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ON SOME PROBLEMS OF MĄKOWSKI–SCHINZEL AND ERDŐS

CONCERNING THE ARITHMETICAL FUNCTIONS φ AND σ

BY

FLORIAN LUCA (Morelia) and CARL POMERANCE (Murray Hill, NJ)

Abstract. Let σ(n) denote the sum of positive divisors of the integer n, and let
φ denote Euler’s function, that is, φ(n) is the number of integers in the interval [1, n]
that are relatively prime to n. It has been conjectured by Mąkowski and Schinzel that
σ(φ(n))/n ≥ 1/2 for all n. We show that σ(φ(n))/n → ∞ on a set of numbers n of
asymptotic density 1. In addition, we study the average order of σ(φ(n))/n as well as its
range. We use similar methods to prove a conjecture of Erdős that φ(n−φ(n)) < φ(n) on
a set of asymptotic density 1.

1. Introduction. In this paper, we investigate a couple of conjectures
concerning inequalities involving the arithmetical functions φ, σ, and com-
positions of these. As usual, for a positive integer n we write φ(n) for the
Euler function of n, and σ(n) for the sum-of-divisors function of n. For any
positive integer k and any positive number x we define logk(x) recursively as
the maximum of 1 and log(logk−1(x)), where log1 = log is the natural loga-
rithm. Throughout this paper, we use p, q and P to denote prime numbers,
and c1, c2, . . . will denote positive computable constants.
The first conjecture we are looking at is due to Mąkowski and Schinzel

(see [18]) and asserts that the inequality

(1)
σ(φ(n))

n
≥ 1
2

holds for all positive integers n. It is known that

(2) lim sup
n

σ(φ(n))

n
=∞ and 0 < lim inf

n

σ(φ(n))

n
≤ 1
2
+

1

234 − 1 .

The first limit in (2) is due to Alaoglu and Erdős (see [1]). The positive
lower bound for the second limit in (2) is due to the second author (see [20])
and the upper bound for the same limit appears in the original paper of
Mąkowski and Schinzel [18]. It is known that (1) holds for positive integers
n of various shapes (see, for example, [2], [6], [11], [18]), and in fact in [1] it
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is asserted that σ(φ(n))/n→∞ on a set of asymptotic density 1, and that
σ(φ(n))/φ(n) ∼ eγ log3(n) on a set of asymptotic density 1.
Especially since the proofs of these results stated in [1] were not given,

and since later researchers have labored to give somewhat weaker results
(in [15] it is shown that (1) holds on a set of lower density at least 0.74),
we think it is worthwhile to prove these assertions from [1], in a somewhat
stronger form. For every positive integer n we write S(n) := σ(φ(n))/n. Our
first result in this paper gives the maximal, normal, and average orders of
the function S(n).

Theorem 1. (i) We have

(3) lim sup
n

S(n)

log2(n)
= eγ .

(ii) For each number u, 0 ≤ u ≤ 1, the asymptotic density of the set of
numbers n with

(4) S(n) > ueγ log3(n)

exists, and this density function is strictly decreasing , varies continuously
with u, and is 0 when u = 1.
(iii) For every positive number x,

(5)
1

x

∑

1≤n≤x

S(n) =
6eγ

π2
· log3(x) +O((log3(x))1/2).

We remark that Warlimont (see [22]) has recently shown a result similar
to part (iii) of Theorem 1 for the function φ(n)/φ(φ(n)).
There are several results in the literature which assert that if f(n) is, for

example, either of the functions σ(n)/n or φ(n)/n, then the closure of the
set {f(n)}n≥1 is an interval. Our next result shows that the same is true for
the function f(n) = S(n).

Theorem 2. Let α = lim infn S(n). Then {S(n) | n ≥ 1} is dense in
the interval [α,∞].
We now leave the function S(n) and the next question we address is a

conjecture of Erdős (see [8]) which asserts that the inequality

(6) φ(n− φ(n)) < φ(n)
holds on a set of positive integers n of asymptotic density 1 (i.e., for almost
all positive integers n), but the inequality

(7) φ(n− φ(n)) > φ(n)
holds for infinitely many positive integers n. Some infinite families of positive
integers n for which inequality (7) holds were pointed out in [16]. In that
paper, it was also shown that (6) holds for a set of positive integers n of lower
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density at least 0.54. In this note, we prove that (6) holds indeed for almost
all positive integers n. In fact, we prove a stronger statement, namely:

Theorem 3. (i) Let ε(x) be any positive function of the positive vari-
able x which tends to zero when x tends to infinity. The set of integers n > 1
for which the inequality

(8) φ(n− φ(n)) < φ(n)− n · ε(n)
fails has asymptotic density 0.
(ii) The set of positive integers n for which the inequality

(9)

∣

∣

∣

∣

φ(n)

n
− φ(n− φ(n))
n− φ(n)

∣

∣

∣

∣

<
2 log3(n)

log2(n)

fails has asymptotic density 0.

For example, (9) implies that for any fixed ε > 0 the set of n for which
∣

∣

∣

∣

φ(n)

n
− φ(n− φ(n))
n− φ(n)

∣

∣

∣

∣

< ε

fails has asymptotic density 0. In particular, the two functions φ(n)/n and
φ(n− φ(n))/(n− φ(n)) are asymptotically equal on a set of n of asymptotic
density 1.
For n > 1, let f(n) = φ(n − φ(n))/φ(n). It can be shown, using the

method of proof of Theorem 2, that the set of numbers f(n) is dense in
the interval [0,∞]. This result shows, in particular, that if c is any positive
number, then the inequality

(10) φ(n− φ(n)) > cφ(n)
holds for infinitely many positive integers n, which is a statement much
stronger than the fact that (7) holds for infinitely many positive integers n.
We do not give further details here.

2. Preliminary results. In 1928, Schoenberg (see [21]) proved that the
function φ(n)/n has a distribution. That is, D(u) defined as the asymptotic
density of the set of n with φ(n)/n ≥ u exists for every u. In addition,
D(u) is continuous and strictly decreasing on [0, 1]. Clearly, D(0) = 1 and
D(1) = 0. From these considerations, we immediately derive the following:

Lemma 1. Let ε : (0,∞) → (0, 1) be any function such that ε(x) tends
to zero as x tends to infinity. Then, for a set of n of asymptotic density 1,

(11)
φ(n)

n
> ε(n).

Proof. This is almost obvious. Indeed, let ε be an arbitrarily small posi-
tive number. For large x we have ε(x) < ε. Thus, the set of positive integers
n for which inequality (11) holds contains a set of n of asymptotic density
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at least D(ε). Since this holds for every ε > 0, it follows that inequality (11)
holds for a set of n of asymptotic density D(0) = 1.

Lemma 1 may also be proved by using the average order of φ(n)/n,
namely,

(12)
∑

n≤x

φ(n)

n
=
6

π2
x+O(log(x)),

but we shall have other uses for the distribution function D(u) later.

The next result plays a key role in the proofs of both Theorems 1 and 3
and is essentially due to Erdős, Granville, Pomerance and Spiro (see [9]).
However, since this result was not explicitly stated in [9], we state it below
and provide a short proof.

Lemma 2. There exists a computable positive constant c1 such that on
a set of n of asymptotic density 1, φ(n) is divisible by all prime powers pa

with pa < c1 log2(n)/log3(n).

Proof. We use the notations from [9]. For any positive integer m and
any positive number x we let

(13) S(x,m) =
∑

q≤x
m|(q−1)

1

q
.

From Theorem 3.4 in [9], we know that there exist computable positive
numbers c1, x0 such that the inequality

(14) S(x,m) >
c1 log2(x)

φ(m)

holds for all x > x0 and all m ≤ log(x). Let g(x) = c1 log2(x)/log3(x). From
the proof of Theorem 4.1 in [9], we have, uniformly for all m,

(15)
∑

n≤x
m∤φ(n)

1 <
c2x

exp(S(x,m))
.

Assume now that pa is any prime power with pa < g(x). By increasing x0
if necessary, we assume that the inequality log(x) > g(x) holds for x > x0.
By inequalities (14) and (15), it follows that for such pa,

(16)
∑

n≤x
pa∤φ(n)

1 <
c2x

exp(S(x, pa))
<

c2x

exp (log3(x))
=
c2x

log2(x)
.

Now letM(x) be the least common multiple of all the prime powers pa<g(x).
Inequality (16) shows that the number of n ≤ x for which φ(n) is not a
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multiple of M(x) is at most

(17)
∑

pa<g(x)

∑

n≤x
pa∤φ(n)

1 <
c2x

log2(x)
π0(g(x)) <

2c2xg(x)

log2(x) log(g(x))
<

c3x

(log3(x))
2
,

where π0(y) denotes the number of prime powers p
a ≤ y with a ≥ 1. In-

equality (17) shows that but for O(x/(log3(x))
2) = o(x) positive integers

n ≤ x, φ(n) is a multiple of M(x). Lemma 2 is therefore proved.
For the remainder of this paper, we let g(n) = c1 log2(n)/log3(n) and

denote by M(n) the least common multiple of all prime powers pa < g(n).
Here, c1 is the constant appearing in the statement of Lemma 2.
We shall also make use of the following result:

Lemma 3. On a set of positive integers n of asymptotic density 1 the
following inequalities hold :

h1(n) :=
∑

p>g(n)
p|n

1

p
<
log3(n)

log2(n)
,(18)

h2(n) :=
∑

p>g(n)
p|(n−φ(n)), p∤n

1

p
<
log3(n)

log2(n)
,(19)

h3(n) :=
∑

p>log
2
(n)

p|φ(n)

1

p
<
log4(n)

log3(n)
.(20)

Proof. The fact that inequality (18) holds for a set of n of asymptotic
density 1 follows from an averaging argument. Indeed, if T is any slowly
increasing function of x (like T (x) = g(x), for example), then

(21)
∑

1≤n≤x

∑

T (n)<p
p|n

1

p
= O

(

x

T (x) log(T (x))

)

(see also [9], page 199). Taking T (x) = g(x) in formula (21), we get
∑

n≤x

h1(n) ≤
c4x

log2(x)
.

In particular, but for a set of n ≤ x of cardinality O(x/log3(x)) = o(x),
inequality (18) holds.
We now turn to the second part of the lemma. For n ≤ x,

(22) h2(n) ≤
∑

p≤x

1

p
≤ log2(x) + c5,
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though it is not hard to get a sharper inequality here. Let

η = η(x) =
log4(x)

3 log3(x)
.

For any positive integer n > 1, we let P (n) be the largest prime divisor of n.
By de Bruijn [4], the number of n ≤ x with P (n) ≤ xη is x/(log2(x))3+o(1),
and so is at most x/(log2(x))

2.5 for all sufficiently large values of x. It is
easy to see that the number of n ≤ x with P (n) > xη and P (n)2 |n is at
most x1−η. Let A be the set of numbers n with

(23) x1/2 < n ≤ x, P (n) > xη, P (n)2 ∤n.

It follows from (22) and the above estimates that

(24)
∑

n≤x, n 6∈A

h2(n) ≤
x

log2(x)

for all sufficiently large values of x.
Next, for n ∈ A, let h2(n) = h2,0(n) + h2,1(n), where

(25) h2,0(n) =
∑

xη/2≥p>g(n)
p|(n−φ(n)), p∤n

1

p
, h2,1(n) =

∑

p>xη/2

p|(n−φ(n)), p∤n

1

p
.

For m ≤ x, the number of primes p |m with p > xη/2 is at most 2/η. Thus,
for n ∈ A, h2,1(n) ≤ (2/η)x−η/2, and so

(26)
∑

n∈A

h2,1(n) ≤
x

log(x)

for x sufficiently large.
For an estimation of h2,0(n) we again use an averaging argument. We

have

(27)
∑

n∈A

h2,0(n) ≤
∑

g(x1/2)<p≤xη/2

1

p

∑

n 6≡0 (mod p)
n≡φ(n) (mod p)

n∈A

1.

We now fix a prime number p in the interval (g(x1/2), xη/2] and we find an
upper bound for the inner sum appearing in (27). Assume that n ∈ A is
such that p | (n− φ(n)). Write n = Pm where P = P (n). Then n− φ(n) =
Pm− (P − 1)φ(m) = P (m− φ(m)) + φ(m). Thus,
(28) P (m− φ(m)) ≡ −φ(m) (mod p).
Notice that p does not divide m − φ(m). Indeed, if p | (m − φ(m)), then
congruence (28) implies that p |φ(m), therefore p |m, which contradicts the
fact that p ∤n. Let am be the integer in the interval [0, p − 1] given by
am ≡ −φ(m)(m− φ(m))−1 (mod p). Congruence (28) implies that P ≡ am
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(mod p). From (23) we deduce that m ≤ x1−η. Thus, summing up first over
all the possible values of P (n) when m is fixed, we get

(29)
∑

n 6≡0 (mod p)
n≡φ(n) (mod p)

n∈A

1 ≤
∑

1≤m≤x1−η

∑

1≤P≤x/m
P≡am (mod p)

1 =
∑

1≤m≤x1−η

π

(

x

m
, am, p

)

.

By a well known result of Montgomery and Vaughan (see [19]),

(30) π

(

x

m
, am, p

)

≤ 2x

m(p− 1) log(x/(mp)) .

Since p ≤ xη/2, we have

(31)
∑

1≤m≤x1−η

2x

m(p− 1) log(x/(mp))

≤ 2x

(p− 1)(η/2) log(x)
∑

1≤m≤x1−η

1

m
<
5x

ηp

for x sufficiently large. Hence (29)–(31) imply that
∑

n 6≡0 (mod p)
n≡φ(n) (mod p)

n∈A

1 <
5x

ηp
,

so that from (27), we have
∑

n∈A

h2,0(n) ≤
∑

p>g(x1/2)

5x

p2η
≤ 6x

ηg(x1/2) log(g(x1/2))
(32)

≤ 20x log3(x)

c1 log2(x) log4(x)

for all sufficiently large values of x. With (24) and (26), (32) implies that
∑

n≤x

h2(n) ≤
c6x log3(x)

log2(x) log4(x)
.

In particular, but for O(x/log4(x)) = o(x) values of n ≤ x, inequality (19)
holds.

The third part of Lemma 3 follows immediately from the inequality
∑

n≤x
p|φ(n)

1 = O

(

x log2 x

p

)

(uniformly for every prime p and x larger than some x1 that is independent
of p; see Theorem 3.5 in [9]). It follows that the average of h3(n) for n ≤ x
is O(1/log3(x)), and thus, we get (20) for a set of asymptotic density 1.

Lemma 3 is therefore proved.
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3. Proofs of the theorems

Proof of Theorem 1. (i) We first observe that since

c7n

log2(n)
< φ(n) ≤ n

for all integers n (see [17], Theorem 328), it follows that

lim
n

log2(φ(n))

log2(n)
= 1.

Thus,

(33) lim sup
n

σ(φ(n))

n log2(n)
≤ lim sup

n

σ(φ(n))

φ(n) log2(φ(n))
≤ lim sup

n

σ(n)

n log2(n)
= eγ

(see Theorem 323 in [17]). For the reverse inequality, let nk be a sequence
of integers which attains the last lim sup, that is,

(34) lim
k

σ(nk)

nk log2(nk)
= eγ .

Let pk be the least prime with pk ≡ 1 (modnk). By Linnik’s theorem we
have pk < n

c8
k , so that log2(pk) ∼ log2(nk). Thus,
S(pk)

log2(pk)
=
σ(pk − 1)
pk log2(pk)

∼ σ(pk − 1)
(pk − 1) log2(nk)

≥ σ(nk)

nk log2(nk)
.

With (33) and (34), we thus have part (i) of Theorem 1.

(ii) Here we use the notations from the proof of Lemma 2. By Lemma 2,
for a set of positive integers n of asymptotic density 1, φ(n) is a multiple
of M(n). For each prime p < g(n), let pap be the power of p in the prime
factorization of M(n). For such n, we have the inequality

(35)
σ(φ(n))

φ(n)
≥
∏

p<g(n)

(

1 +
1

p
+ . . .+

1

pap

)

∼
∏

p<g(n)

p

p− 1 ∼ e
γ log3(n)

as n→∞. In addition, we have
σ(φ(n))

φ(n)
<
∏

p|φ(n)

p

p− 1 ≤
(

∏

p≤log
2
(n)

p

p− 1

)(

∏

p|φ(n)
p>log

2
(n)

p

p− 1

)

(36)

∼ eγ log3(n) · exp
(

∑

p|φ(n)
p>log

2
(n)

1

p

)

.

We now use (20). On a set of asymptotic density 1, the argument of exp
in (36) is o(1), so that with (35), which also holds on a set of asymptotic
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density 1, we have
σ(φ(n))

φ(n)
∼ eγ log3(n).

To see that (ii) of Theorem 1 holds, we write

S(n) =
σ(φ(n))

φ(n)
· φ(n)
n
.

The density function referred to in (ii) of Theorem 1 is then exactly the
function D(u) in Schoenberg’s theorem for φ(n)/n.
(iii) We first show that the mean value of S(n) is at least what is claimed.

Let c1 be the constant appearing in Lemma 2, and for large x let A0(x) be
the set of those n with

√
x ≤ n < x such that φ(n) is a multiple of M(n).

By the arguments from the proof of Lemma 2, we know that the cardinality
of the complement of A0(x) in the interval [1, x] is at most O(x/(log3(x))

2).
For n ∈ A0(x) and ap as in (35), we have

σ(φ(n))

φ(n)
≥ σ(M(n))
M(n)

=
∏

p<g(n)

(

1 +
1

p
+ . . .+

1

pap

)

(37)

=
∏

p<g(n)

p

p− 1

(

1− 1

pap+1

)

≥
(

∏

p<g(n)

p

p− 1

)(

1− 1

g(n)

)π(g(n))

= (eγ log(g(n)) +O(1))

(

1 +O

(

1

log(g(n))

))

≥ eγ log3(x)− c9.
Thus,

1

x

∑

1≤n≤x

S(n) ≥ 1
x

∑

n∈A0(x)

σ(φ(n))

φ(n)
· φ(n)
n

(38)

≥ (eγ log3(x)− c9) ·
1

x

∑

n∈A0(x)

φ(n)

n
.

Using estimate (12) and the fact that

x− |A0(x)| = O
(

x

(log3(x))
2

)

,

we get

(39)
1

x

∑

n∈A0(x)

φ(n)

n
>
6

π2
− c10
(log3(x))

2
.
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Combining (38) with (39), we further get

(40)
1

x

∑

1≤n<x

S(n) >
6eγ

π2
log3(x)− c11,

which is a lower bound better than the one asserted.

It remains to get an upper bound for the mean value of S(n). Let x be
a large real number. We split the positive integers in the interval [1, x] into
the following four subsets:

(41) A(x) = {n | 1 ≤ n <
√
x},

(42) B(x) =

{

n

∣

∣

∣

∣

√
x ≤ n ≤ x, h3(n) <

1
√

log3(x)

}

,

(43) C(x) =

{

n

∣

∣

∣

∣

√
x ≤ n ≤ x, h3(n) ≥

1
√

log3(x)
and

ω(φ(n)) < (log2(x))
3

}

,

and finally let D(x) be the complement of A(x)∪B(x)∪C(x) in the interval
[1, x]. Here, h3(n) is as in Lemma 3 and ω(n) denotes the number of different
primes that divide n.

We first comment on the sizes of the cardinalities of the four sets de-
fined above. By the proof of Lemma 3, the cardinality of C(x) is at most
O(x/
√

log3(x)). Clearly, the cardinality of A(x) is exactly ⌊
√
x⌋. We now

show that D(x) is small as well. More precisely, we show that the cardinality
of D(x) is at most O(x/log2(x)). To see why this is so, notice that

(44) ω(φ(n)) ≤ Ω(φ(n)) ≤ Ω(n) +
∑

p|n

Ω(p− 1),

where Ω(m) is the number of prime factors of m, counted with multiplicity.
Thus,

(45)
∑

1≤n≤x

ω(φ(n)) ≤
∑

1≤n≤x

Ω(n) +
∑

1≤n≤x

∑

p|n

Ω(p− 1) =
∑

1
+
∑

2
.

It is well known that

(46)
∑

1
=
∑

1≤n≤x

Ω(n) ∼ x log2(x).

For the second sum appearing in formula (45), we interchange the order of
summation to get

(47)
∑

2
=
∑

1≤p≤x

Ω(p− 1) ·
⌊

x

p

⌋

< x
∑

1≤p≤x

Ω(p− 1)
p

∼ 1
2
x(log2(x))

2.
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The rightmost approximation appearing in formula (47) is a result due to
Erdős and Pomerance (see Lemma 2.3 in [10]). Formulae (46) and (47) imply
that the cardinality of D(x) is indeed at most O(x/log2(x)).
The above considerations show that B(x) contains all integers up to x,

except for O(x/
√

log3(x)) of them.
If E is any one of the letters A, B, C, D, we define

(48) SE =
1

x

∑

n∈E(x)

S(n).

It suffices to bound each one of the numbers SE for E ∈ {A,B,C,D}. Notice
that since

(49)
σ(φ(n))

n
< c12 log2(x)

for all n ≤ x (see (34)), it follows that

(50) SA < c12
|A(x)|
x
log2(x) = O

(

log2(x)√
x

)

= o(1),

and similarly

(51) SD < c12
|D(x)|
x
log2(x) = O(1).

For the remaining numbers, write

(52) φ(n) = n1 · n2,
where

n1 =
∏

pa‖φ(n)
p≤log

2
(n)

pa,(53)

n2 =
∏

pa‖φ(n)
p>log

2
(n)

pa.(54)

Clearly,

(55)
σ(φ(n))

φ(n)
=
σ(n1)

n1
· σ(n2)
n2
<
n1
φ(n1)

· n2
φ(n2)

.

Notice that

(56)
n1
φ(n1)

≤
∏

p<log
2
(x)

(

1− 1
p

)−1

< eγ log3(x) + c13

for all n ≤ x, and

(57)
n2
φ(n2)

≤ exp(c14h3(n))
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for all n >
√
x, where c14 can be taken to be any constant larger than 1

provided that x is large enough. By combining (55)–(57), it follows that if
n ∈ B(x), then

σ(φ(n))

φ(n)
< (eγ log3(x) + c13) exp

(

c14
√

log3(x)

)

(58)

< eγ log3(x) + c15
√

log3(x).

Hence,

SB < (e
γ log3(x) + c15

√

log3(x)) ·
1

x

∑

1≤n≤x

φ(n)

n
(59)

<
6eγ

π2
log3(x) + c16

√

log3(x),

where the last inequality follows from (12).
Finally, when n ∈ C(x), let t(x) = ⌊(log2(x))3⌋. For a given n ∈ C(x),

let p1 < . . . < pt(x) be the first t(x) primes with p1 larger than log2(n).
Then obviously

(60) h3(n) ≤
t(x)
∑

j=1

1

pj
<

∑

c17 log2(x)<p<c18(log2(x))
3 log

3
(x)

1

p
< c19.

Hence, by (57) and (60), we have

(61)
n2
φ(n2)

< c20

when n ∈ C(x). Combining (55) with (56) and (61), we get

(62)
σ(φ(n))

φ(n)
< c21 log3(x)

whenever n ∈ C(x). Thus,

(63) SC < c21
|C(x)|
x
log3(x) < c22

√

log3(x),

where the last inequality in (63) follows from the fact that |C(x)| =
O(x/
√

log3(x)). The assertion (iii) follows now by combining inequalities
(50), (51), (59) and (63).
This concludes the proof of Theorem 1.

Proof of Theorem 2. By inequality (2), we know that 0 < α ≤ 1/2 +
1/(234 − 1). We shall make use of the following theorem due to Chen (see
[5], or Chapter 11 of [14], or Lemma 1.2 in [13]):

Chen’s Theorem. For each even natural number m and x ≥ x0(m)
there exists a prime number s ∈ (x/2, x] with s ≡ 1 (modm) such that
(s− 1)/m has at most two prime factors each of which exceeds x1/10.
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We shall distinguish two cases:

Case 1: There exists a sequence of integers (mn)n≥1 such that
limn S(mn) = α and limn ord2(φ(mn)) = ∞. Fix any real number β ≥ 1.
Let ε be any small positive number, and let m be a positive integer such
that

(64) |S(m)− α| < ε and ord2(φ(m)) > 1/ε.
After fixing such an m, let t be an odd number such that

(65) t > 1/ε, |σ(t)/t− β| < ε, gcd(t, φ(m)) = 1.

It is easy to see that one can find such a number t. We now use Chen’s
theorem to find a prime number s > m such that

(66) s− 1 = 2tl
where l has at most two prime factors larger than max(φ(m), t, 1/ε) each.
Write

(67) φ(m) = 2γm1, m1 ≡ 1 (mod 2).
Then

S(m) =
σ(φ(m))

m
=
σ(2γm1)

m
=
(2γ+1 − 1)σ(m1)

m
.

Notice that m and s are coprime, t and l are also coprime (because the
smallest prime factor of l is larger than t), and tl is coprime to φ(m); there-
fore

(68) S(ms) =
σ(φ(ms))

ms
=
σ(2γ+1m1tl)

m(2tl + 1)
=
(2γ+2 − 1)σ(m1)σ(t)σ(l)

m(2tl + 1)
.

Thus,

(69)
S(ms)

S(m)
=
2γ+2 − 1
2(2γ+1 − 1) ·

σ(t)

t
· σ(l)
l
· 1

1 + (2tl)−1
.

Formula (69) together with the previous assumptions on the parameters γ, t
and l implies that

(70)
∣

∣

∣

S(ms)

S(m)
− β
∣

∣

∣
< c23ε,

where c23 depends only on β. Inequalities (64) and (70) imply that

(71) |S(ms)− αβ| < c24ε,
where c24 depends only on β (because α is absolute). Since ε can be taken
to be arbitrarily small after β was fixed, it follows that αβ is a cluster point
of {S(n) | n ≥ 1}, which settles this case.
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Case 2: There exist two constants K1 and K2 such that |S(n)−α| < K1
implies ord2(φ(n)) < K2. Notice first of all that since

(72) S(p2m) =
σ(φ(p2m))

p2m
=
σ(pφ(pm))

p2m
>
σ(φ(pm))

pm
= S(pm),

it follows that there exists a sequence (mn)n≥1 of squarefree integers such
that S(mn) converges to α. Moreover, in this case we know that ord2(φ(mn))
< K2 when n is large enough. In particular, ω(mn) < K2+1 when n is large
enough.
Define k to be the smallest positive integer such that there exists a

sequence (mn)n≥1 of squarefree numbers for which S(mn) converges to α
and such that ω(mn) = k for all n ≥ 1. For each n let
(73) mn = p1(n) . . . pk(n),

where p1(n) < . . . < pk(n). Write mn = pk(n)m
′
n. Notice first of all that

k > 1. Indeed, if k = 1, it follows that α is a cluster point of {S(p) | p prime}.
However, for p ≥ 7,

S(p) =
σ(p− 1)
p

≥ 1
p

(

1 + 2 +
p− 1
2
+ (p− 1)

)

=
3(p+ 1)

2p
≥ 3
2
,

which would imply that α ≥ 3/2, contradicting the result of Mąkowski and
Schinzel (see (2)). Thus, k > 1. Since pk(n) = P (mn) tends to infinity
with n, we get

α = lim
n
S(mn) = lim

n

σ(φ(m′n)(pk(n)− 1))
m′npk(n)

(74)

≥ lim inf
n

pk(n)− 1
pk(n)

S(m′n) = lim inf
n
S(m′n).

From the definition of k, it follows that (m′n)n≥1 cannot have infinitely many
distinct terms and is, therefore, bounded. These arguments show that one
may assume that mn = apk(n) where a > 1 is a fixed integer. Notice that
a > 2. Indeed, if a = 2, then, for p ≥ 7, one has

S(2p) =
σ(p− 1)
2p

≥ 1
2p

(

1 + 2 +
p− 1
2
+ p− 1

)

=
3(p+ 1)

4p
>
3

4
,

therefore α ≥ 3/4, contradicting again the result of Mąkowski and Schinzel.
Thus, a > 2, therefore φ(a) > 1. We next show that

(75) α = min

(

σ(φ(a)d)

ad

∣

∣

∣

∣

d an even squarefree divisor of φ(a)

)

.

To see why α is at least what is claimed by formula (75), let p be a large
prime and write

p− 1 = dpnp,
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where gcd(dp, np) = 1 and dp is a number whose prime factors are exactly
the prime factors of gcd(p− 1, φ(a)). Notice that dp is even. Then

(76) S(ap) =
σ(φ(a)dpnp)

a(dpnp + 1)
=
σ(φ(a)dp)

adp
· σ(np)
np
· 1

1 + (p− 1)−1 .

Since σ(np) ≥ np, the above argument shows that

(77) α ≥ lim inf
m

′ σ(φ(a)m)

am
,

where the lim inf′ means that we are allowing m to run only over those even
positive integers whose prime divisors are among the prime divisors of φ(a).
If d is the largest squarefree divisor of m, then

σ(φ(a)m)

am
≥ σ(φ(a)d)

ad
,

so α is at least as large as the number appearing on the right hand side
of (75). To see that α is at most that number, choose d to be any even
squarefree divisor of φ(a) and use Chen’s theorem to construct large primes
s such that l = (s−1)/d is an integer composed of at most two primes, each
of them large. Now

(78) S(as) =
σ(φ(a)dl)

a(dl + 1)
=
σ(φ(a)d)

ad
· σ(l)
l
· 1

1 + (s− 1)−1 ,

and notice that the right hand side of (78) tends to σ(φ(a)d)/(ad) when s
tends to infinity through such numbers. This proves formula (75).

Finally, having (75) at hand one can again use Chen’s theorem to prove
our Theorem 2. Indeed, assume that d is an even squarefree divisor of φ(a)
realizing the minimum of the expression appearing on the right hand side
of (75). Let β be an arbitrary real number ≥ 1. Fix ε > 0 arbitrarily small
and choose a number t coprime to φ(a) (in particular, to φ(a)d) such that
both

(79) t > 1/ε and |σ(t)/t− β| < ε.
Now use Chen’s theorem to construct a prime number s such that l =
(s − 1)/(td) is an integer composed of at most two primes larger than
max(tφ(a), 1/ε) each. Now t and l are coprime and tl is coprime to φ(a)d,
therefore

(80) S(sa) =
σ(φ(a)tdl)

a(tdl+ 1)
= α · σ(t)

t
· σ(l)
l
· 1

1 + (s− 1)−1 .

It is easily seen that formulae (79) and (80) together with our assumptions
on s and l imply that

(81) |S(sa)− αβ| < c25ε,



126 F. LUCA AND C. POMERANCE

where c25 depends only on β. Since β was first fixed and then ε was chosen
arbitrarily small, it follows that αβ is a cluster point of {S(n) | n ≥ 1}.
Finally, since β ≥ 1 was arbitrary, it follows that {S(n) | n ≥ 1} is dense in
[α,∞].
Remark. Instead of using Chen’s theorem, we could have used a weaker

fact, namely that for every even m there exist infinitely many primes p such
that (p−1)/m is an integer whose smallest prime factor is at least log p. This
statement follows from simpler sieve methods such as Brun’s or Selberg’s.
Of course, when p goes to infinity through such primes, S(p) approaches
σ(m)/m, which is enough for the arguments employed in the proof of our
Theorem 2 to go through.

Proof of Theorem 3. We use the notations from the proofs of Lemmas 2
and 3. Let A be the set of all integers n which are not primes and for which
M(n) |φ(n) and inequalities (18) and (19) hold. By Lemmas 2 and 3, A has
asymptotic density 1. We now show that inequality (9) holds for all values
of n ∈ A which are large enough. We start by finding suitable upper and
lower bounds on φ(n− φ(n)). Notice that

φ(n− φ(n)) =
∑

m<n−φ(n)
(m,n−φ(n))=1

1(82)

≤
∑

m<n−φ(n)
(m,n)=1

1 +
∑

m<n−φ(n)
(m,n−φ(n))=1, (m,n)>1

1

=
∑

1
+
∑

2
.

Clearly,
∑

1
= (n− φ(n))−

∑

p|n

⌊

n− φ(n)
p

⌋

+
∑

pq|n, p<q

⌊

n− φ(n)
pq

⌋

− . . .(83)

< (n− φ(n))φ(n)
n
+ τ(n).

Here, τ(n) is the number-of-divisors function of n. For the second sum, we
use the fact that M(n) |φ(n). Hence, if m is a number such that (m,n) > 1,
but (m,n−φ(n)) = 1, it follows that m has to be a multiple of a prime p | n
with p > g(n). Of course, for such n, one has

∑

2
<
∑

p|n
p>g(n)

⌊

n− φ(n)
p

⌋

< (n− φ(n))
∑

p|n
p>g(n)

1

p
(84)

= (n− φ(n))h1(n) <
(n− φ(n)) log3(n)

log2(n)
.
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Putting together inequalities (82)–(84), we get

(85)
φ(n− φ(n))
n− φ(n) −

φ(n)

n
<
τ(n)

n− φ(n) +
log3(n)

log2(n)
<
2 log3(n)

log2(n)
.

For the rightmost inequality in (85) we used the fact that n− φ(n) ≥ n1/2,
which holds because n is not prime, and the fact that τ(n) < n1/4, which
holds for all n large enough, thus

τ(n)

n− φ(n) <
1

n1/4
<
log3(n)

log2(n)

for n ∈ A large enough. Inequality (85) proves half of (9). For the other half,
we write

φ(n− φ(n)) =
∑

m<n−φ(n)
(m,n−φ(n))=1

1(86)

≥
∑

m<n−φ(n)
(m,n)=1

1−
∑

m<n−φ(n)
(m,n−φ(n))>1, (m,n)=1.

1

=
∑

1
−
∑

3
.

From elementary arguments similar to the ones employed above, we get

(87)
∑

1
> (n− φ(n)) · φ(n)

n
− τ(n)

and
∑

3
< (n− φ(n))

∑

p>g(n)
p|(n−φ(n)), p∤n

1

p
(88)

= (n− φ(n))h2(n) <
(n− φ(n)) log3(n)

log2(n)
.

Putting together inequalities (86)–(88), we get

φ(n− φ(n))
n− φ(n) −

φ(n)

n
> −
(

τ(n)

n− φ(n) +
log3(n)

log2(n)

)

> −2 log3(n)
log2(n)

for n ∈ A large enough. With (85) we thus have (9).
To see (8), say ε(n) tends to 0 arbitrarily slowly as n→∞, and let

δ(n) = (ε(n) + 2 log3(n)/log2(n))
1/2.

Thus, δ(n)→ 0 as n→∞. By Lemma 1, we may assume that φ(n) > δ(n)n,
and by (9), which we have just proved, we may assume that

(89) φ(n− φ(n)) < φ(n)
n
(n− φ(n)) + 2 log3(n)

log2(n)
(n− φ(n)).
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But for φ(n) > δ(n)n, the right side of (89) is less than φ(n)− ε(n)n, which
gives (8).
This completes the proof of Theorem 3.

4. Comments and problems. Let u(n) = n−φ(n). In many respects,
the function u(n) resembles the sum of aliquot divisors of n, namely, the
function s(n) = σ(n)− n. It seems interesting to iterate the function u at a
starting value of n until 0 is reached. Let uk be the kth iterate. Let k(n) be
the first positive integer k for which uk(n) = 0. It is easy to see that

(90) k(n) < c26 log(n) log2(n)

for all n large enough, where c26 can be taken to be any constant strictly
larger than eγ , but we suspect that k(n) = o(log(n) log2(n)). It would be
interesting to investigate both the average and the normal behavior of the
function k(n).
Note also that u2(n) is defined for all n > 1 and that u2(n) = 0 if

and only if n is prime, so that u2(n) is defined and u2(n) > 0 for a set of
asymptotic density 1. Note, too, that (ii) of Theorem 3 says that n/u(n) is
asymptotically equal to u(n)/u2(n) on a set of asymptotic density 1. Our
Theorem 3 is analogous to some results from [7] and [9], where it was shown
that s(n)/n is asymptotically equal to s2(n)/s(n) on a set of n of asymptotic
density 1. In analogy with Conjecture 3 in [9] which deals with higher iterates
of the function s(n), we conjecture that for each fixed number k, uk(n) is
defined, uk(n) > 0, and n/u(n) is asymptotically equal to uk−1(n)/uk(n)
on a set of asymptotic density 1. That at least uk(n) is defined, uk(n) > 0,
and

(91)
uk−1(n)

uk(n)
< (1 + ε)

n

u(n)

on a set of asymptotic density 1, for any fixed ε > 0, follows by the same
methods as in [7].
While as we said above, we know by (ii) of Theorem 3 that n/u(n)

and u1(n)/u2(n) are asymptotically equal on a set of asymptotic density
1, what is still in doubt is which one is larger, and the same question can
also be formulated for the pair of asymptotically equal functions n/s(n) and
s1(n)/s2(n). Computations revealed that 550177 numbers n smaller than
106 satisfy

(92) nu2(n) < u1(n)
2

and 608799 numbers n smaller than 106 satisfy

(93) ns2(n) < s1(n)
2.

Of these, 371154 numbers satisfy both (92) and (93). Notice that when
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n is prime, both (92) and (93) hold. Of course, the set of all primes is
of asymptotic density 0 but this is less noticeable computationally in small
ranges. In particular, (92) holds for 471679 of the 921500 composite numbers
n smaller than 106, or about 51%, while (93) holds for 530301 composites,
or about 58%. Both inequalities hold for 292656 composites, or about 32%.
Based on our computations, it may be reasonable to conjecture that both
inequalities (92) and (93) hold on a set of asymptotic density 1/2 and that
they are independent, that is, that they both hold on a set of asymptotic
density 1/4.

Recall that an integer n is called a cototient if it is in the range of the
function u, that is, n = m − φ(m) for some integer m. It is not known if
the set of cototients has an asymptotic density nor if the upper density of
the set is < 1. In fact, until a few years ago it was not even known that
there are infinitely many non-cototients, until an infinite family of such was
pointed out by Browkin and Schinzel in [3] (see also [12] for more examples
of such infinite families of non-cototients). In analogy with the notion of a
cototient, let us call a positive integer n a strong cototient if the equation
uk(x) = n has a positive solution x for every k ≥ 1. Does the set of strong
cototients have a density and if so, what is it? Clearly, since uk(p

m+k) = pm

holds for all m ≥ 0, k ≥ 1 and p ≥ 2 prime, it follows that all prime powers
are strong cototients. Moreover, by looking at the values of u(pq) with p and
q odd primes, Goldbach’s conjecture would imply that all odd integers are
cototients, therefore strong cototients.
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