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ON A DECOMPOSITION OF POLYNOMIALS

IN SEVERAL VARIABLES, II

BY

A. SCHINZEL (Warszawa)

Abstract. One considers representation of cubic polynomials in several variables as
the sum of values of univariate polynomials taken at linear combinations of the variables.

In the first paper of this series [6] we have defined for a field K the
number M(n, d,K) as the least integer M (provided it exists, otherwise∞)
such that for every polynomial F ∈ K[x1, . . . , xn] of degree d there exist
vectors αµ = [αµ1, . . . , αµn] ∈ K

n and polynomials fµ ∈ K[z] (1 ≤ µ ≤M)
such that

(1) F (x1, . . . , xn) =
M
∑

µ=1

fµ

(

n
∑

ν=1

αµνxν

)

.

We have shown that M(n, d,K) < ∞ if charK = 0 or charK > d and
studied the cases d = 2 and n = 2. In this paper we study the next simplest
case d = 3 and prove two theorems.

Theorem 1. For every field K of characteristic different from 2, 3 we
have

M(n, 3,K) ≤

(

n+ 1

2

)

.

Theorem 2. For every algebraically closed field K of characteristic dif-
ferent from 2, 3 we have

M(3, 3,K) = 5.

An analogue of Theorem 1 for forms and K = C was proved by
B. Reznick [3]. Equality (1) for generic cubic forms F over C has been
studied by B. Reichstein [2], but his interesting results have no bearing on
our theorems.
The proof of Theorem 1 is based on

Lemma 1. For every quadratic form F ∈ K[x1, . . . , xn] \K[x2, . . . , xn]
there exist n linearly independent vectors αµ ∈ K

n with αµ1 6= 0 and

2000 Mathematics Subject Classification: 12E05, 11D85.

[67]



68 A. SCHINZEL

aµ ∈ K (1 ≤ µ ≤ n) such that

(2) F =
n
∑

µ=1

aµ(αµx)
2, where αx =

n
∑

i=1

αixi.

Proof. We proceed by induction on n. For n = 1 the lemma is obviously
true. Assume that it is true for all quadratic forms over K in less than n
variables.
If rankF = r < n, then there exist linearly independent vectors

β1, . . . ,βr ∈ K
n and a form G ∈ K[y1, . . . , yr] such that

F = G(β1x,β2x, . . . ,βrx).

Since F 6∈ K[x2, . . . , xn] we may assume that β11 6= 0. Let

H = G

(

y1, y2 +
β21
β11
y1, . . . , yr +

βr1
β11
y1

)

.

We have

F = H

(

β1x,β2x−
β21
β11

β1x, . . . ,βrx−
βr1
β11

β1x

)

and β̺x −
β̺1
β11

β1x ∈ K[x2, . . . , xn] (1 ≤ ̺ ≤ r), hence F 6∈ K[x2, . . . , xn]

implies H 6∈ K[y2, . . . , yr]. By the inductive assumption

H =
r
∑

µ=1

cµ(γµy)
2, y = [y1, . . . , yr],

where cµ ∈ K, γµ ∈ K
r (1 ≤ µ ≤ r), γµ are linearly independent and

γµ1 6= 0. It follows that

F =
r
∑

µ=1

cµ

(

γµ1β1x+
r
∑

̺=2

γµ̺

(

β̺x−
β̺1
β11

β1x

))2

.

Let us put

(3) (αµν) µ≤r
ν≤n

= (γµ̺)µ≤r
̺≤r











β1
β2 − β1

β21
β11

...
βr − β1

βr1
β11











.

Since the matrix (γµ̺)µ≤r
̺≤r

is non-singular of order r and the rank of the

matrix

(

β1
...

βr

)

is r, the rank of the matrix (αµν) µ≤r
ν≤n

is r and there exist

n− r vectors αr+1, . . . ,αn in K
n such that A = (αµν)µ≤n

ν≤n

is of rank n. We

have, by (3), αµ1 = γµ1β11 6= 0 for µ ≤ r. Adding, if necessary, the first row
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of A to rows r + 1, . . . , n we achieve that αµ1 6= 0 for all µ ≤ n and (2) is
satisfied with aµ = cµ for µ ≤ r, aµ = 0 for µ > r.

If rankF = n, let

F =
n
∑

i,j=1

aijxixj , where aij = aji.

If aii 6= 0 for at least one i > 1, then we consider the form

(4) G = F − aii

( n
∑

j=1

aij
aii
xj

)2

.

This form is of rank n − 1 and it does not depend on xi, hence G 6∈
K[x2, . . . , xn] and by the inductive assumption

(5) G =
n−1
∑

µ=1

bµ(βµx)
2,

where bµ ∈ K, βµ ∈ K
n (1 ≤ µ < n), βµ are linearly independent, βµ1 6= 0

and bµ 6= 0 (otherwise G would be of rank < n− 1). If ai1 6= 0 it suffices to
take in (1)

aµ = bµ, αµ = βµ for µ < n,

an = aii, αn =

[

ai1
aii
, . . . ,

ain
aii

]

.

If ai1 = 0, then we choose c ∈ K, c
2 6= 0, ±aii/bn−1, which is possible unless

K = F5, aii = ±bn−1, and infer from (4), (5) that

F =
n−2
∑

µ=1

bµ(βµx)
2 + bn−1

(

bn−1c
2 − aii

bn−1c2 + aii
βn−1x+

2aiic

bn−1c2 + aii

n
∑

j=1

aij
aii
xj

)2

+ aii

(

2bn−1c

bn−1c2 + aii
βn−1x−

bn−1c
2 − aii

bn−1c2 + aii

n
∑

j=1

aij
aii
xj

)2

.

Hence (2) is satisfied with

aµ = bµ, αµ = βµ for µ < n− 1,

an−1 = bn−1, αn−1 =
bn−1c

2 − aii
bn−1c2 + aii

βn−1 +
2c

bn−1c2 + aii
[ai1, . . . , ain],

an = aii, αn =
2bn−1c

bn−1c2 + aii
βn−1 −

bn−1c
2 − aii

bn−1c2 + aii

[

ai1
aii
, . . . ,

ain
aii

]

.

By the choice of c we have αµ1 6= 0. Also the αµ are linearly independent,
since otherwise F would be of rank less than n.
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In the remaining case K = F5, aii = εbn−1 (ε = ±1) it suffices to take

aµ = bµ, αµ = βµ for µ < n− 1,

an−1 = 3bn−1, αn−1 = βn−1 +
3− ε

2

[

ai1
aii
, . . . ,

ain
aii

]

,

an = 3bn−1, αn = βn−1 −
3− ε

2

[

ai1
aii
, . . . ,

ain
aii

]

.

If aii = 0 for all i > 1, but aij 6= 0 for some i > 1, j > 1 then we make the
linear transformation xi = x

′
i + x

′
j , xj = x

′
i − x

′
j and reduce this case to the

former.
There remains the case where aij = 0 for all i, j > 1. Then 1 < n =

rankF ≤ 2, so n = rankF = 2 and we have

F = a11x
2
1 + 2a12x1x2

=
1

4

((

c+
a11
c

)

x1 +
2a12
c
x2

)2

−
1

4

((

c−
a11
c

)

x1 −
2a12
c
x2

)2

,

where c in K is chosen so that c2 6= 0,±a11. Such a choice is possible unless
K = F5, a11 = ±1. In that case

F = 3a11(x1 − 2a11a12x2)
2 + 3a11(x1 − a11a12x2)

2.

Proof of Theorem 1. We proceed by induction on n. For n = 1 the
theorem is obviously true. Assume that M(n− 1, 3,K) ≤

(

n
2

)

and consider
a polynomial F ∈ K[x1, . . . , xn] of degree 3. Let F0 be its leading form.
Since cardK ≥ 4, by Lemma 1 of [6], or by Lemma 4.4.1 of [7], there

exists β1 ∈ K
n such that F0(β1) 6= 0 and thus β1 6= 0. If vectors β2, . . . ,βn

are chosen inKn so that det(β1, . . . ,βn) 6= 0, we can replace in our argument
F (x) by F1(y) := F (β1y, . . . ,βny), where y = [y1, . . . , yn] and where the
coefficient of y31 in F1(y) is F0(β1) 6= 0 (cf. [3]). Hence we may assume
without loss of generality that

degx1
∂F0
∂x1
> 0.

Then by Lemma 1,

(6)
∂F0
∂x1
=
n
∑

µ=1

aµ(αµx)
2,

where aµ ∈ K, αµ ∈ K
n, αµ1 6= 0 (1 ≤ µ ≤ n) and the αµ are linearly

independent. By the last condition there exist cµ ∈ K (1 ≤ µ ≤ n) and
d ∈ K such that

(7)
∂F

∂x1
−
∂F0
∂x1
=
n
∑

µ=1

cµ(αµx) + d.
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Consider now the polynomial

(8) G = F −
n
∑

µ=1

aµ
3αµ1

(αµx)
3 −

n
∑

µ=1

cµ
2αµ1

(αµx)
2 −

d

α11
(α1x).

By (6)–(8) we have
∂G

∂x1
= 0,

hence G ∈ K[x2, . . . , xn]. By the inductive assumption there exist vectors
α∗µ ∈ K

n−1 and polynomials gµ ∈ K[z] (n < µ ≤
(

n+1
2

)

) such that

G =

(n+12 )
∑

µ=n+1

gµ

(

n−1
∑

ν=1

α∗µνxν+1

)

.

The decomposition (1) follows now from (8) with

f1 =
a1
3α11

z3 +
c1
2α11
z2 +

d

α11
,

fµ =
aµ
3αµ1

z3 +
cµ
2αµ1
z2 (1 < µ ≤ n),

fµ = gµ, αµ = [0,α
∗
µ]

(

n < µ ≤

(

n+ 1

2

))

.

The proof of Theorem 1 is complete. The idea this proof is taken from the
paper of Rosanes [4], §6.

The proof of Theorem 2 is based on four lemmas.

Lemma 2. For

φ(x) = ax31 + bx
3
2 + cx

3
3 + 3a2x

2
1x2 + 3a3x

2
1x3 + 3b1x

2
2x1 + 3b3x

2
2x3

+ 3c1x
2
3x1 + 3c2x

2
3x2 + 6mx1x2x3 ∈ K[x1, x2, x3],

let

S(φ) = abcm− (bca2a3 + cab1b3 + abc1c2)−m(ab3c2 + bc1a3 + ca2b1)

+ (ab1c
2
2 + bc2a

2
3 + ac1b

2
3 + ba2c

2
1 + cb3a

2
2 + ca3b

2
1)−m

4

+ 2m2(b1c1 + c2a2 + a3b3)− 3m(a2b3c1 + a3b1c2)

− (b21c
2
1 + c

2
2a
2
2 + a

2
3b
2
3) + (c2a2a3b3 + a3b3b1c1 + b1c1c2a2).

Then for every matrix A ∈ K3×3,

S(φ(Ax)) = S(φ)(detA)4.

Moreover , if φ =
∑3
i=1(αix)

3 for some αi ∈ K
3, then S(φ) = 0.

Proof. See Salmon [5], Section 221.
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Lemma 3. Every non-zero ternary cubic form φ over an algebraically
closed field K of characteristic different from 2, 3 can be transformed by a
non-singular linear transformation over K into one of the forms

F1 = ηx
3
2 + x

3
3, η = 0 or 1,

F2 = x
3
1 + x

3
2 + x

3
3 + 6mx1x2x3, m ∈ K,

F3 = x
3
2 + x

3
3 + 6x1x2x3,

F4 = εx
3
1 + 3x

2
2x3, ε = 0 or 1,

F5 = 6x1x2x3 + x
3
3,

F6 = 3x
2
1x2 + 3x1x

2
3.

Proof. See Gordan [1]. Gordan gives 10 types of forms, but two of them,
x31 + x

3
2 + x

3
3 and 6x1x2x3, are obtained from F2 for m = 0 and m = −

1
2

respectively. Indeed,

x31+ x
3
2+ x

3
3− 3x1x2x3 = (x1+ x2+ x3)(x1+ ̺x2+ ̺

2x3)(x1+ ̺
2x2+ ̺x3),

where ̺3 = 1, ̺ 6= 1.

Lemma 4. For ν =2, 3, 4 we have for some αµ ∈K
3, aµ∈K (1≤µ≤ 4),

(9) Fν =

4
∑

µ=1

aµ(αµx)
3,

where α1,α2,α3 are linearly independent , rankAν < 4 and , for any
α1, α2, α3 ∈ K, the conditions α1 6= 0 and rankBν < 5 imply that
[α1, α2, α3] is a scalar multiple of one of the αµ.

Here

(10) Aν =











α11α12 . . . α41α42
α212 . . . α242
α11α13 . . . α41α43
α12α13 . . . α42α43
α213 . . . α243











, Bν =















α211 . . . α
2
41 α21
α1α2
α22

Aν α1α3
α2α3
α23















.

Proof. We have, with ̺3 = 1, ̺ 6= 1,

F2(x) = (1−m
3)x31 +

1

3
(mx1 + x2 + x3)

3

+
1

3
(mx1 + ̺x2 + ̺

2x3)
3 +
1

3
(mx1 + ̺

2x2 + ̺x3)
3,

hence
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A2 = A2(m) =











0 m m̺ m̺2

0 1 ̺2 ̺
0 m m̺2 m̺
0 1 1 1
0 1 ̺ ̺2











.

Clearly rankA2 < 4 and by adding the first three columns of B2 = B2(m)
to the fourth we obtain

rankB2(m) = rankC2(m) + 2,

where

C2(m) =







m m̺ α1α2
1 ̺2 α22
m m̺2 α1α3
1 ̺ α23






.

If rankC2(m) < 3, then α1α3 −mα
2
2 = mα

2
3 − α1α2 = 0, hence if α1 6= 0

we have either m 6= 0 and m
α1
[α1, α2, α3] = [m, 1, 1], [m, ̺, ̺

2] or [m, ̺2, ̺],

or m = 0 and 1
α1
[α1, α2, α3] = [1, 0, 0].

Further, we have

F3(x) = −x
3
1+
1

3
(x1+x2+x3)

3+
1

3
(x1+̺x2+̺

2x3)
3+
1

3
(x1+̺

2x2+̺x3)
3,

hence
A3 = A2(1), B3 = B2(1)

and the assertion follows.
Finally, we have

F4(x) = εx
3
1 +
1

3
(x3 + 2x2)

3 +
1

3
(x3 − 2x2)

3 −
1

4
x33,

hence

A4 =











0 0 0 0
0 4 4 0
0 0 0 0
0 2 −2 0
0 1 1 1











, B4 =















1 0 0 0 α21
α1α2
α22

A3 α1α3
α2α3
α23















.

Clearly rankA4 < 4 and rankB4 = rankC4 + 2, where

C4 =







0 0 α1α2
4 4 α22
0 0 α1α3
2 −2 α2α3






.

If rankC4 < 3, then α1α2 = α1α3 = 0, hence if α1 6= 0, then
1
α1
[α1, α2, α3] =

[1, 0, 0].
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Lemma 5. For ν = 5 we have (9) for some αµ ∈ K
3, aµ ∈ K; α1,α2,α3

are linearly independent and the condition rankB5 < 5, where B5 is given
by the formula (10), implies that [α1, α2, α3] is a scalar multiple of one of
the αµ.

Proof. We have

F5(x) =
1

48
(3x1 − 2x2 − 2x3)

3 −
1

48
(3x1 − 2x2 − 2x3)

3

−
1

96
(3x1 − 2x2 − 4x3)

3 +
1

96
(3x1 − 2x2 − 4x3)

3,

hence

B5 =















9 9 9 9 α21
−6 −6 6 6 α1α2
4 4 4 4 α22
−6 6 −12 12 α1α3
4 −4 −8 8 α2α3
4 4 16 16 α23















.

It is easily seen that

rankB5 = rankC5 + 2,

where

C5 =







9 9 α21
−6 6 α1α2
4 4 α22
4 16 α23






.

If rankC5 < 3 then −48α
2
1 + 108α

2
2 = 0, 48α1α2 + 120α

2
2 − 48α

2
3 = 0, hence

3[α1, α2, α3] = α1[3,−2,−2], α1[3,−2, 2], α1[3, 2,−4] or α1[3, 2, 4].

Proof of Theorem 2. We shall show first that

M(3, 3,K) ≥ 5.

Indeed, suppose that

(11) 3x21x2 + 3x1x
2
2 =

4
∑

µ=1

fµ(αµx), where αµ ∈ K
3, fµ ∈ K[z].

Since the left hand side is homogeneous we may assume that the fµ are
monomials, and since K is algebraically closed, that fµ = z

3 (1 ≤ µ ≤ 4).
Then for each µ ≤ 4,

Gµ := 3x
2
1x2 + 3x1x

2
3 − (αµx)

3

is the sum of three cubes of linear forms and by Lemma 2 we have S(Gµ) = 0.
However by the same lemma and a tedious computation

S(Gµ) = −α
3
µ2,
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hence αµ2 = 0 for all µ ≤ 4. This contradicts (11), since the left hand side
depends on x2, while the right does not.
We shall now show that

M(3, 3,K) ≤ 5.

Let F ∈ K[x] be a polynomial of degree 3 with the highest homogeneous
part F0. Since the statement of the theorem is invariant with respect to
non-singular linear transformations we may assume by virtue of Lemma 3
that F0(x) = Fν(x), where 1 ≤ ν ≤ 6. Also we may assume that F (0) = 0,
since a constant can be added to any polynomial fµ. If ν = 1 we have

F0(x) = F1(x) = ηx
3
2 + x

3
3.

On the other hand, by Theorem 3 of [6],

F (x)− F1(x) =
3
∑

µ=1

fµ(αµx), αµ ∈ K
3, fµ ∈ K[z],

hence (1) holds with M = 5 and

α4 = [0, 1, 0], f4 = ηz
3,

α5 = [0, 0, 1], f5 = z
3.

If 1 < ν ≤ 5 we have, by Lemmas 4 and 5,

(12) F0(x) = Fν(x) =
4
∑

µ=1

aµ(αµx)
3.

Now, let

(13) F (x)− F0(x) =
3
∑

i,j=1

bijxixj +
3
∑

i=1

cixi, bij = bji,

and let

D = det















Bν

b11
b12
b22
b13
b23
b33















=
∑

1≤i≤j≤3

cijαiαj .

If ν ≤ 4, in view of the condition rankAν = 0 we have c11 = 0, hence
the equation

(14)
∑

1≤i≤j≤3

cijαiαj = 0

has infinitely many pairwise linearly independent solutions with α1 6= 0.
Thus there exists a vector [α51, α52, α53] with α51 6= 0 that is not a scalar
multiple of any αµ (1 ≤ µ ≤ 4) and satisfies D = 0. According to Lemma 4,
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for αi = α5i (1 ≤ i ≤ 3) we have rankBν = 5. It follows by Kronecker–
Capelli’s theorem that the system of linear equations

5
∑

µ=1

bµαµiαµj = bij (1 ≤ i ≤ j ≤ 3)

is solvable for bµ in K (1 ≤ µ ≤ 5). Also the system

3
∑

µ=1

dµαµi = ci (1 ≤ i ≤ 3)

is solvable for dµ in K (1 ≤ µ ≤ 3), because of the linear independence of
α1,α2,α3. Therefore, with d4 = d5 = 0,

F (x)− F0(x) =
5
∑

µ=1

bµ(αµx)
2 +

5
∑

µ=1

dµ(αµx),

which together with (12) gives (1) with

fµ = αµz
3 + bµz

2 + dµz, a5 = 0.

If ν = 5, then the equation (14) has infinitely many pairwise linearly
independent solutions. Thus there exists a vector [α51, α52, α53] that is not
a scalar multiple of any αµ (1 ≤ µ ≤ 4) and satisfies D = 0. According to
Lemma 5, for αi = α5i (1 ≤ i ≤ 3) we have rankB5 = 5. The remainder of
the proof is identical with the one given above.
There remains the most difficult case ν = 6. Here, as the proof of

M(3, 3,K) ≥ 5 shows, the above approach is impossible and we argue as
follows.
Let again (13) hold and consider first the case where b22 6= 0, or b22 = 0,

b23 = 0. We choose c ∈ K as a solution to the equation

(15) cb22 = b23

and then choose α43, α53 in K satisfying the conditions

cα43α53 + α43 + α53 = 0, α43α53(α43 − α53) 6= 0.

This gives
∣

∣

∣

∣

∣

∣

α43 α53 −c

α243 α
2
53 1

α343 α
3
53 0

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

α43 α53
α243 α

2
53

∣

∣

∣

∣

6= 0

and the systems of linear equations

(16)
a4α43 + a5α53 = −c, a4α

2
43 + a5α

2
53 = 1, a4α

3
43 + a5α

3
53 = 0;

b4α43 + b5α53 = b13 − cb12, b4α
2
43 + b5α

2
53 = b33 − c

2b22

are solvable for a4, a5, b4, b5 in K.
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Then we choose α12, α22, α32 in K such that

(a4 + a5)α12α22α32 + α12α22 + α12α32 + α22α32 = 0,

(α22 − α12)(α32 − α12)(α32 − α22) 6= 0.

This gives
∣

∣

∣

∣

∣

∣

∣

1 1 1 −a4 − a5
α12 α22 α32 1
α212 α

2
22 α

2
32 1

α312 α
3
22 α

3
32 0

∣

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

1 1 1
α12 α22 α32
α212 α

2
22 α

2
32

∣

∣

∣

∣

∣

∣

6= 0,

∣

∣

∣

∣

∣

∣

1 1 1
α12 α22 0
cα12 cα22 α43

∣

∣

∣

∣

∣

∣

6= 0

and the systems of linear equations

(17)

3
∑

µ=1

aµ = −a4 − a5,
3
∑

µ=1

aµαµ2 = 1,
3
∑

µ=1

aµα
2
µ2 = 0,

3
∑

µ=1

aµα
3
µ2 = 0;

3
∑

µ=1

bµ = b11 − b4 − b5,
3
∑

µ=1

bµαµ2 = b12,
3
∑

µ=1

bµα
2
µ2 = b22;

2
∑

µ=1

dµ + d4 = c1,
2
∑

µ=1

dµαµ2 = c2,
2
∑

µ=1

dµcαµ2 + d4α43 = c3

are solvable for a1, a2, a3, b1, b2, b3, d1, d2, d4 in K. Then we put d3 = d5 = 0,

αµ =

{

[1, αµ2, cαµ2] for µ ≤ 3,

[1, 0, αµ3] for µ = 4, 5,

fµ = aµz
3 + bµz

2 + dµz (1 ≤ µ ≤ 5),

and verify that (12)–(13) and (15)–(17) imply (1).

Consider now the case where b22 = 0, b23 6= 0. We take c as the solution
to the equation

(18) cb23 + b12 = b33.

Then we choose αµ3 as 5 distinct roots of the equation

(19) α53 = d(cα3 + 1)
3,

where d is chosen so that the equation has distinct roots. It follows that
cαµ3 + 1 6= 0 and we take

(20) αµ2 =
α2µ3
cαµ3 + 1

(1 ≤ µ ≤ 5).
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Let us consider the matrix

A =











1 . . . 1
α12 . . . α52
α212 . . . α252
α13 . . . α53
α12α13 . . . α52α53











and suppose that a linear combination of its successive rows with coefficients
e1, . . . , e5, respectively, equals 0. From (20) we obtain

e1 + e2
α2µ3
cαµ3 + 1

+ e3
α4µ3

(cαµ3 + 1)2
+ e4αµ3 + e5

α3µ3
cαµ3 + 1

= 0,

hence

(e3 + e5c)α
4
µ3 + (e2c+ e4c

2 + e5)α
3
µ3 + (e1c

2 + e2 + 2e4c)α
2
µ3

+ (2e1c+ e4)αµ3 + e1 = 0

and since the left hand side is a polynomial of degree at most 4 in αµ3, and
α13, . . . , α53 are distinct, we have

e3 + e5c = 0, e2c+ e4c
2 + e5 = 0, e1c

2 + e2 + 2e4c = 0,

2e1c+ e4 = 0, e1 = 0,

which implies eµ = 0 (1 ≤ µ ≤ 5). Thus the rows of A are linearly indepen-
dent and the systems of linear equations

(21)

5
∑

µ=1

aµ = 0,

5
∑

µ=1

aµαµ2 = 1,

5
∑

µ=1

aµα
2
µ2 = 0,

5
∑

µ=1

aµαµ3 = 0,
5
∑

µ=1

aµαµ2αµ3 = 0;

(22)

5
∑

µ=1

bµ = b11,
5
∑

µ=1

bµαµ2 = b12,
5
∑

µ=1

bµα
2
µ2 = 0,

5
∑

µ=1

bµαµ3 = b13,

5
∑

µ=1

aµαµ2αµ3 = b23;

(23)
5
∑

µ=1

dµ = c1,
5
∑

µ=1

dµαµ2 = c2,
5
∑

µ=1

dµαµ3 = c3

are solvable for aµ, bµ, dµ in K.

In view of (18) and of the identities

α3µ2 = dαµ3, α2µ3 = cαµ2αµ3 + αµ2, α2µ2αµ3 = d(cαµ3 + 1),

αµ2α
2
µ3 = cα

2
µ2αµ3 + α

2
µ2, α3µ3 = cαµ2α

2
µ3 + αµ2αµ3,
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which follow from (19)–(20), the resulting aµ, bµ, dµ satisfy also the equations

5
∑

µ=1

aµα
3
µ2 = 0,

5
∑

µ=1

aµα
2
µ3 = 1,

5
∑

µ=1

aµα
2
µ2αµ3 = 0;

5
∑

µ=1

aµαµ2α
2
µ3 = 0,

3
∑

µ=1

aµα
3
µ3 = 0;

3
∑

µ=1

bµα
2
µ3 = cb23 + b12 = b33,

hence, by (12) and (13), (1) holds with

αµ = [1, αµ2, αµ3], fµ = aµz
3 + bµz

2 + dµz (1 ≤ µ ≤ 5).
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