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ON THE GRAM–SCHMIDT ORTHONORMALIZATONS

OF SUBSYSTEMS OF SCHAUDER SYSTEMS

BY

ROBERT E. ZINK (West Lafayette, IN)

Abstract. In one of the earliest monographs that involve the notion of a Schauder
basis, Franklin showed that the Gram–Schmidt orthonormalization of a certain Schauder
basis for the Banach space of functions continuous on [0, 1] is again a Schauder basis for
that space. Subsequently, Ciesielski observed that the Gram–Schmidt orthonormalization
of any Schauder system is a Schauder basis not only for C[0, 1], but also for each of
the spaces Lp[0, 1], 1 ≤ p < ∞. Although perhaps not probable, the latter result would
seem to be a plausible one, since a Schauder system is closed, in the classical sense, in
each of the Lp-spaces. This closure condition is not a sufficient one, however, since a
great variety of subsystems can be removed from a Schauder system without losing the
closure property, but it is not always the case that the orthonormalizations of the residual
systems thus obtained are Schauder bases for each of the Lp-spaces. In the present work,
this situation is examined in some detail; a characterization of those subsystems whose
orthonormalizations are Schauder bases for each of the spaces Lp[0, 1], 1 ≤ p < ∞, is
given, and a class of examples is developed in order to demonstrate the sorts of difficulties
that may be encountered.

1. In 1927 Schauder [9] presented a denumerable set of functions, defined
and continuous on a closed, bounded interval, in terms of which every contin-
uous function thereon defined has a unique series expansion that converges
uniformly to the function. This idea, in a somewhat more restrictive form,
had appeared in Faber’s [4] earlier study of the Haar orthogonal system;
nevertheless, the members of the systems from which the series expansions
are formed are commonly termed Schauder functions.

A Schauder system is by no means an orthogonal family, but Franklin
[5] showed that the Gram–Schmidt orthonormalization of a Schauder sys-
tem is, again, a system of representation, or, in the current terminology,
a Schauder basis for the continuous functions defined on the fundamental
interval. Moreover, in his seminal studies of the Franklin systems, Ciesielski
[2, 3] showed that these orthonormal systems are also Schauder bases for
each of the Lp-spaces, 1 ≤ p < ∞, associated with the interval of defini-
tion, I.
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Now a Schauder system is incredibly rich, in the sense that any finite
subset, and many infinite subsets, of the system can be discarded, and the
residual subsystem will continue to be closed in each of the spaces Lp(I).
Of course, the Gram–Schmidt orthonormalization of a subsystem ob-

tained in this manner will not be a Schauder basis for C(I), but it may
be a basis for some subspace of C(I) and/or for some nontrivial collection
of the Lp-spaces. Indeed, in an earlier work [13], some results of this kind
were obtained, and, in the present note, a somewhat more complete theory
is given.

2. The Schauder systems herein considered are collections of piecewise-
linear functions associated with sequences

{πn = {tnk : 0 ≤ k ≤ 2n}}∞n=0
of subdivisions of [0,1] for which the following conditions are satisfied:

t00 = 0, t01 = 1,

tnk < tn+1,2k+1 < tn,k+1 ∀k = 0, . . . , 2n − 1, ∀n = 0, 1, . . . ,
tn+1,2k = tn,k ∀k = 0, . . . , 2n, ∀n = 0, 1, . . . ,

and
lim
n
‖πn‖ = 0.

If, in addition, there is a positive constant, λ, such that

tn,j+1 − tnj
tn,k+1 − tn,k

≤ λ ∀j, k = 0, . . . , 2n, ∀n = 1, 2, . . . ,

the associated Schauder system will be termed regular. (In the case of the
standard Faber–Schauder system, based upon the partitions of [0, 1] deter-
mined by the dyadic rationals tnk = k/2

n, one has, for example, λ = 2.)
The first two elements of the system are the constant function ϕ00 = 1

and the identity function ϕ01. The remaining functions are defined in blocks,
or ranks, of sizes 2n−1 (n = 1, 2, . . .) as follows: ϕn,k−1, the kth element
of the nth block, takes the value 1 at tn,2k−1, has for support the inter-
val (tn,2k−2, tn,2k), and is linear on each of the intervals (tn,2k−2, tn,2k−1)
and (tn,2k−1, tn,2k). Finally, the functions are arranged in lexicographical
order by taking ϕ0 = ϕ00, ϕ1 = ϕ01, and, for k = 1, . . . , 2

n and n =
0, 1, . . . , φ2n+k = ϕn+1,k−1.
If Φ is any Schauder system, then both Φ and GSΦ, its Gram–Schmidt

orthonormalization, are Schauder bases for C[0, 1]. (See, for example, [7].)
Moreover, Ciesielski [2] has shown that GSΦ is a Schauder basis for each
space Lp[0, 1], 1 ≤ p <∞.
Of course, if one deletes from Φ one or more of its members, then neither

the residual system, Φ̺, nor its Gram–Schmidt orthonormalization will be a
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Schauder basis for C[0, 1], but it was shown in [13] that, for certain classes
of deletions, GSΦ̺ will be a basis for the L

p-spaces.

Theorem A. Let Φ̺ = {ϕ1, ϕ2, . . .} be a subsystem of a Schauder sys-
tem, Φ, and let {En}∞n=1 be the sequence of supports of the elements of Φ̺.
If Φ̺ satisfies both

(i) µ(lim supnEn) = 1, and

(ii) if for all ϕ ∈ Φ̺ and all ψ ∈ Φ, suppψ ⊂ suppϕ implies ψ ∈ Φ̺,
then for all p ∈ [1,∞), GSΦ̺ is a Schauder basis for Lp[0, 1].

Theorem B. If Φ is the Faber–Schauder system, and if Φ̺ is the resid-
ual system obtained from Φ by deleting any one of its elements, then GSΦ̺
is a Schauder basis for each space Lp[0, 1], p ∈ [1,∞).

Following the trail marked by Ciesielski, the proofs of these theorems
are completed by demonstrating the boundedness of the sequence {Sn}∞n=1
of the partial-sum operators associated with GSΦ̺, since, in each case, the
system is total in each of the Lp-spaces [14]. For Theorem B, this proved to
be a surprisingly complex process, and the technique developed, in [13], did
not appear to be easily extendable to systems obtained from Φ by deleting
an arbitrary finite subset of its members. Subsequently, examples of cofinite,
residual systems have been given for which an application of that technique
cannot lead to the desired result. Thus, a different approach to the problem
is essential. Such an approach is suggested by the method employed by
Kaczmarz and Steinhaus [7] in their treatment of the Franklin system. One
begins by showing that, for a cofinite system, Φ̺, associated with a regular
Schauder system, Φ, GSΦ̺ is a Schauder basis for a certain Banach subspace
of C[0, 1].

3. If Φδ = {ϕi1 , . . . , ϕim}, and if Φ̺ = Φ \ Φδ, then every finite linear
combination of elements of Φ̺ will be obliged to satisfy a finite number
of convex, linear constraints. The latter may be described in the following
manner: Let S be the subset of [0, 1] that contains each of the endpoints of
the support of each element of Φδ, and for each j = 1, . . . ,m with ij 6= 0, let
τj be the point at which ϕij attains its maximum value, and if i1 = 0 (i.e.,
if ϕ0 ∈ Φδ), let τ1 = 0. Finally, let T = {τ1, . . . , τm}, and let U = S ∪ T .
With one possible exception, the aforementioned constraints relate the

values that a Φ̺-polynomial must assume on T to its values on S; viz., to
each τj 6= 0, there will correspond a set, {αij : i = 1, . . . , s}, such that

p(τj) =

s
∑

i=1

αijp(ui),

s
∑

i=1

αij = 1 ∀j.
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The exceptional constraint will arise if ϕ0 ∈ Φδ. In this case, p will be
obliged to satisfy, in addition, either p(0) = 0 or p(0) = p(1) = 0, according
as ϕ1 6∈ Φδ or ϕ1 ∈ Φδ. For example, if (only) ϕ3,1 = ϕ6, ϕ5,5 = ϕ22 and
ϕ6,10 = ϕ43 were omitted from the Faber–Schauder system, p would be
obliged to satisfy three conditions:

p
(

3
8

)

= 12p
(

1
4

)

+ 12p
(

1
2

)

,

p
(

11
32

)

= 14p
(

1
4

)

+ 12p
(

5
16

)

+ 14p
(

1
2

)

,

p
(

21
64

)

= 18p
(

1
4

)

+ 34p
(

5
16

)

+ 18p
(

1
2

)

.

Let C̺[0, 1] be the subspace of C[0, 1] whose elements satisfy the same
constraints as do the Φ̺-polynomials.

Theorem 1. If Φ is a regular Schauder system, and if Φ̺ is a cofinite
subsystem of Φ, then Ψ = GSΦ̺ is a Schauder basis for C̺[0, 1].

Proof. The following demonstration is simply an elaboration of the el-
egant argument devised by Kaczmarz and Steinhaus in order to show that
the Franklin system is a Schauder basis for C[0, 1].
Let Φ̺={ϕk(j) :j=1, 2, . . .}, and for each n∈N, letWn={w1, . . . , wr(n)}

be the subset of [0, 1] that contains each vertex of each Schauder function ϕi,
i = 0, . . . , k(n). The partition, π∗n, of [0, 1] determined by Wn will be either
one of the πm defined above, or a refinement of one of those partitions.
Let f be an arbitrary element of C̺[0, 1], and let sn =

∑n
i=1 ciψi be the

nth partial sum of the Ψ -Fourier series of f . Then sn is a polygonal function
whose vertices have abscissae that are elements of Wn.
Let the positive number ε be specified. Then there exists a δ = δ(ε) > 0

such that, for all t1, t2 in [0, 1],

|f(t1)− f(t2)| < ε whenever |t1 − t2| < δ.

For all sufficiently large n, one has ‖π∗n‖ < δ. For such an n, and for each i
in {1, . . . , r(n)}, let

hi = |f(wi)− sn(wi)|.
If wi1 and wi2 are adjacent elements of Wn, then [7, 123–124]

wi1\
wi2

(f(t)− sn(t))2 dt ≥
d

15
{max(hi1 , hi2)− ε}2 − ε2d,

where d is the length of the interval of (wi1 , wi2).
Let M = max{h1, . . . , hr(n)}, let M = hj , and suppose that M > 7ε.
Consider now those elements wi, not in U , lying to the left of wj for which

hi ≤ 7ε. Designate the largest of these by wp. Should there be no such wi,
let wp = 0. Similarly, denote by wq the smallest of those wi, greater than
wj , not in U for which hi ≤ 7ε. Should there be no such wi, let wq = 1.
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If there is any element t ∈ U that does not lie within the interval (wp, wq),
let wp(t) (resp. wq(t)) be the largest (resp. smallest) element wi ∈ Wn \ U
left (resp. right) of wj such that hi ≤ 7ε. As before, it may happen that
wp(t) = 0 or wq(t) = 1. If there remain other elements of U that do not lie
within (wp, wq)∪ (wp(t), wq(t)), one continues this process so as to obtain, at
last, a finite collection of nonoverlapping intervals I1, . . . , Il such that each
element of U lies in the interior of some Ik, and, for each element wk of
(Wn \ U) ∩

⋃l
k=1 Int Ik, one has hk > 7ε.

Let these intervals be so ordered that, for s < t, Is lies to the left of It,
and let the elements of cl Ik ∩Wn be vk1 < vk2 < . . . < vkik .
One defines the polygonal function σn as follows:

σn(v11) =

{

f(0), if v11 = 0,
sn(v11), if v11 6= 0;

σn(vk1) = sn(vk1), 1 < k ≤ l;
σn(vkj) = f(vkj), 1 ≤ k ≤ l, 1 < j < ik;

σn(vkik) = sn(vkik), 1 ≤ k < l;

σn(vlil) =

{

sn(vlil), if vlil 6= 1,
f(1), if vlil = 1;

σn(t) = sn(t), ∀t ∈ [0, 1] \
l
⋃

k=1

cl Ik.

Let E =
⋃l
k=1 cl Ik, and let

J(sn) =
\
E

(f(t)− sn(t))2 dt =
l
∑

k=1

\
Ik

(f(t)− sn(t))2 dt.

Then

J(sn) ≥
d1 + d2
15
(M − ε)2 − (d1 + d2)ε2

+
|E| − (d1 + d2)−

∑q
k=1(dk1 + dk2)

15
(6ε)2

−
(

|E| − (d1 + d2)−
q
∑

k=1

(dk1 + dk2)
)

ε2,

where d1 and d2 are the lengths of the fundamental intervals that abut at
wj , dk1 and dk2 are the lengths of the corresponding intervals that abut at
the kth element of U , and q is the number of distinct elements of U .
On the other hand, one has

J(σn) :=
\
E

(f(t)− σn(t))2 dt ≤ |E|ε2 +
l
∑

k=1

(dk3 + dk4)(8ε)
2,
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where

dk3 = |(vk1, vk2)| and dk4 = |(vkik−1 , vkik)|, k = 1, . . . , l.

Because σn agrees with f on all of S, it follows that σn is an element of the
span of {ψ1, . . . , ψn}; thus,

1\
0

(f(t)− sn(t))2 dt ≤
1\
0

(f(t)− σn(t))2 dt,

and since σn coincides with sn on all of [0, 1] \ E,\
E

(f(t)− sn(t))2 dt ≤
\
E

(f(t)− σn(t))2 dt.

It follows that

d1 + d2
15
(M − ε)2 ≤

(

|E| −
q
∑

k=1

(dk1 + dk2)
)

(

2− 3615
)

ε2 +
d1 + d2
15
(36ε2)

+
(

q
∑

k=1

(dk1 + dk2)
)

ε2 +

l
∑

k=1

(dk3 + dk4)(64ε
2).

Taking account of the possibility that either d1 or d2 might be zero, one
finds that

M ≤ (1 +
√
36 + 130λs)ε,

where λ is the regularity constant for Φ, and thus, sn converges uniformly
to f .

Since Ψ is a Schauder basis for C̺[0, 1], it follows that the corresponding
sequence of partial-sum operators,

{S̺n : C̺[0, 1]→ C̺[0, 1]}∞n=1,
is bounded.

For each f in C̺[0, 1],

S̺nf =

1\
0

Kn(·, t)f(t) dt,

where Kn is the nth Dirichlet kernel associated with Ψ ; thus, there is a
positive constant, A, such that, for all n,

sup
f∈C̺[0,1],
‖f‖∞≤1

sup
x∈[0,1]

∣

∣

∣

1\
0

Kn(x, t)f(t) dt
∣

∣

∣
= sup
x∈[0,1]

sup
f∈C̺[0,1],
‖f‖∞≤1

∣

∣

∣

1\
0

Kn(x, t)f(t) dt
∣

∣

∣
≤ A.

Let x be a fixed element of [0, 1]. Then sgnKn(x, ·) is a step function, and
there is a sequence {fm}∞m=1 of continuous functions such that ‖fm‖∞ ≤ 1
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for all m, and

lim
m
fm(t) = sgnKn(x, t).

From the Lebesgue theorem of dominated convergence it follows that

lim
m

1\
0

Kn(x, t)fm(t) dt =

1\
0

|Kn(x, t)| dt.

Finally, for each m, there exists a gm in C̺[0, 1] such that

‖gm‖∞ ≤ 1 and ‖fm − gm‖1 < 2−m.
Hence,

∣

∣

∣

1\
0

Kn(x, t)gm(t) dt−
1\
0

Kn(x, t)fm(t) dt
∣

∣

∣

≤ ‖Kn(x, ·)‖∞‖gm − fm‖1 → 0 as m→∞,
from which follows

1\
0

|Kn(x, t)| dt = lim
m

1\
0

Kn(x, t)gm(t) dt ≤ A,

and, because x may be chosen arbitrarily,

∥

∥

∥

1\
0

|Kn(·, t)| dt
∥

∥

∥

∞
≤ A.

According to a theorem of Orlicz [8], if the individual members of an or-
thonormal system are bounded, and if, for every n,

∥

∥

∥

1\
0

|Kn(·, t)| dt
∥

∥

∥

∞
≤ A,

where A is a constant independent of n, then

‖Snf‖p ≤ A‖f‖p ∀f ∈ Lp[0, 1], ∀p ∈ [1,∞).
Theorem 2. If one deletes any finite number of elements from a regular

Schauder system Φ, then the Gram–Schmidt orthonormalization of the resid-
ual system is a Schauder basis for each of the spaces Lp[0, 1], 1 ≤ p <∞.
Proof. The residual system, Φ̺, satisfies condition (i) of Theorem A;

thus, for each p in [1,∞), it follows that the finite linear combinations of the
elements of Ψ = GSΦ̺ form a dense subset of L

p[0, 1]. (See, for example,
[14].) As a consequence of Theorem 1, there is, for each p ∈ [1,∞), a constant
Ap such that ‖Sn‖p ≤ Ap for all n, where Sn is the nth partial-sum operator
on Lp[0, 1] associated with Ψ . These two conditions yield the desideratum.
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4. As one sees from Theorem A, it is possible to delete from a Schauder
system infinitely many of its members in such a way that the G-S orthonor-
malization of the residual system will be a Schauder basis for each of the
spaces Lp[0, 1], 1 ≤ p < ∞. Given the extreme redundancy of a Schauder
system, as a set of functions whose span is a dense subset of each of the
Lp-spaces, it is at least conceivable that the condition (i), of Theorem A,
might be all that one needs for the conclusion of that theorem.

Suppose that the subset Φδ = {ϕnk : k = 1, 2, . . .} were deleted from Φ.
Let

Φ
(N)
δ = {ϕnk : k = 1, . . . , N},

and let AN be the Banach subspace of C[0, 1] whose elements are obliged
to satisfy the convex linear constraints associated with Φ

(N)
δ . Then

A1 ⊃ A2 ⊃ . . . and C̺[0, 1] =

∞
⋂

N=1

AN ,

where C̺[0, 1] is the (Banach) subspace of C[0, 1] whose elements satisfy all
of the constraints that arise by virtue of the removal of Φδ from Φ.

In the case of a regular system, Theorem 1 shows that ΨN = GS(Φ\Φ(N)δ )
is a Schauder basis for AN ; thus, there is a positive constant AN such that

‖S(N)n ‖∞ ≤ AN ∀n ∈ N, ∀N ∈ N,

where S
(N)
n is the nth partial-sum operator on AN associated with ΨN .

If, in turn, the sequence {AN}∞N=1 were bounded, then Ψ = GSΦ̺ would
be a Schauder basis for C̺[0, 1], and by virtue of an argument similar to the
one employed in the proof of Theorem 2, Ψ would be a Schauder basis for
each space Lp[0, 1], 1 ≤ p <∞.
There is contained in the proof of Theorem 1, however, a hint that this

approach to the problem will not be fruitful. There one finds, in the estimate
for ‖sn − f‖∞, a parameter related to the order of Φδ, which suggests that
{AN}∞N=1 might be an increasing, unbounded sequence. In any event, if Ψ
is to be a Schauder basis for C̺[0, 1], {An}∞n=1 must be bounded. Indeed, an
even more restrictive condition must be satisfied.

Theorem 3. Let Φ̺ satisfy the condition (i), of Theorem A; let Ψ =
GSΦ̺; and let Sn be the nth partial-sum operator associated with Ψ . The
following propositions are equivalent :

(1) Ψ is a Schauder basis for C̺[0, 1];

(2) Ψ is a Schauder basis for each space Lp[0, 1], 1 ≤ p <∞, and there is
a positive constant , A, such that ‖Sn‖p ≤ A for all n ∈ N and 1 ≤ p <∞;
(3) {Sn : n ∈ N} is a bounded set of operators on C[0, 1].
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Proof. Since Φ̺ satisfies the condition (i), it follows, essentially from
the work of Goffman [6] (see also [14]), that spanΦ̺ is dense in each space
Lp[0, 1], 1 ≤ p <∞. As in the proof of Theorem 1, Ψ being a basis for C̺[0, 1]
implies the uniform boundedness of the sequences {‖Sn‖p}∞n=1, 1 ≤ p <∞,
and the remainder of the proof of (1)⇒(2) follows along the same line as
the argument given in the demonstration of Theorem 2. (Indeed, the same
argument, mutatis mutandis, leads to the conclusion that Ψ is a Schauder
basis for each separable Orlicz space on [0, 1]; see [15].)
If f is any continuous function with ‖f‖∞ ≤ 1, then, for each n ∈ N and

for each p ∈ [1,∞),
‖Snf‖p ≤ ‖Sn‖p‖f‖p ≤ A‖f‖∞.

Since ‖Snf‖∞ = limp→∞ ‖Snf‖p, it follows that
‖Sn‖∞ ≤ A ∀f ∈ C[0, 1],

which suffices to complete the demonstration of (2)⇒(3).
Finally, ‖Snf‖∞ ≤ A‖f‖∞ for all f ∈ C[0, 1], implies the corresponding

result for the members of C̺[0, 1]. Since SpanΦ̺ is dense in C̺[0, 1], the
cycle is complete.
From these equivalences follows the insufficiency of the condition (i) for

the conclusion of Theorem A.

Example 4. Let Φ̺ be the subsystem of the Faber–Schauder system
constructed in the following manner. Letm1 = 3, n1 = 2m1+2, n

∗
1 = 2n1+6,

E1 = (2 · 2−m1 + 2−n1 , 3 · 2−m1 − 2−n
∗

1 ) ∪ (3 · 2−m1 , 1),
and

Φ1 = {ϕnj : Enj ⊂ E1} ∪ {ϕm1,1},
where Enj denotes the support of ϕnj .
If G1 is the lim sup of the sequence of supports of the elements of Φ1,

arranged in their usual, lexicographical, order, then µ(G1) = µ(E1).
Let ϕ(m1) = ϕn1+1,2n1−m1+1 , and let

F (a) =

2−m1+1+2−n1\
2−m1+1

[ϕ(m1) − a(t− 2−m1+1)]2 dt

=
2−n1

3
[1− 3 · 2−n1−1a+ 2−2n1a2].

Then

minF (·) = 7
48 · 2

−n1 ;

this minimum value is attained when a = amin =
3
4 · 2n1 , and

F
(

1
2amin

)

= F (amin) +
3
2 · 2

−(n1+5).
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Let the function f be defined on [0, 1] by the conditions

f(t) =

{

2−m1aminϕm1,1(t), if t ∈ E1 ∪ [2−m1+1, 2−m1+1 + 2−n1 ];
0, otherwise.

(On the interval [2−m1+1, 2−m1+1+2−n1 ], one has f(t) = amin(t−2−m1+1).)
By virtue of the work of Goffman et al., to which reference has been

made above, there exists a function ℓ ∈ Span(Φ1 \ {ϕm1,1}) such that\
E1

[f(t)− ℓ(t)]2 dt < 3
2 · 2

−(n1+7).

Choose n∗∗1 > n∗1 so large that the elements of Φ1 used to compose ℓ
have ranks that do not exceed n∗∗1 , and let

Φ∗1 = {ϕnk ∈ Φ1 : n ≤ n∗∗1 }, N1 = |Φ∗1|.
The initial segment of Φ̺ will be the subfamily Φ

∗
1, with its elements ar-

ranged in accord with the original ordering of Φ.

By virtue of the triangular nature of the Gram–Schmidt process, the
N1th partial sum of the GSΦ̺ Fourier series for ϕ

(m1) can be written in the
form

SN1ϕ
(m1) = cϕm1,1 +

∑

(n,k)∈I1

cnkϕnk,

where I1 = {(n, k) : ϕnk ∈ Φ∗1 \ {ϕm1,1}}.
One must have c ≥ 2−m1−1amin, since, for c < 2−m1−1amin,
1\
0

[ϕ(m1)(t)− SN1ϕ(m1)(t)]2 dt

=

2−m1+1+2−n1\
2−m1+1

[ϕ(m1)(t)− cϕm1,1(t)]2 dt+
\
E1

[SN1ϕ
(m1)(t)]2 dt

≥ 7
48 · 2

−n1 + 32 · 2
−(n1+5),

while

1\
0

[ϕ(m1)(t)− (2−m1aminϕm1,1(t)− ℓ(t))]2 dt

=

2−m1+1+2−n1\
2−m1+1

[ϕ(m1)(t)− 2−m1aminϕm1,1(t)]2 dt

+
\
E1

[f(t)− ℓ(t)]2 dt+
\

[3·2−m1−2−n∗ ,3·2−m1 ]

[2−m1aminϕm1,1(t)]
2 dt
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< 7
48 · 2

−n1 + 32 · 2
−(n1+7) + 9

16 · 2
2(n1−m1)−n

∗

1

= 7
48 · 2

−n1 + 38 · 2
−(n1+5) + 98 · 2

−(n1+5)

= 7
48 · 2

−n1 + 32 · 2
−(n1+5).

It follows that

‖SN1ϕ(m1)‖∞ ≥ ‖cϕm1,1‖∞ ≥ 2−m1−1amin > 2m1 .
Moreover, for any q > 2,

(

1\
0

|SN1ϕ(m1)(t)|q dt
)1/q

≥
(

3·2−m1\
3·2−m1−2−n

∗

1

(cϕm1,1(t))
q dt
)1/q

≥ c

2
· 2−n∗1/q ≥ 3

16 · 2
n1−m1−n

∗

1/q;

thus,

‖SN1ϕ(m1)‖q
‖ϕ(m1)‖q

≥
[

3
16 · 2

n1−m1−n
∗

1/q
]

[(q + 1)1/q2n1/q]

= 34 · 2
−8/q(q + 1)1/q2m1(1−2/q).

Hence, regarding SN1 as an operator on L
q[0, 1], one concludes that

‖SN1‖q ≥ Cq2m1(1−2/q),
where Cq is a constant determined by q only.
Proceeding inductively, let m2 = n

∗∗
1 + 1, n2 = 2m2 + 2, n

∗
2 = 2n2 + 6,

E2 = (2 · 2−m2 + 2−n2 , 3 · 2−m2 − 2−n
∗

2 ) ∪ (3 · 2−m2 , 1),
and

Φ2 = {ϕnk : n ≥ m2, Enk ⊂ E2} ∪ {ϕm2,1}.
By essentially duplicating the argument presented above, one finds an n∗∗2 ≥
n∗2 and a corresponding subfamily

Φ∗2 = {ϕnk ∈ Φ2 : n ≤ n∗∗2 }
such that, for N2 = |Φ∗1 ∪ Φ∗2|,

‖SN2ϕn2+1,2n2−m2+1‖∞ > 2m2 ,

and, for each q > 2,

‖SN2ϕn2+1,2n2−m2+1‖q ≥ 3
16 · 2

n2−m2−n
∗

2/q,

so that both ‖SN2‖∞ > 2m2 and ‖SN2‖q ≥ Cq2m2(1−2/q).
In the end, one will have a subfamily of Φ that satisfies the condition (i),

Φ̺ =
∞
⋃

n=1

Φ∗n,
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and an increasing sequence of natural numbers, {Nk}∞k=1, such that each of
the sequences {‖SNk‖}∞k=1 and {‖SNk‖q}∞k=1, q > 2, is unbounded.
Consequently, the Gram–Schmidt orthonormalization of this Φ̺ can be

a basis neither for C̺[0, 1] nor for any of the L
p-spaces other than L2[0, 1].

5. The following remarks are, perhaps, worthy of mention.
The proof of Theorem 1 depends upon the regularity of the underlying

partitions, and, although it is not explicitly mentioned in their work, it
appears that Kaczmarz and Steinhaus require a similar regularity hypothesis
to ensure the validity of their proof that a Franklin system is a Schauder
basis for C[0, 1]. On the other hand, Ciesielski’s proof of the latter result is
independent of any such condition, and this suggests the possible existence
of a stronger version of Theorem 1. The search for such a proposition thus
far has been unsuccessful.
Veselov [12] has observed that if a system Φ = {ϕn : n = 1, 2, . . .} whose

elements are continuous functions is a Schauder basis for C[0, 1], then one
of the following four situations must obtain:

(1) GSΦ is a Schauder basis for C[0, 1] and for each space Lp[0, 1], 1 ≤
p <∞.
(2) GSΦ is a Schauder basis for each space Lp[0, 1], 1 < p < ∞, but

neither for C[0, 1] nor for L1[0, 1].
(3) There is an α ≥ 2 such that GSΦ is a basis for, precisely, those spaces

Lp[0, 1] with p ∈ [α/(α− 1), α].
(4) There is an α > 2 such that GSΦ is a Schauder basis for, precisely,

those spaces Lp[0, 1] with p ∈ (α/(α− 1), α).
For sufficiently thick subsystems of a Schauder system, there is a corre-

sponding proposition, nearly identical to the above.

Theorem 5. Let Φ be a Schauder system, let Φ̺ be a subsystem of Φ
for which the condition (i) is satisfied , and let C̺[0, 1] be the subspace of
C[0, 1] generated by Φ̺. Exactly one of the following propositions is valid :

(1∗) GSΦ̺ is a Schauder basis for C̺[0, 1] and for each space L
p[0, 1],

1 ≤ p <∞.
(2∗) GSΦ̺ is a Schauder basis for each space L

p[0, 1], 1 < p <∞.
(3∗) There is an α ≥ 2 such that GSΦ̺ is a Schauder basis for , precisely ,

those spaces Lp[0, 1] with p ∈ [α/(α− 1), α].
(4∗) There is an α > 2 such that GSΦ̺ is a Schauder basis for , precisely ,

those spaces Lp[0, 1] with p ∈ (α/(α− 1), α).
Proof. If Ψ = GSΦ̺ is a Schauder basis for L

1[0, 1], then Ψ is a basis for
each space Lp[0, 1] with 1 ≤ p ≤ 2 by virtue of the Reisz–Thorin interpola-
tion theorem [16]. Because (Ψ, Ψ) is a biorthogonal system, Ψ is a basis for
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each space Lq[0, 1] with 2 ≤ q <∞, since these spaces are the conjugates of
the Lp-spaces with p ∈ (1, 2] (see [1]). Moreover, if Sn is the nth partial-sum
operator associated with Ψ , then the set {‖Sn‖p : 1 ≤ p < ∞, n ∈ N} is
bounded, by max{A1, A2} for example, where Ap = supn ‖Sn‖p, p = 1, 2.
By virtue of Theorem 3, Ψ is a basis for C̺[0, 1] as well.

In the contrary case, let

B = {r : Ψ is a Schauder basis for Lr[0, 1]}, and β = inf B.

If β ∈ B, then β > 1, and (3∗) obtains, with α = β/(β − 1). If β 6∈ B, then
either (2∗) or (4∗) obtains according as β = 1 or β > 1.

Veselov also provides examples of systems of each of the types (1)–(4),
and it is reasonable to expect that examples of Schauder subsystems of types
(1∗)–(4∗) abound.
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