves that T and T' are R-isomorphic. Now, the general case can be proved along similar lines to [1, Theorem 33].

Let A be any ring, and P be the smallest subring of A such that any $a \in P$ is a unit in P if and only if a is a unit in A. If I is the identity element of A, then P is the set of elements nI/mI, where n, m are integers and mI is a unit in A. We call P the total prime subring of A. Let A be a local ring. If the characteristic of $\overline{A} = A/J(A)$ is zero, then P is isomorphic to the field \mathbb{Q} of rational numbers, and if the characteristic of \overline{A} is a prime number p, then P is a homomorphic image of the localization $\mathbb{Z}_{(p)}$. By 2.5 and 2.7 we get the following.

Theorem 2.9. Let A be a local ring and P be its total prime subring such that P is isomorphic either to \mathbb{Q} or to $\mathbb{Z}/(p^n)$. Let A be either a locally finite P-algebra or an artinian duo ring. If $\overline{A} = A/J(A)$ is an absolutely algebraic field, then it has a local subring T such that $A = T + J(R)$, $J(T) = T \cap J(A)$
and the following hold:

(i) if the characteristic of A is zero, then T is a field isomorphic to \overline{A},

(ii) if the characteristic of A is p^n for some prime number p and an $n \geq 1$, then T is the union of an ascending sequence of subrings which are Galois rings of the type $GR(p^n, r)$.

Further, T is unique to within isomorphisms; in any case $J(T) = qT$, where q is the characteristic of \overline{A}. (T is called a coefficient ring of A.)

Acknowledgements. This research was supported by the King Saud University Research Grant No. Math/1419/06. The authors are grateful to the referee for his valuable suggestions.

REFERENCES

Department of Mathematics
King Saud University
PO Box 2455, Riyadh 11451
Kingdom of Saudi Arabia
E-mail: ykhamees@ksu.edu.sa
ssingh@ksu.edu.sa

Received 10 October 2000;
revised 23 March 2001