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INERTIAL SUBRINGS OF A LOCALLY FINITE ALGEBRA

BY

YOUSEF ALKHAMEES and SURJEET SINGH (Riyadh)

Abstract. 1. S. Cohen proved that any commutative local noetherian ring R that is
J(R)-adic complete admits a coeflicient subring. Analogous to the concept of a coefficient
subring is the concept of an inertial subring of an algebra A over a commutative ring K.
In case K is a Hensel ring and the module A is finitely generated, under some additional
conditions, as proved by Azumaya, A admits an inertial subring. In this paper the question
of existence of an inertial subring in a locally finite algebra is discussed.

Introduction. Let S be a commutative generalized local ring in the
sense of Cohen [3]. Cohen introduced the concept of a coefficient subring
of S. If S is J(95)-adic complete, Cohen proved that S has a coefficient
subring 7', which is unique to within isomorphisms. On the other hand,
Azumaya [1] introduced the concept of an inertial subalgebra of an algebra
A over a Hensel ring R. In case Ag is finitely generated and A = A/J(A) is
separable over R = R/J(R), A has an inertial subalgebra, which is unique to
within conjugations [1, Theorem 33]; this result generalizes the Wedderburn—
Mal’tsev Principal Theorem. A special case of Azumaya’s theorem, in case
A is a finite ring, is given in Clark [2]. The concept of an inertial subring
is analogous to that of a coefficient subring. Let A be a local ring which is
an algebra over a Hensel ring R, J(R) = RN J(A) and A = A/J(A) is a
countably generated separable algebraic field extension of R. In case A is a
locally finite R-algebra, the existence of a subalgebra T" of A analogous to
an inertial subring is shown in Theorem 2.5. This subalgebra is shown to be
unique to within R-isomorphisms. In case A is commutative, this subalgebra
is unique. In case A is not commutative, an example is given to show that
unlike in Azumaya’s theorem, two such subalgebras need not be conjugate.
In case A is an artinian duo ring and J(R) is nilpotent, in Theorem 2.7 the
existence of a commutative local subring 7" analogous to an inertial subring
is established. In Theorem 2.8 a locally finite algebra A over a Hensel ring
R such that A is semi-perfect ring is studied. Some sufficient conditions for
the existence of a subring T" of A analogous to an inertial subring are given.
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1. Preliminaries. All rings considered here are with identity 1 # 0,
and all modules are unital right modules unless otherwise stated. For general
concepts on rings and modules one may refer to Faith [4]. For any ring A,
J(A), Z(A) will denote its Jacobson radical and center respectively. For any
c € J(A) and any subset Y of A, Y¢ denotes the conjugate (1—c)~ 1Y (1—c¢)
of Y. For any module M over A of finite composition length, d 4 (M) denotes
the composition length of M. Let K be any commutative ring. Then a ring
A is called a K-algebra if A is a K-module such that for any a,b € A and
z € K, (ab)x = (azx)b = a(bz).

Let A be a K-algebra and A’ be a K-algebra anti-isomorphic to A.
If Ag is finitely generated, then A is called a finite K-algebra. If every
finite subset S of A generates a finite subalgebra of A, then A is called a
locally finite K-algebra. A is called a faithful K-algebra if for any x € K,
Az = 0 implies z = 0. A is called an unramified K -algebra if J(A) = J(K)A.
A finite K-algebra A is called a proper mazimally central algebra if AQy A’
is isomorphic to the ring of endomorphisms of the module Ay [1, p. 128].
A finite K-algebra A is called maximally central if it is a finite direct sum
of ideals Ajy,..., A such that each A; is proper maximally central over
Z(A;) [1, p. 132]. Proper maximally central algebras are also called Azumaya
algebras [4, (13.7.6)]. For results on central simple algebras over a field one
may consult Pierce [7]. Any proper maximally central algebra over a field is
a central simple algebra [1, Theorem 14].

A ring R is called a local ring if R/J(R) is a division ring. Let R be a
local, commutative ring. R is called a Hensel ring if for any monic polynomial
f(z) € Rlx], any factorization of f(z) modulo J(R) into two co-prime monic
polynomials can be lifted to a factorization into co-prime monic polynomials
in R[x]. Any local commutative ring R which is noetherian and J(R)-adic
complete, is a Hensel ring [3, Theorem 3].

Let A be a finite K-algebra. A finite subalgebra T of A is called an inertial
subalgebra if A=T + J(A), TNJ(A) = J(T) and T is unramified over K.

The following fundamental theorem is due to Azumaya [1, Theorem 33].

THEOREM 1.1 (Generalized Wedderburn-Mal'tsev Theorem). Let A be
a finite K-algebra, where K is a Hensel ring, such that A/J(A) is separable
over K/J(K). Then there exists a mazimally central inertial subalgebra of
A, and such an inertial algebra is uniquely determined up to inner automor-
phisms of A generated by the elements of J(A), in the sense that given any
two inertial subalgebras T and T' of A, we have T" = T° for some c € J(A).

A local ring R with maximal ideal M will also be denoted by (R, M).
Consider any commutative local ring (R, M), and any monic polynomial
f(z) € R[z] such that for some monic polynomial g(x) € Rx] irreducible
modulo M, f(z) = g(z)' (mod M[z]). It follows, by using the fact that
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R[x]/(f(x)) is a finite R-module, that R[z]/(f(x)) is a local ring with radical
(M, g(x))/{f(x)). In particular if ¢ = 1, then the radical of R[x]/(f(z)) is
M[x] = (M, f(x))/{f(x)), so that this ring is unramified over R.

2. Inertial subrings. Let R be a commutative local ring. Then a ring
S is called an R-separable algebra if it is a commutative, local, faithful, finite,
unramified R-algebra such that S/J(S) is a finite separable field extension
of R = R/J(R). If a local ring S is R-separable, where R is a special primary
ring (i.e., R is a local artinian principal ideal ring [5, p. 200]), then S is also
a special primary ring and the indices of nilpotency of J(S) and J(R) are
the same. Let R be a Hensel ring and S be an R-separable algebra. Then
S is a Hensel ring [1, Theorem 23]. If S = S/J(S) is generated by an @
over R, and f(x) € R[z] is a monic polynomial which, modulo J(R), is the
minimal polynomial of @ over R, then we can find a lifting a € S of @ such
that f(a) =

LEMMA 2.1. Let A be a commutative local ring and R be a local subring
of A such that J(R) = RN J(A). Let some @ in A = A/J(A) be separable
over R. If f(z) € R[z] is a monic polynomial which modulo J(R) is the
minimal polynomial of @ over R, then @ has at most one lifting a in A
satisfying f(a) =

Proof. Let b and ¢ be two liftings of @ in A such that f(b) = f(c) = 0.
Now ¢ = b+ h for some h € J(A). Let f'(x) denote the derivative of f(z).
Then 0 = f(b+ h) = f(b) + h(f'(b) + hd) = h(f'(b) + hd) for some d € A.
As @ is separable over R, f' (b) is a unit. This gives h = 0, and hence b = c.

Let A be a ring and R be a subring of A contained in the center Z(A).
Any a € A is said to be algebraic over R if f(a) = 0 for some monic f(z) €
Rlz]. In case A is a Hensel ring and R is a local subring such that RNJ(A) =
J(R), if an element a € A is algebraic over R and @ is separable over
R = R/J(R), it follows from the definition of a Hensel ring that there exists
a monic polynomial f(x) € R[z] which modulo J(R) is irreducible over R
and there exists a lifting b of @ such that f(b) = 0. In case A is a local ring,
an a € A is said to be lift algebraic over R if there exists a monic polynomial
f(x) € R[z] such that f(a) = 0 and f(x) modulo J(R) is irreducible over R.

LEMMA 2.2. Let R be a Hensel ring and S be a local finite unramified

R-algebra such that S is maximally central and S/J(S) is commutative.
Then:

(i) S is a Hensel ring.
(i) If S = S/J(S) is separable over R/ J(R), then S = Rla] for some a
lift algebraic over R.
(iii) If R is a special primary ring, then S is also a special primary ring.
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Proof. Clearly Z(.9) is a local ring. As S is proper maximally central over
Z(S), by [1, Theorem 13], there exists one-to-one correspondence between
the ideals of Z(S) and the ideals of S given by A < AS, where A is an
ideal of Z(S). We get J(S) = J(Z(S))S. By the hypothesis J(S) = J(R)S.
So J(Z(S))S = J(R)Z(S)S. Consequently, J(Z(5)) = J(R)Z(S). By [1,
Theorem 13], S/J(S) is proper maximally central over Z(S)/J(Z(S)). But
by [1, Theorem 14], any proper maximally central algebra over a field is
central simple. Consequently, S = Z(S) + J(R)S. This gives a finite basis
B of the R/J(R)-module S/J(S) that has a lifting B in Z(S). Then S =
R[B] = Z(S). By [1, Theorem 23|, S is a Hensel ring. This proves (i).

Let S satisfy the hypothesis in (ii). There exists a € S such that a is lift
algebraic over R and @ generates S over R. Then S = R[a]. There exists a
monic polynomial f(z) € R[z] irreducible modulo J(R) satisfying f(a) = 0.
As R[x]/(f(z)) is a local ring unramified over R, so is R[a]. This proves (ii).

Finally, let R be a special primary ring. Then J(R) is principal and
nilpotent. This shows that J(S) is principal and nilpotent, so S is a special
primary ring. This proves (iii).

Let A be any locally finite algebra over a commutative ring R, and S
be any subalgebra of A. Consider any a € J(A) NS and let b € A be its
quasi-inverse. As Rla, b] is a finite R-algebra, by [1, Corollary to Theorem 9],
b € R[a]. Hence J(A) NS C J(S5).

LEMMA 2.3. Let A be a local, locally finite, faithful algebra over a local
ring R such that RN J(A) = J(R) and A = A/J(A) is an algebraic field
extension of R. Then any R-subalgebra S of A is a local ring and J(S) =
SNJ(A).

Proof. As remarked above, J(A)NS C J(S). That S = 5/J(A)NSis a
field follows from the hypothesis that A is an algebraic field extension of R.
This proves the result.

LEMMA 2.4. Let A be a local, locally finite faithful algebra over a Hensel
ring R such that RNJ(A) = J(R) and A = A/J(A) is a separable algebraic
field extension of R. Let a,b € A be lift algebraic over R, ab = ba and
let f(z) € R[z] be a monic polynomial irreducible modulo J(R) such that
f(a) =0. Then:

(i) Rla] is a Hensel ring unramified over R.
(ii) If R[a] C R[b], then Rla] C RIb].
(iii) If ¢, d € A both lift @ and f(c) = f(d) = 0, then they are conjugate
mn A.
(iv) Any finite, unramified R-subalgebra of A is a Hensel ring and is of
the form R[d] for some d lift algebraic over R.
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Proof. By 2.3, R|a] is a local ring, and it satisfies the hypothesis of 1.1.
So R[a] has an inertial subring T'. By definition, 7" is unramified over R. By
2.2(i), T is a Hensel ring. As @ € T, there exists an a’ € T lifting @ such
that f(a’) =0. By 2.1, a = a’. So T' = R|a]. This proves (i).

As RJ[b] is a Hensel ring, 2.1 gives (ii).

Consider S = R[c,d]. Now ¢ = d = a. By 2.3, R[¢| N J(S) = J(R[c]).
Also R]c] is an unramified commutative R-algebra. This shows that R]c]
is an inertial subring of S; similarly R[d] is also an inertial subring of S.
By 1.1, there exists g € S such that g~'R[c]g = R[d]. In R[d], d and g~'cg
both lift a and both are roots of f(z). By 2.1, d = g lcg.

Let S be a finite unramified R-subalgebra of A. As S is a simple extension
of R, there exists a d € S lift algebraic over R such that S = R[d]. As S =
S/J(R)S, by [1, Corollary to Theorem 5], S = R][d]. Thus S is commutative.

By (i), S is a Hensel ring.

THEOREM 2.5. Let A be a local, locally finite, faithful algebra over a
Hensel ring R such that J(R) = RN J(A), A =A/J(A) is a countably
generated, separable algebraic field extension of R. Then there exists a com-
mutative local unramified R-subalgebra T of A such that

(i) T is the union of a filter of unramified R-subalgebras of the form
Rla], where a is lift algebraic over R,
(ii) J(T) =T N J(A),
(iii)) A=T+ J(A).

Further, any two such subrings are R-isomorphic. In case A is commutative,
T is unique.

Proof. Let K be a finite unramified R-subalgebra of A. By 2.4, K = R[a],
where a is some lift algebraic element over R. Choose any lift algebraic
element b € A such that b ¢ K. Consider L = R[a,b]. By 2.3, L is a
local, finite R-subalgebra. By 1.1, L has an inertial subalgebra S. As S is
maximally central, by 2.2, it is a Hensel ring. As S is unramified over R, by
2.4, S = R|c] for some lift algebraic element ¢ over R. Let f(z) € R[z] be a
monic polynomial irreducible modulo J(R) such that f(a) = 0. There exists
d € S lifting @ such that f(d) = 0. By 2.4(iii), a = u~'du for some u € A.

Then K C v~ 'Su and b € u=1Su. Thus K’ = v~ 'Su is a finite unramified
R-subalgebra containing K, and K’ contains b. As A is countably generated
over R, the above construction gives an ascending sequence {S,}, where
each S, is a Hensel ring which is a finite R-subalgebra of A unramified over
R and for T =JS,, T = A. Then A =T + J(A), T is unramified over R,
and 2.3 gives J(T') =T N J(A).

Let T' be another subalgebra of A satisfying (i)—(iii). Thus 7" is an
unramified R-algebra, and a Hensel ring. Consider any a € T which is lift
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algebraic over R. Let f(x) € R[x] be a monic polynomial which is irreducible
modulo J(R) and f(a) = 0. As @ € T’, by (i) and 2.1 there exists a unique
a’ € T lifting @ and satisfying f(a’) = 0. As a and o’ are conjugate, we
get an R-isomorphism o : R[a] — R[a’] such that o(a) = a’. Consider any
other lift algebraic element b € T" such that Rla] C R[b]. We get a unique
b’ € T’ for which we have an R-isomorphism 7 : R[b] — RI[V/]. As R[]
is a Hensel ring and o’ € R[V], by 2.4 a’ € R[V]. It is now obvious that
n extends o. Thus (i) and the above construction of partial isomorphisms
gives an R-monomorphism A : 7' — T’. That A is an isomorphism follows
from condition (i). In case A is commutative, the above proof itself shows
that T is unique.

Let us call such a T' an inertial subring of A.

COROLLARY 2.6. Let A be a finite local ring of characteristic p*, where
p is a prime number. If A modulo J(A) is isomorphic to the Galois field
GF(p"), then A has a subring T isomorphic to GR(p*, k) and A = T+ J(A).

This T is unique to within isomorphisms.
Proof. In the above theorem take R = Z/(p*).

ExaAMPLE. Consider fields K C I C Fy C F with Iy, I different finite
normal extensions of K. Let there exist two commuting automorphisms
o,n of F such that the fixed fields of ¢ and n are F; and F5 respectively.
Consider the left skew polynomial ring F[x, o] with za = o(a)z for a € F.
Let Ry = Flx,0]/{x3). For u = 1+ 2z +2? € Ry, u=! = 1—z. For any
beF,

utbu=b+ (b—o(b)z+ (b—a(b))z2.

Thus as Fj is not contained in the fixed field of o, u™' Fou ¢ F. As on = no,
n induces an automorphism A\ of F[x,o] such that A(ax?) = n(a)z?; X is
identity over Fy[z,o]. We still denote A by n. We can form F[z,0][y,n] =
Flx,y,0,n] with xy = yx. Consider Ry = Flx,y,0,n]/(x3,y3). For v =
1+y+y? € Ry, it is immediate that v~ 'Fov = F,, and if F # F;, then
v lFv ¢ Ry.

We now extend this construction. Consider a field F' which admits an
infinite properly ascending sequence {F,} of subfields indexed by the set
of natural numbers, with K = Fy, such that each Fj, is a finite separable
normal extension of K. Further suppose that there exists a sequence {n, }
of pairwise commuting automorphisms of F such that the fixed field of
any 17, is Fy,, and F' = |J,, . Consider a sequence of indeterminates x;,
j>1.8et Ry =F, Ry11 = Rn[xn+1,nn+1]/(xf’l+l> with z;2; = x;x;, and
R =, Rn. Then R is a local, locally finite K-algebra such that R/J(R) is
a countably generated, separable algebraic field extension of K. Obviously
F is an inertial subring of R.
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We now construct another inertial subring F’ of R such that F and
F’ are not conjugate. Consider any k > 1. Set vy, = 1+, + 27 € Ry,
wy = vi...v. Set F{ = Fy, F | = w,;leHwk for k > 1. As ny is
identity on Fy but not on Fjyq, it follows that w,;leHwk C Ry, but
w;, ' Fy1wy € Ri—1. That means that F)_; C Ry, , but F},; ¢ Rx_1. Now
v 'Flvy, = F} gives F| C F|,,. Then F’ = |J, F is an inertial subring
of R. As I’ is not contained in any Ry, it cannot be conjugate to F. To get
a field F of the above type, consider K = Zs. This gives rise to an ascending
sequence of Galois fields F; of orders 2™ where n; = 2°.

A ring R in which every one-sided ideal is two-sided, is called a duo ring.

THEOREM 2.7. Let A be a local artinian duo ring which is an algebra
over a commutative local ring (R, M) with M nilpotent and A = A/J(A)
a countably generated separable algebraic field extension of R. Then A has
a commutative local subring T unramified over R such that A =T + J(A).
Further T is unique to within R-isomorphisms.

Proof. Any R-subalgebra S of A is local with J(S) = J(A)NS, and J(5)
is nilpotent. Let d4(A) = n. We apply induction on n. The result holds for
n = 1. Let n > 1 and suppose that the result holds for n — 1. Let L be a
minimal ideal of A. Then for some 7 € L, L = 1A = Ar = 1A and there
exists an R-automorphism o of A such that ar = 7o (@) for any @ € A.
By the induction hypothesis B = A/L has a commutative local subring
T'/L which satisfies the conclusion of the theorem. Then A =T+ J(A) and
L = 77T is a minimal ideal of T. Let K be any commutative unramified
R-subalgebra of T such that K is a finite extension of R. Then K = R|a] for
some a lift algebraic over R. Let K # T. Consider any b € T algebraic over
R modulo L. As T'/L is commutative, we can choose b algebraic modulo
L over R/C, where C = anng(T/L). So there exists a monic polynomial
g(x) € R[x] such that g(b) € L. Consequently, g(b) = n¢ for some c € T'. As
T/L is commutative, ba — ab = md for some d € T. Let deg g(x) = n. There
exists a finite field extension G of R in T such that @, b, ¢, d are in G and
for any R-automorphism 7 of T, n(G) C G. Then

n—1

S=>Rla]t' + nG

i=1
is a finite R-subalgebra of T. Let W be an inertial subring of S. Suppose
first that @ = b. Then W = R[a] = S. So R|a] is also an inertial subring
of S, and W is a conjugate of R[a]. So W contains a conjugate of a. Now
suppose that b ¢ K. As @ € W, we can find a lifting @’ of @ in W. Then a is
a conjugate of a’. So, for some unit u € S, K C v~ 'Wu and clearly b € W.
Now to conclude the proof we can follow the arguments of 2.5.
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A part of the following result bears a similarity to the main result in
Clark [2].

THEOREM 2.8. Let A be a semi-perfect ring which is a locally finite faith-
ful algebra over a Hensel ring R such that J(R) = RNJ(A) and A = A/J(A)
18 a direct sum of matrixz rings over fields which are countably generated
separable algebraic extensions of R. Then A has a subalgebra T such that
A=T+ J(A) and TN J(A) = J(T'). Moreover T is a direct sum of full
matriz rings over commutative local rings T' such that if R’ is the homo-
morphic image of R in T, then T’ is the union of a filter of unramified
local R'-subalgebras of the form R'[a]. Further, T is unique to within R-
isomorphisms.

Proof. Since the proof is similar to that of [1, Theorem 33], we only
outline it. Observe that for any idempotent e € A, eAe is a locally finite
R-algebra. As in the proof of [1, Theorem 33|, we first consider the case when
A/J(A) is simple. As idempotents can be lifted modulo J(A), A = M, (B),
a full n x n-matrix ring over a local ring B. Let D = {e;; : 1 <4,j < n} be
the corresponding system of matrix units in A. The hypothesis on A gives
that B is an R-algebra satisfying the hypothesis of 2.5. Consequently, B has
an inertial subring S. Then T' = M,,(S) is the desired subring of A.

Let T" be another such subring of A. As T” is a full matrix ring over a
local ring and T"/J(T") = A/J(A), we can find a system L = {f;; : 1 <
i,7 < n} of matrix units of 7" that is also a system of matrix units of A. Now
T" = M,(S"), where S’ is the centralizer of L in T". If A’ is the centralizer
of L in A, then A’ is a local ring and S’ is an inertial subring of A’. By [1,
Theorem 4], there exists a ¢ € J(A) such that f; = e;;. As in the proof of
[1, Theorem 33] we see that (S’)¢ is an inertial subring of B. By 2.5, S and
(S")¢ are R-isomorphic. This proves that 7' and 7" are R-isomorphic. Now,
the general case can be proved along similar lines to [1, Theorem 33].

Let A be any ring, and P be the smallest subring of A such that any
a € Pisaunit in P if and only if a is a unit in A. If I is the identity element
of A, then P is the set of elements nl/mlI, where n, m are integers and mI
is a unit in A. We call P the total prime subring of A. Let A be a local ring.
If the characteristic of A = A/J(A) is zero, then P is isomorphic to the field
Q of rational numbers, and if the characteristic of A is a prime number p,
then P is a homomorphic image of the localization Z,). By 2.5 and 2.7 we
get the following.

THEOREM 2.9. Let A be a local ring and P be its total prime subring such
that P is isomorphic either to Q or to Z/(p™). Let A be either a locally finite
P-algebra or an artinian duo ring. If A= A/J(A) is an absolutely algebraic
field, then it has a local subring T such that A =T+ J(R), J(T) =TNJ(A)
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and the following hold:

(i) if the characteristic of A is zero, then T is a field isomorphic to A,

(ii) if the characteristic of A is p™ for some prime number p and an
n > 1, then T is the union of an ascending sequence of subrings which are
Galois rings of the type GR(p™,r).

Further, T is unique to within isomorphisms; in any case J (T) = (T,
where q is the characteristic of A. (T is called a coefficient ring of A.)
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