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INERTIAL SUBRINGS OF A LOCALLY FINITE ALGEBRA

BY

YOUSEF ALKHAMEES and SURJEET SINGH (Riyadh)

Abstract. I. S. Cohen proved that any commutative local noetherian ring R that is
J(R)-adic complete admits a coefficient subring. Analogous to the concept of a coefficient
subring is the concept of an inertial subring of an algebra A over a commutative ring K.
In case K is a Hensel ring and the module AK is finitely generated, under some additional
conditions, as proved by Azumaya, A admits an inertial subring. In this paper the question
of existence of an inertial subring in a locally finite algebra is discussed.

Introduction. Let S be a commutative generalized local ring in the
sense of Cohen [3]. Cohen introduced the concept of a coefficient subring
of S. If S is J(S)-adic complete, Cohen proved that S has a coefficient
subring T , which is unique to within isomorphisms. On the other hand,
Azumaya [1] introduced the concept of an inertial subalgebra of an algebra
A over a Hensel ring R. In case AR is finitely generated and A = A/J(A) is
separable over R = R/J(R), A has an inertial subalgebra, which is unique to
within conjugations [1, Theorem 33]; this result generalizes the Wedderburn–
Mal’tsev Principal Theorem. A special case of Azumaya’s theorem, in case
A is a finite ring, is given in Clark [2]. The concept of an inertial subring
is analogous to that of a coefficient subring. Let A be a local ring which is
an algebra over a Hensel ring R, J(R) = R ∩ J(A) and A = A/J(A) is a
countably generated separable algebraic field extension of R. In case A is a
locally finite R-algebra, the existence of a subalgebra T of A analogous to
an inertial subring is shown in Theorem 2.5. This subalgebra is shown to be
unique to within R-isomorphisms. In case A is commutative, this subalgebra
is unique. In case A is not commutative, an example is given to show that
unlike in Azumaya’s theorem, two such subalgebras need not be conjugate.
In case A is an artinian duo ring and J(R) is nilpotent, in Theorem 2.7 the
existence of a commutative local subring T analogous to an inertial subring
is established. In Theorem 2.8 a locally finite algebra A over a Hensel ring
R such that A is semi-perfect ring is studied. Some sufficient conditions for
the existence of a subring T of A analogous to an inertial subring are given.
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1. Preliminaries. All rings considered here are with identity 1 6= 0,
and all modules are unital right modules unless otherwise stated. For general
concepts on rings and modules one may refer to Faith [4]. For any ring A,
J(A), Z(A) will denote its Jacobson radical and center respectively. For any
c ∈ J(A) and any subset Y of A, Y c denotes the conjugate (1−c)−1Y (1−c)
of Y . For any moduleM over A of finite composition length, dA(M) denotes
the composition length of M . Let K be any commutative ring. Then a ring
A is called a K-algebra if A is a K-module such that for any a, b ∈ A and
x ∈ K, (ab)x = (ax)b = a(bx).

Let A be a K-algebra and A′ be a K-algebra anti-isomorphic to A.
If AK is finitely generated, then A is called a finite K-algebra. If every
finite subset S of A generates a finite subalgebra of A, then A is called a
locally finite K-algebra. A is called a faithful K-algebra if for any x ∈ K,
Ax = 0 implies x = 0. A is called an unramified K-algebra if J(A) = J(K)A.
A finite K-algebra A is called a proper maximally central algebra if A⊗K A

′

is isomorphic to the ring of endomorphisms of the module AK [1, p. 128].
A finite K-algebra A is called maximally central if it is a finite direct sum
of ideals A1, . . . , Ak such that each Ai is proper maximally central over
Z(Ai) [1, p. 132]. Proper maximally central algebras are also called Azumaya
algebras [4, (13.7.6)]. For results on central simple algebras over a field one
may consult Pierce [7]. Any proper maximally central algebra over a field is
a central simple algebra [1, Theorem 14].

A ring R is called a local ring if R/J(R) is a division ring. Let R be a
local, commutative ring.R is called a Hensel ring if for any monic polynomial
f(x) ∈ R[x], any factorization of f(x) modulo J(R) into two co-prime monic
polynomials can be lifted to a factorization into co-prime monic polynomials
in R[x]. Any local commutative ring R which is noetherian and J(R)-adic
complete, is a Hensel ring [3, Theorem 3].

LetA be a finiteK-algebra. A finite subalgebra T ofA is called an inertial
subalgebra if A = T + J(A), T ∩ J(A) = J(T ) and T is unramified over K.

The following fundamental theorem is due to Azumaya [1, Theorem 33].

Theorem 1.1 (Generalized Wedderburn–Mal’tsev Theorem). Let A be
a finite K-algebra, where K is a Hensel ring , such that A/J(A) is separable
over K/J(K). Then there exists a maximally central inertial subalgebra of
A, and such an inertial algebra is uniquely determined up to inner automor-
phisms of A generated by the elements of J(A), in the sense that given any
two inertial subalgebras T and T ′ of A, we have T ′ = T c for some c ∈ J(A).

A local ring R with maximal ideal M will also be denoted by (R,M).
Consider any commutative local ring (R,M), and any monic polynomial
f(x) ∈ R[x] such that for some monic polynomial g(x) ∈ R[x] irreducible
modulo M , f(x) ≡ g(x)t (modM [x]). It follows, by using the fact that
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R[x]/〈f(x)〉 is a finite R-module, that R[x]/〈f(x)〉 is a local ring with radical
〈M, g(x)〉/〈f(x)〉. In particular if t = 1, then the radical of R[x]/〈f(x)〉 is
M [x] = 〈M, f(x)〉/〈f(x)〉, so that this ring is unramified over R.

2. Inertial subrings. Let R be a commutative local ring. Then a ring
S is called an R-separable algebra if it is a commutative, local, faithful, finite,
unramified R-algebra such that S/J(S) is a finite separable field extension
of R = R/J(R). If a local ring S is R-separable, where R is a special primary
ring (i.e., R is a local artinian principal ideal ring [5, p. 200]), then S is also
a special primary ring and the indices of nilpotency of J(S) and J(R) are
the same. Let R be a Hensel ring and S be an R-separable algebra. Then
S is a Hensel ring [1, Theorem 23]. If S = S/J(S) is generated by an a
over R, and f(x) ∈ R[x] is a monic polynomial which, modulo J(R), is the
minimal polynomial of a over R, then we can find a lifting a ∈ S of a such
that f(a) = 0.

Lemma 2.1. Let A be a commutative local ring and R be a local subring
of A such that J(R) = R ∩ J(A). Let some a in A = A/J(A) be separable
over R. If f(x) ∈ R[x] is a monic polynomial which modulo J(R) is the
minimal polynomial of a over R, then a has at most one lifting a in A
satisfying f(a) = 0.

Proof. Let b and c be two liftings of a in A such that f(b) = f(c) = 0.
Now c = b + h for some h ∈ J(A). Let f ′(x) denote the derivative of f(x).
Then 0 = f(b+ h) = f(b) + h(f ′(b) + hd) = h(f ′(b) + hd) for some d ∈ A.
As a is separable over R, f ′(b) is a unit. This gives h = 0, and hence b = c.

Let A be a ring and R be a subring of A contained in the center Z(A).
Any a ∈ A is said to be algebraic over R if f(a) = 0 for some monic f(x) ∈
R[x]. In case A is a Hensel ring and R is a local subring such that R∩J(A) =
J(R), if an element a ∈ A is algebraic over R and a is separable over
R = R/J(R), it follows from the definition of a Hensel ring that there exists
a monic polynomial f(x) ∈ R[x] which modulo J(R) is irreducible over R
and there exists a lifting b of a such that f(b) = 0. In case A is a local ring,
an a ∈ A is said to be lift algebraic over R if there exists a monic polynomial
f(x) ∈ R[x] such that f(a) = 0 and f(x) modulo J(R) is irreducible over R.

Lemma 2.2. Let R be a Hensel ring and S be a local finite unramified
R-algebra such that S is maximally central and S/J(S) is commutative.
Then:

(i) S is a Hensel ring.
(ii) If S = S/J(S) is separable over R/J(R), then S = R[a] for some a

lift algebraic over R.
(iii) If R is a special primary ring , then S is also a special primary ring.
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Proof. Clearly Z(S) is a local ring. As S is proper maximally central over
Z(S), by [1, Theorem 13], there exists one-to-one correspondence between
the ideals of Z(S) and the ideals of S given by A ↔ AS, where A is an
ideal of Z(S). We get J(S) = J(Z(S))S. By the hypothesis J(S) = J(R)S.
So J(Z(S))S = J(R)Z(S)S. Consequently, J(Z(S)) = J(R)Z(S). By [1,
Theorem 13], S/J(S) is proper maximally central over Z(S)/J(Z(S)). But
by [1, Theorem 14], any proper maximally central algebra over a field is
central simple. Consequently, S = Z(S) + J(R)S. This gives a finite basis
B of the R/J(R)-module S/J(S) that has a lifting B in Z(S). Then S =
R[B] = Z(S). By [1, Theorem 23], S is a Hensel ring. This proves (i).

Let S satisfy the hypothesis in (ii). There exists a ∈ S such that a is lift
algebraic over R and a generates S over R. Then S = R[a]. There exists a
monic polynomial f(x) ∈ R[x] irreducible modulo J(R) satisfying f(a) = 0.
As R[x]/〈f(x)〉 is a local ring unramified over R, so is R[a]. This proves (ii).

Finally, let R be a special primary ring. Then J(R) is principal and
nilpotent. This shows that J(S) is principal and nilpotent, so S is a special
primary ring. This proves (iii).

Let A be any locally finite algebra over a commutative ring R, and S
be any subalgebra of A. Consider any a ∈ J(A) ∩ S and let b ∈ A be its
quasi-inverse. As R[a, b] is a finite R-algebra, by [1, Corollary to Theorem 9],
b ∈ R[a]. Hence J(A) ∩ S ⊆ J(S).

Lemma 2.3. Let A be a local , locally finite, faithful algebra over a local
ring R such that R ∩ J(A) = J(R) and A = A/J(A) is an algebraic field
extension of R. Then any R-subalgebra S of A is a local ring and J(S) =
S ∩ J(A).

Proof. As remarked above, J(A)∩ S ⊆ J(S). That S = S/J(A)∩ S is a
field follows from the hypothesis that A is an algebraic field extension of R.
This proves the result.

Lemma 2.4. Let A be a local , locally finite faithful algebra over a Hensel
ring R such that R∩J(A) = J(R) and A = A/J(A) is a separable algebraic
field extension of R. Let a, b ∈ A be lift algebraic over R, ab = ba and
let f(x) ∈ R[x] be a monic polynomial irreducible modulo J(R) such that
f(a) = 0. Then:

(i) R[a] is a Hensel ring unramified over R.

(ii) If R[a] ⊆ R[b], then R[a] ⊆ R[b].

(iii) If c, d ∈ A both lift a and f(c) = f(d) = 0, then they are conjugate
in A.

(iv) Any finite, unramified R-subalgebra of A is a Hensel ring and is of
the form R[d] for some d lift algebraic over R.
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Proof. By 2.3, R[a] is a local ring, and it satisfies the hypothesis of 1.1.
So R[a] has an inertial subring T . By definition, T is unramified over R. By
2.2(i), T is a Hensel ring. As a ∈ T , there exists an a′ ∈ T lifting a such
that f(a′) = 0. By 2.1, a = a′. So T = R[a]. This proves (i).

As R[b] is a Hensel ring, 2.1 gives (ii).

Consider S = R[c, d]. Now c = d = a. By 2.3, R[c] ∩ J(S) = J(R[c]).
Also R[c] is an unramified commutative R-algebra. This shows that R[c]
is an inertial subring of S; similarly R[d] is also an inertial subring of S.
By 1.1, there exists g ∈ S such that g−1R[c]g = R[d]. In R[d], d and g−1cg
both lift a and both are roots of f(x). By 2.1, d = g−1cg.

Let S be a finite unramified R-subalgebra of A. As S is a simple extension
of R, there exists a d ∈ S lift algebraic over R such that S = R[d]. As S ∼=
S/J(R)S, by [1, Corollary to Theorem 5], S = R[d]. Thus S is commutative.
By (i), S is a Hensel ring.

Theorem 2.5. Let A be a local , locally finite, faithful algebra over a
Hensel ring R such that J(R) = R ∩ J(A), A =A/J(A) is a countably
generated , separable algebraic field extension of R. Then there exists a com-
mutative local unramified R-subalgebra T of A such that

(i) T is the union of a filter of unramified R-subalgebras of the form
R[a], where a is lift algebraic over R,

(ii) J(T ) = T ∩ J(A),

(iii) A = T + J(A).

Further , any two such subrings are R-isomorphic. In case A is commutative,
T is unique.

Proof. LetK be a finite unramified R-subalgebra of A. By 2.4,K = R[a],
where a is some lift algebraic element over R. Choose any lift algebraic
element b ∈ A such that b /∈ K. Consider L = R[a, b]. By 2.3, L is a
local, finite R-subalgebra. By 1.1, L has an inertial subalgebra S. As S is
maximally central, by 2.2, it is a Hensel ring. As S is unramified over R, by
2.4, S = R[c] for some lift algebraic element c over R. Let f(x) ∈ R[x] be a
monic polynomial irreducible modulo J(R) such that f(a) = 0. There exists
d ∈ S lifting a such that f(d) = 0. By 2.4(iii), a = u−1du for some u ∈ A.

Then K ⊂ u−1Su and b ∈ u−1Su. Thus K ′ = u−1Su is a finite unramified
R-subalgebra containing K, and K ′ contains b. As A is countably generated
over R, the above construction gives an ascending sequence {Sn}, where
each Sn is a Hensel ring which is a finite R-subalgebra of A unramified over
R and for T =

⋃
Sn, T = A. Then A = T + J(A), T is unramified over R,

and 2.3 gives J(T ) = T ∩ J(A).

Let T ′ be another subalgebra of A satisfying (i)–(iii). Thus T ′ is an
unramified R-algebra, and a Hensel ring. Consider any a ∈ T which is lift
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algebraic over R. Let f(x) ∈ R[x] be a monic polynomial which is irreducible
modulo J(R) and f(a) = 0. As a ∈ T ′, by (i) and 2.1 there exists a unique
a′ ∈ T ′ lifting a and satisfying f(a′) = 0. As a and a′ are conjugate, we
get an R-isomorphism σ : R[a] → R[a′] such that σ(a) = a′. Consider any
other lift algebraic element b ∈ T such that R[a] ⊆ R[b]. We get a unique
b′ ∈ T ′ for which we have an R-isomorphism η : R[b] → R[b′]. As R[b′]
is a Hensel ring and a′ ∈ R[b′], by 2.4 a′ ∈ R[b′]. It is now obvious that
η extends σ. Thus (i) and the above construction of partial isomorphisms
gives an R-monomorphism λ : T → T ′. That λ is an isomorphism follows
from condition (i). In case A is commutative, the above proof itself shows
that T is unique.

Let us call such a T an inertial subring of A.

Corollary 2.6. Let A be a finite local ring of characteristic pk, where
p is a prime number. If A modulo J(A) is isomorphic to the Galois field
GF(pr), then A has a subring T isomorphic to GR(pk, k) and A = T+J(A).
This T is unique to within isomorphisms.

Proof. In the above theorem take R = Z/〈pk).

Example. Consider fields K ⊂ F1 ⊂ F2 ⊂ F with F1, F2 different finite
normal extensions of K. Let there exist two commuting automorphisms
σ, η of F such that the fixed fields of σ and η are F1 and F2 respectively.
Consider the left skew polynomial ring F [x, σ] with xa = σ(a)x for a ∈ F .
Let R1 = F [x, σ]/〈x

3〉. For u = 1 + x+ x2 ∈ R1, u
−1 = 1− x. For any

b ∈ F ,
u−1bu = b+ (b− σ(b))x+ (b− σ(b))x2.

Thus as F2 is not contained in the fixed field of σ, u
−1F2u * F . As ση = ησ,

η induces an automorphism λ of F [x, σ] such that λ(axi) = η(a)xi; λ is
identity over F2[x, σ]. We still denote λ by η. We can form F [x, σ][y, η] =
F [x, y, σ, η] with xy = yx. Consider R2 = F [x, y, σ, η]/〈x

3, y3〉. For v =

1 + y + y2 ∈ R2, it is immediate that v
−1F2v = F2, and if F 6= F2, then

v−1Fv * R1.
We now extend this construction. Consider a field F which admits an

infinite properly ascending sequence {Fn} of subfields indexed by the set
of natural numbers, with K = F0, such that each Fn is a finite separable
normal extension of K. Further suppose that there exists a sequence {ηn}
of pairwise commuting automorphisms of F such that the fixed field of
any ηn is Fn, and F =

⋃
n Fn. Consider a sequence of indeterminates xj ,

j ≥ 1. Set R0 = F , Rn+1 = Rn[xn+1, ηn+1]/〈x
3
n+1〉 with xixj = xjxi, and

R =
⋃
nRn. Then R is a local, locally finite K-algebra such that R/J(R) is

a countably generated, separable algebraic field extension of K. Obviously
F is an inertial subring of R.
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We now construct another inertial subring F ′ of R such that F and
F ′ are not conjugate. Consider any k ≥ 1. Set vk = 1 + xk + x2k ∈ Rk,
wk = v1 . . . vk. Set F

′

1 = F1, F
′

k+1 = w
−1
k Fk+1wk for k ≥ 1. As ηk is

identity on Fk but not on Fk+1, it follows that w
−1
k Fk+1wk ⊂ Rk, but

w−1k Fk+1wk * Rk−1. That means that F ′k+1 ⊂ Rk , but F
′

k+1 * Rk−1. Now
v−1k F

′

kvk = F
′

k gives F
′

k ⊆ F
′

k+1. Then F
′ =
⋃
n F
′

n is an inertial subring
of R. As F ′ is not contained in any Rk, it cannot be conjugate to F . To get
a field F of the above type, consider K = Z2. This gives rise to an ascending
sequence of Galois fields Fi of orders 2

ni where ni = 2
i.

A ring R in which every one-sided ideal is two-sided, is called a duo ring.

Theorem 2.7. Let A be a local artinian duo ring which is an algebra
over a commutative local ring (R,M) with M nilpotent and A = A/J(A)
a countably generated separable algebraic field extension of R. Then A has
a commutative local subring T unramified over R such that A = T + J(A).
Further T is unique to within R-isomorphisms.

Proof. Any R-subalgebra S of A is local with J(S) = J(A)∩S, and J(S)
is nilpotent. Let dA(A) = n. We apply induction on n. The result holds for
n = 1. Let n > 1 and suppose that the result holds for n − 1. Let L be a
minimal ideal of A. Then for some π ∈ L, L = πA = Aπ = πA and there
exists an R-automorphism σ of A such that aπ = πσ(a) for any a ∈ A.
By the induction hypothesis B = A/L has a commutative local subring
T/L which satisfies the conclusion of the theorem. Then A = T + J(A) and
L = πT is a minimal ideal of T . Let K be any commutative unramified
R-subalgebra of T such that K is a finite extension of R. Then K = R[a] for
some a lift algebraic over R. Let K 6= T . Consider any b ∈ T algebraic over
R modulo L. As T/L is commutative, we can choose b algebraic modulo
L over R/C, where C = annR(T/L). So there exists a monic polynomial
g(x) ∈ R[x] such that g(b) ∈ L. Consequently, g(b) = πc for some c ∈ T . As
T/L is commutative, ba− ab = πd for some d ∈ T . Let deg g(x) = n. There
exists a finite field extension G of R in T such that a, b, c, d are in G and
for any R-automorphism η of T , η(G) ⊆ G. Then

S =
n−1∑

i=1

R[a]bi + πG

is a finite R-subalgebra of T . Let W be an inertial subring of S. Suppose
first that a = b. Then W = R[a] = S. So R[a] is also an inertial subring
of S, and W is a conjugate of R[a]. So W contains a conjugate of a. Now
suppose that b 6∈ K. As a ∈W , we can find a lifting a′ of a in W . Then a is
a conjugate of a′. So, for some unit u ∈ S, K ⊆ u−1Wu and clearly b ∈W .
Now to conclude the proof we can follow the arguments of 2.5.
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A part of the following result bears a similarity to the main result in
Clark [2].

Theorem 2.8. Let A be a semi-perfect ring which is a locally finite faith-
ful algebra over a Hensel ring R such that J(R) = R∩J(A) and A = A/J(A)
is a direct sum of matrix rings over fields which are countably generated

separable algebraic extensions of R. Then A has a subalgebra T such that
A = T + J(A) and T ∩ J(A) = J(T ). Moreover T is a direct sum of full
matrix rings over commutative local rings T ′ such that if R′ is the homo-
morphic image of R in T ′, then T ′ is the union of a filter of unramified
local R′-subalgebras of the form R′[a]. Further , T is unique to within R-
isomorphisms.

Proof. Since the proof is similar to that of [1, Theorem 33], we only
outline it. Observe that for any idempotent e ∈ A, eAe is a locally finite
R-algebra. As in the proof of [1, Theorem 33], we first consider the case when
A/J(A) is simple. As idempotents can be lifted modulo J(A), A =Mn(B),
a full n× n-matrix ring over a local ring B. Let D = {eij : 1 ≤ i, j ≤ n} be
the corresponding system of matrix units in A. The hypothesis on A gives
that B is an R-algebra satisfying the hypothesis of 2.5. Consequently, B has
an inertial subring S. Then T =Mn(S) is the desired subring of A.

Let T ′ be another such subring of A. As T ′ is a full matrix ring over a
local ring and T ′/J(T ′) ∼= A/J(A), we can find a system L = {fij : 1 ≤
i, j ≤ n} of matrix units of T ′ that is also a system of matrix units of A. Now
T ′ = Mn(S

′), where S′ is the centralizer of L in T ′. If A′ is the centralizer
of L in A, then A′ is a local ring and S′ is an inertial subring of A′. By [1,
Theorem 4], there exists a c ∈ J(A) such that f cij = eij . As in the proof of
[1, Theorem 33] we see that (S′)c is an inertial subring of B. By 2.5, S and
(S′)c are R-isomorphic. This proves that T and T ′ are R-isomorphic. Now,
the general case can be proved along similar lines to [1, Theorem 33].

Let A be any ring, and P be the smallest subring of A such that any
a ∈ P is a unit in P if and only if a is a unit in A. If I is the identity element
of A, then P is the set of elements nI/mI, where n, m are integers and mI
is a unit in A. We call P the total prime subring of A. Let A be a local ring.
If the characteristic of A = A/J(A) is zero, then P is isomorphic to the field
Q of rational numbers, and if the characteristic of A is a prime number p,
then P is a homomorphic image of the localization Z(p). By 2.5 and 2.7 we
get the following.

Theorem 2.9. Let A be a local ring and P be its total prime subring such
that P is isomorphic either to Q or to Z/(pn). Let A be either a locally finite
P -algebra or an artinian duo ring. If A = A/J(A) is an absolutely algebraic
field , then it has a local subring T such that A = T +J(R), J(T ) = T ∩J(A)
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and the following hold :

(i) if the characteristic of A is zero, then T is a field isomorphic to A,
(ii) if the characteristic of A is pn for some prime number p and an

n ≥ 1, then T is the union of an ascending sequence of subrings which are
Galois rings of the type GR(pn, r).

Further , T is unique to within isomorphisms; in any case J(T ) = qT ,
where q is the characteristic of A. (T is called a coefficient ring of A.)
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