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ON SOME PROBLEMS OF MAKOWSKI-SCHINZEL AND ERDOS
CONCERNING THE ARITHMETICAL FUNCTIONS ¢ AND o

BY

FLORIAN LUCA (Morelia) and CARL POMERANCE (Murray Hill, NJ)

Abstract. Let o(n) denote the sum of positive divisors of the integer n, and let
¢ denote Euler’s function, that is, ¢(n) is the number of integers in the interval [1,n)]
that are relatively prime to n. It has been conjectured by Makowski and Schinzel that
o(p(n))/n > 1/2 for all n. We show that o(¢(n))/n — oo on a set of numbers n of
asymptotic density 1. In addition, we study the average order of o(¢(n))/n as well as its
range. We use similar methods to prove a conjecture of Erdds that ¢(n —¢(n)) < ¢(n) on
a set of asymptotic density 1.

1. Introduction. In this paper, we investigate a couple of conjectures
concerning inequalities involving the arithmetical functions ¢, o, and com-
positions of these. As usual, for a positive integer n we write ¢(n) for the
Euler function of n, and o(n) for the sum-of-divisors function of n. For any
positive integer k and any positive number x we define log,, () recursively as
the maximum of 1 and log(log;,_,(x)), where log; = log is the natural loga-
rithm. Throughout this paper, we use p, ¢ and P to denote prime numbers,
and cq, co, ... will denote positive computable constants.

The first conjecture we are looking at is due to Makowski and Schinzel
(see [18]) and asserts that the inequality

n -2
holds for all positive integers n. It is known that
1 1
(2) limnsup@:oo and 0<lin¥nf@§§+234_l.

The first limit in (2) is due to Alaoglu and Erdds (see [1]). The positive
lower bound for the second limit in (2) is due to the second author (see [20])
and the upper bound for the same limit appears in the original paper of
Makowski and Schinzel [18]. It is known that (1) holds for positive integers
n of various shapes (see, for example, [2], [6], [11], [18]), and in fact in [1] it
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is asserted that o(¢(n))/n — oo on a set of asymptotic density 1, and that
a(p(n))/¢(n) ~ e¥logs(n) on a set of asymptotic density 1.

Especially since the proofs of these results stated in [1] were not given,
and since later researchers have labored to give somewhat weaker results
(in [15] it is shown that (1) holds on a set of lower density at least 0.74),
we think it is worthwhile to prove these assertions from [1], in a somewhat
stronger form. For every positive integer n we write S(n) := o(¢(n))/n. Our
first result in this paper gives the maximal, normal, and average orders of
the function S(n).

THEOREM 1. (i) We have

S
(3) lim sup (n) =e7.
n  logy(n)
(ii) For each number u, 0 < u < 1, the asymptotic density of the set of
numbers n with

(4) S(n) > ue? logg(n)
exists, and this density function is strictly decreasing, varies continuously

with u, and is 0 when u = 1.
(iii) For every positive number x,

) LS 5(m) = %5 logy () + O (logy () ).

1<n<z

We remark that Warlimont (see [22]) has recently shown a result similar
to part (iii) of Theorem 1 for the function ¢(n)/¢(p(n)).

There are several results in the literature which assert that if f(n) is, for
example, either of the functions o(n)/n or ¢(n)/n, then the closure of the
set {f(n)}n>1 is an interval. Our next result shows that the same is true for
the function f(n) = S(n).

THEOREM 2. Let o = liminf,, S(n). Then {S(n) | n > 1} is dense in
the interval [a, 00].

We now leave the function S(n) and the next question we address is a
conjecture of Erdds (see [8]) which asserts that the inequality

(6) ¢(n — p(n)) < ¢(n)
holds on a set of positive integers n of asymptotic density 1 (i.e., for almost
all positive integers n), but the inequality

(7) ¢(n—¢(n)) > ¢(n)
holds for infinitely many positive integers n. Some infinite families of positive

integers n for which inequality (7) holds were pointed out in [16]. In that
paper, it was also shown that (6) holds for a set of positive integers n of lower
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density at least 0.54. In this note, we prove that (6) holds indeed for almost
all positive integers n. In fact, we prove a stronger statement, namely:

THEOREM 3. (i) Let e(z) be any positive function of the positive vari-
able x which tends to zero when x tends to infinity. The set of integers n > 1
for which the inequality

(8) p(n —¢(n)) < ¢(n) —n-e(n)
fails has asymptotic density 0.
(ii) The set of positive integers n for which the inequality

() d(n—o(n)| _ 2logy(n)
©) e ‘ < Toga(n)

fails has asymptotic density 0.

For example, (9) implies that for any fixed £ > 0 the set of n for which
) _ sl

n n—¢(n)
fails has asymptotic density 0. In particular, the two functions ¢(n)/n and
d(n—o(n))/(n — ¢(n)) are asymptotically equal on a set of n of asymptotic
density 1.

For n > 1, let f(n) = ¢(n — ¢(n))/é(n). It can be shown, using the
method of proof of Theorem 2, that the set of numbers f(n) is dense in
the interval [0, co]. This result shows, in particular, that if ¢ is any positive
number, then the inequality

(10) p(n — p(n)) > cp(n)

holds for infinitely many positive integers n, which is a statement much
stronger than the fact that (7) holds for infinitely many positive integers n.
We do not give further details here.

2. Preliminary results. In 1928, Schoenberg (see [21]) proved that the
function ¢(n)/n has a distribution. That is, D(u) defined as the asymptotic
density of the set of n with ¢(n)/n > wu exists for every u. In addition,
D(u) is continuous and strictly decreasing on [0, 1]. Clearly, D(0) = 1 and
D(1) = 0. From these considerations, we immediately derive the following:

LEMMA 1. Let ¢ : (0,00) — (0,1) be any function such that £(z) tends
to zero as x tends to infinity. Then, for a set of n of asymptotic density 1,
(11) A1) cm).
n
Proof. This is almost obvious. Indeed, let € be an arbitrarily small posi-
tive number. For large z we have €(z) < €. Thus, the set of positive integers
n for which inequality (11) holds contains a set of n of asymptotic density



114 F. LUCA AND C. POMERANCE

at least D(e). Since this holds for every € > 0, it follows that inequality (11)
holds for a set of n of asymptotic density D(0) = 1.

Lemma 1 may also be proved by using the average order of ¢(n)/n,
namely,

(12) Z @ = %x + O(log(z)),
n<x
but we shall have other uses for the distribution function D(u) later.

The next result plays a key role in the proofs of both Theorems 1 and 3
and is essentially due to Erdds, Granville, Pomerance and Spiro (see [9]).
However, since this result was not explicitly stated in [9], we state it below
and provide a short proof.

LEMMA 2. There exists a computable positive constant ¢y such that on
a set of m of asymptotic density 1, ¢(n) is divisible by all prime powers p®
with p* < ¢q logy(n)/logs(n).

Proof. We use the notations from [9]. For any positive integer m and
any positive number x we let

(13) S(x,m) = Z é

ml(g—1)
From Theorem 3.4 in [9], we know that there exist computable positive
numbers c1, xg such that the inequality
c1 logy ()
¢(m)
holds for all z > z¢ and all m < log(x). Let g(z) = ¢1 logy(z)/logs(x). From
the proof of Theorem 4.1 in [9], we have, uniformly for all m,

(15) Y i< e

(14) S(z,m) >

n<x
mip(n)
Assume now that p® is any prime power with p* < g(z). By increasing xg
if necessary, we assume that the inequality log(xz) > g(x) holds for = > x.
By inequalities (14) and (15), it follows that for such p,

(16) 2 S B < e lon@) ~ bl

n<zx

p*to(n)

Now let M (x) be the least common multiple of all the prime powers p®< g(x).
Inequality (16) shows that the number of n < z for which ¢(n) is not a
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multiple of M(x) is at most

> > 1

p*<g(a) n<z

p*e(n)
where 7y(y) denotes the number of prime powers p* < y with a > 1. In-
equality (17) shows that but for O(z/(logs(z))?) = o(z) positive integers
n <z, ¢(n) is a multiple of M (z). Lemma 2 is therefore proved.

) 2coxg(T) c3x

< o™ < T g < T

For the remainder of this paper, we let g(n) = c¢;logy(n)/logs(n) and
denote by M(n) the least common multiple of all prime powers p* < g(n).
Here, c; is the constant appearing in the statement of Lemma 2.

We shall also make use of the following result:

LEMMA 3. On a set of positive integers n of asymptotic density 1 the
following inequalities hold:

(18) )= 3 1< lo8s(n)

Sl P logy(n)
pln
1 logs(n)
(19) ha(n) := Z - < )
pog(n) p logy(n)
pl(n—¢(n)), ptn
1 logy(n)
(20) hs(n):= ) —<—L
p>log,(n) p logs(n)
plp(n)

Proof. The fact that inequality (18) holds for a set of n of asymptotic
density 1 follows from an averaging argument. Indeed, if T is any slowly
increasing function of z (like T(m) = g(x), for example), then

(21) > oy (W>

1<n<z T(n)<p
pln

(see also [9], page 199). Taking T'(z) = (:U) in formula (21), we get

2 < o Gy

n<x

In particular, but for a set of n < x of cardinality O(z/logs(x)) = o(x),
inequality (18) holds.
We now turn to the second part of the lemma. For n < z,

22 <3 L ctom@ ves
p<m
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though it is not hard to get a sharper inequality here. Let
n= < ): 10g4(l’)

3logs(z)
For any positive integer n > 1, we let P(n) be the largest prime divisor of n.
By de Bruijn [4], the number of n < z with P(n) < 27 is 2/(logy(z))3+t°™),
and so is at most x/(log,(z))?° for all sufficiently large values of x. It is
easy to see that the number of n < z with P(n) > 27 and P(n)?|n is at
most z'~". Let A be the set of numbers n with
(23) V2 <n<xz, Pn)>z", P(n)*tn.
It follows from (22) and the above estimates that

@) 2, (< = Tog ( )

n<lz,n¢A

for all sufficiently large values of .
Next, for n € A, let ha(n) = hao(n) + ha1(n), where

(25) o)=Y %, hoam)= Y

"2 >p>g(n) p>z"/?
pl(n—¢(n)), ptn pl(n—9¢(n)), ptn

1

.

For m < z, the number of primes p|m with p > 22 is at most 2/n. Thus,
for n € A, ha1(n) < (2/n)z~"/2, and so

26 h <

(26) 2 haal 10g( )

neA

for x sufficiently large.
For an estimation of hyo(n) we again use an averaging argument. We
have

(27) Shom<s Y - Y1

neA g(xt/2)<pLan/2 P a0 (mod p)
n=¢(n) (mod p)

neA
We now fix a prime number p in the interval (g(z'/?),27/?] and we find an
upper bound for the inner sum appearing in (27). Assume that n € A is
such that p|(n — ¢(n)). Write n = Pm where P = P(n). Then n — ¢(n) =
Pm — (P = 1)é(m) = Pm — ¢(m)) + p(m). Thus,
(28) P(m — ¢(m)) = —¢(m) (modp).
Notice that p does not divide m — ¢(m). Indeed, if p|(m — ¢(m)), then
congruence (28) implies that p | ¢(m), therefore p|m, which contradicts the
fact that p{n. Let a,, be the integer in the interval [0,p — 1] given by
A = —¢(m)(m — ¢(m))~! (modp). Congruence (28) implies that P = a,,
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(mod p). From (23) we deduce that m < z1~7. Thus, summing up first over
all the possible values of P(n) when m is fixed, we get

ey Y 1= Y Y 1= % W(%,am,p).

n#Z0 (mod p) 1<m<zl-n 1<P<z/m 1<m<zxl-n
n=¢(n) (mod p) P=a,, (mod p)
neA
By a well known result of Montgomery and Vaughan (see [19]),
T 2x
30 ™ —» am7p> S .
0 ( (o — 1) log(a/ (mp)

Since p < 22, we have

2z
(31) > m(p — 1) log(z/(mp))

1<m<gzgl—-n

2z 1 5z
< — <=
< o D@2

for z sufficiently large. Hence (29)—(31) imply that

ji: 1< EEE,

n#0 (mod p) "
n=¢(n) (mod p)
neA
so that from (27), we have
T 6z
@ haws Y e
; /2 1/2
= oy PN T g (xt/2) log(g(z1/2))
20x logs ()

~ c1logy(x) logy(w)
for all sufficiently large values of x. With (24) and (26), (32) implies that

cex logs ()
th 10%2 ) log,(x )

n<x
In particular, but for O(x/log,(z)) = o(x) values of n < z, inequality (19)
holds.
The third part of Lemma 3 follows immediately from the inequality

Z ) :O<xlog2x)
p

n<x

plo(n)
(uniformly for every prime p and z larger than some z; that is independent
of p; see Theorem 3.5 in [9]). It follows that the average of hg(n) for n < x
is O(1/logs(z)), and thus, we get (20) for a set of asymptotic density 1.
Lemma 3 is therefore proved.
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3. Proofs of the theorems

Proof of Theorem 1. (i) We first observe that since
crn

fogam) </ ="
for all integers n (see [17], Theorem 328), it follows that
lim 1082(2(M) _
n logy(n)
Thus,
, o(¢(n) _ a(¢(n)) . o(n) _
BT gy (n) = P G ogao(m) = P wlomy(m)

(see Theorem 323 in [17]). For the reverse inequality, let nj be a sequence
of integers which attains the last lim sup, that is,

(34) lim —2%)
k. ng logz(nk)
Let pi be the least prime with pr = 1 (modny). By Linnik’s theorem we
have pj, < n;®, so that log,(pr) ~ logy(ny). Thus,
Str) _ ol =1) ~ olpx=1) _  olm)
logs(pk)  prloga(pk) (P — 1)loga(nk) — nylogy(ng)

With (33) and (34), we thus have part (i) of Theorem 1.

(ii) Here we use the notations from the proof of Lemma 2. By Lemma 2,
for a set of positive integers n of asymptotic density 1, ¢(n) is a multiple

of M(n). For each prime p < g(n), let p® be the power of p in the prime
factorization of M (n). For such n, we have the inequality

a(¢(n)) 1 1y P A loea(n
o0 ngn)<1+p+...+pap) [ 5~ ¢ logs(n)

as n — oo. In addition, we have

(6(n)) P P p
o) T I < S5)( TSN
o) e P T T \cionm P! sioiny P71
p>logy(n)

(35)

1
~ €7 logs(n) - ex ( —>.
5(n) p Z D

plo(n)

p>log,(n)

We now use (20). On a set of asymptotic density 1, the argument of exp
in (36) is o(1), so that with (35), which also holds on a set of asymptotic
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density 1, we have
a(¢(n))
p(n)

To see that (ii) of Theorem 1 holds, we write

Sy — 700 6l

¢(n)  n
The density function referred to in (ii) of Theorem 1 is then exactly the
function D(u) in Schoenberg’s theorem for ¢(n)/n.

(iii) We first show that the mean value of S(n) is at least what is claimed.
Let ¢; be the constant appearing in Lemma 2, and for large z let Ag(x) be
the set of those n with /z < n < x such that ¢(n) is a multiple of M(n).
By the arguments from the proof of Lemma 2, we know that the cardinality
of the complement of Ag(z) in the interval [1, ] is at most O(z/(log(z))?).
For n € Ap(z) and a, as in (35), we have

g 2 o0Iw) <1+%+...+ 1)

~ €7 logs(n).

= o
gb(n) (n) p<g(n) P
P 1
= H 1—
5 (1)
p<g(n)p P
m(g(n))
1
> (11 5%)(-50m)
p<g(n) b g

Thus,
o ipeely e
1<n<zx nEAo(x)
> (€"logg(x) — cg) - i Z @
n€Ao(x)

Using estimate (12) and the fact that

= Moo =0y )
we get
(39) % > @>3— c10

2 2"
i w2 (logs())
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Combining (38) with (39) we further get

(40) Z S(n >—log3( ) — i,

1<n<z

which is a lower bound better than the one asserted.

It remains to get an upper bound for the mean value of S(n). Let = be
a large real number. We split the positive integers in the interval [1, z] into
the following four subsets:

(41)  A(z)={n|1<n <z},

(42)  B(z) = {n Vo <n <z, hi(n) < ﬁ()},
ogs(z

1
(n) > ——= and

10?53(95)
w(B(n) < <1og2<x>>3},

and finally let D(z) be the complement of A(z)UB(z)UC(x) in the interval
[1,z]. Here, h3(n) is as in Lemma 3 and w(n) denotes the number of different
primes that divide n.

We first comment on the sizes of the cardinalities of the four sets de-
fined above. By the proof of Lemma 3, the cardinality of C'(x) is at most
O(z/+/logs(x)). Clearly, the cardinality of A(z) is exactly |/z|. We now
show that D(x) is small as well. More precisely, we show that the cardinality
of D(x) is at most O(x/logy(z)). To see why this is so, notice that

(44) w(g(n)) < 2(p(n)) < 2(n)+>_ 2p—1),

pln

43) CO(z) = {n

where £2(m) is the number of prime factors of m, counted with multiplicity.
Thus,

(45) 3 w@m)< 3 em+ 3 D 2p-1=3 +3,
1<n<z 1<n<= 1<n<z p|n

It is well known that

(46) Zl = Z 2(n) ~ xlogy(x).

1<n<z

For the second sum appearing in formula (45), we interchange the order of
summation to get

@ Y =3 ap-1 ¢ Y 207D L ogy @)
P 2

1<p<z 1<p<z
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The rightmost approximation appearing in formula (47) is a result due to
Erdds and Pomerance (see Lemma 2.3 in [10]). Formulae (46) and (47) imply
that the cardinality of D(z) is indeed at most O(x/log,(z)).

The above considerations show that B(z) contains all integers up to z,

except for O(x/+/logs(z)) of them.
If F is any one of the letters A, B, C, D, we define

(48) Sg :% > S(n).
nek(x)

It suffices to bound each one of the numbers Sg for E € {A, B,C, D}. Notice
that since

o(p(n
(49) (¢75 ) < c12logy ()
for all n < x (see (34)), it follows that
|A(=)| logy ()
(50) Sa < ci2 . logy(z) = O ﬁ = o(1),
and similarly
D(x

(51) Sp < 012’ i ) logy(z) = O(1).
For the remaining numbers, write
(52) ¢(’I’L) =ni - Ny,
where
(53) m= ] »

p”llp(n)

p<log,(n)
(54) ng = H p®.

P [l¢(n)

p>logy(n)
Clearly,
(55) o(¢(n)) _olm) olnz) - m = n

gb(n) ni n2 ¢(”1) ‘ ¢(n2)‘
Notice that

(56) o< ] <1 - 1>1 < ¢"logy(z) + c13

for all n < z, and

(57)

< exp(ci4h3(n))
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for all n > \/x, where c14 can be taken to be any constant larger than 1
provided that x is large enough. By combining (55)—(57), it follows that if
n € B(z), then

o(¢(n) o, (z) + c13) exp [ ——2t
59) ik < o) + e (22 )
< €7logs(x) + c154/logs ().
Hence,
(59) Sp < (€7 logg(x) + c15/1ogs(z) Z ¢

1<n<x

e’y
< —5 logg(z) + c164/logs (),

where the last inequality follows from (12).

Finally, when n € C(z), let t(z) = |(logy(z))?]. For a given n € C(z),
let p;1 < ... < py) be the first ¢(z) primes with p; larger than logy(n).
Then obviously

1 1
(60) ha(n) <Y — < > = < cio.
c17 log, () <p<cis(logy (x))? logs ()
Hence, by (57) and (60), we have

no
61 <c
(61) o(na)
when n € C(z). Combining (55) with (56) and (61), we get
a(p(n))

62 —
o ()

< €91 logs(x)

whenever n € C(z). Thus,

C
(63) Sc < co1 | fj” logs(x) < ca2v/logs(x),

where the last inequality in (63) follows from the fact that |C(z)| =
O(z/+/logs(x)). The assertion (iii) follows now by combining inequalities
(50), (51), (59) and (63).

This concludes the proof of Theorem 1.

Proof of Theorem 2. By inequality (2), we know that 0 < a < 1/2 +
1/(23* — 1). We shall make use of the following theorem due to Chen (see
[5], or Chapter 11 of [14], or Lemma 1.2 in [13]):

CHEN’S THEOREM. For each even natural number m and x > xo(m)
there exists a prime number s € (x/2,z] with s = 1 (modm) such that
(s — 1)/m has at most two prime factors each of which exceeds x/1°.
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We shall distinguish two cases:

CASE 1: There exists a sequence of integers (mp)n>1 such that
lim,, S(m,) = a and lim, ordz(¢(m,)) = co. Fix any real number 5 > 1.
Let £ be any small positive number, and let m be a positive integer such
that

(64) |S(m) —a| <e and orda(p(m)) > 1/e.
After fixing such an m, let ¢t be an odd number such that
(65) t>1/e,  Jo()/t—Bl<e,  ged(t,p(m)) = 1.

It is easy to see that one can find such a number . We now use Chen’s
theorem to find a prime number s > m such that

(66) s—1=2tl

where [ has at most two prime factors larger than max(¢(m),t,1/¢) each.
Write

(67) d(m)=2"my, my =1 (mod2).
Then

Sy — TOm) _ o@my) _ @7 = Da(m)

m m m
Notice that m and s are coprime, ¢t and [ are also coprime (because the
smallest prime factor of [ is larger than t), and ¢l is coprime to ¢(m); there-

fore
a(p(ms)) o2 mytl) (2712 — Do (my)o(t)o(l)

(68)  S(ms) = ms  m(2tl+1) m(2tl + 1)
Thus,
@ St T e

S(m) 2(27+1 —1) t 11 + (2t)~V

Formula (69) together with the previous assumptions on the parameters v, ¢
and [ implies that

S(ms)
(70) ‘ S(m) —5’ < €238,
where co3 depends only on (. Inequalities (64) and (70) imply that
(71) |S(ms) — af| < caue,

where c94 depends only on § (because « is absolute). Since € can be taken
to be arbitrarily small after 8 was fixed, it follows that o is a cluster point
of {S(n) | n > 1}, which settles this case.
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CASE 2: There exist two constants Ky and Ko such that |S(n)—a| < Ky
implies orda(p(n)) < K. Notice first of all that since

S*m) = o(¢(p’m)) _ alpd(pm)) _ o(é(pm))

72
(72) p2m p2m pm

= S(pm),

it follows that there exists a sequence (my,),>1 of squarefree integers such
that S(m,,) converges to . Moreover, in this case we know that ords(¢(my,))
< K3 when n is large enough. In particular, w(m,) < K2+ 1 when n is large
enough.

Define k£ to be the smallest positive integer such that there exists a
sequence (my)n>1 of squarefree numbers for which S(m,,) converges to o
and such that w(m,,) = k for all n > 1. For each n let

(73) My =P1 (n) .- 'pk(n)’

where p1(n) < ... < pr(n). Write m,, = px(n)m/,. Notice first of all that
k > 1. Indeed, if k = 1, it follows that « is a cluster point of {S(p) | p prime}.
However, for p > 7,

op—1) _ 1 p—1 3p+1) _ 3
S = — > - 1 2 —_— - ]. = —= > —

(p) PR Ck +(r—1) o 2o
which would imply that o > 3/2, contradicting the result of Makowski and
Schinzel (see (2)). Thus, £ > 1. Since pg(n) = P(m,) tends to infinity
with n, we get

o (¢(my) (pr(n) — 1))

m},pr(n)

(74) a =1lim S(m,,) = lim

> liminfMS(m’ ) = lim inf S(m,).
n pr(n) n n "

From the definition of k, it follows that (m/,),>1 cannot have infinitely many

distinct terms and is, therefore, bounded. These arguments show that one

may assume that m,, = api(n) where a > 1 is a fixed integer. Notice that

a > 2. Indeed, if a = 2, then, for p > 7, one has

-1 1 -1 3(p+1 3
S(Qp):dp2—10)22_p<1+2+pT+p_l):%>Z’

therefore o« > 3/4, contradicting again the result of Makowski and Schinzel.
Thus, a > 2, therefore ¢(a) > 1. We next show that

d
(75) a = min <% ‘ d an even squarefree divisor of qﬁ(a)).

To see why « is at least what is claimed by formula (75), let p be a large
prime and write
p—1=dyn,,
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where gecd(d,,n,) = 1 and d,, is a number whose prime factors are exactly
the prime factors of ged(p — 1, ¢(a)). Notice that d, is even. Then

1
(76) S(ap) — J(¢(a)dpnp) — U(¢<a)dp) . U(np) . —.
a(dyn, + 1) ad, n, 1+(p—-1)
Since o(ny) > n,, the above argument shows that
(77) o > liminf’ Z&@™)
m am

where the lim inf’ means that we are allowing m to run only over those even
positive integers whose prime divisors are among the prime divisors of ¢(a).
If d is the largest squarefree divisor of m, then

a(¢(@)m) _ o(4(a)d)

am - ad

so « is at least as large as the number appearing on the right hand side
of (75). To see that « is at most that number, choose d to be any even
squarefree divisor of ¢(a) and use Chen’s theorem to construct large primes
s such that [ = (s—1)/d is an integer composed of at most two primes, each
of them large. Now
18 Slas) = CO@AD) _olola)d) o) 1

a(dl + 1) ad I 1+ (s—1)"1
and notice that the right hand side of (78) tends to o(¢(a)d)/(ad) when s
tends to infinity through such numbers. This proves formula (75).

Finally, having (75) at hand one can again use Chen’s theorem to prove
our Theorem 2. Indeed, assume that d is an even squarefree divisor of ¢(a)
realizing the minimum of the expression appearing on the right hand side
of (75). Let 8 be an arbitrary real number > 1. Fix ¢ > 0 arbitrarily small
and choose a number ¢ coprime to ¢(a) (in particular, to ¢(a)d) such that
both

(79) t>1/e and |o(t)/t—p| <e.

Now use Chen’s theorem to construct a prime number s such that | =
(s — 1)/(td) is an integer composed of at most two primes larger than
max(t¢(a),1/e) each. Now ¢ and [ are coprime and ¢! is coprime to ¢(a)d,
therefore

Co(¢la)tdl) o) o(l) 1
(80) Sta)=Thartn) ~ % Tt T 1rGoD T

It is easily seen that formulae (79) and (80) together with our assumptions
on s and [ imply that

(81) |S(sa) — af| < case,
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where co5 depends only on (. Since § was first fixed and then € was chosen
arbitrarily small, it follows that af is a cluster point of {S(n) | n > 1}.
Finally, since # > 1 was arbitrary, it follows that {S(n) | n > 1} is dense in
[a, 00].

REMARK. Instead of using Chen’s theorem, we could have used a weaker
fact, namely that for every even m there exist infinitely many primes p such
that (p—1)/m is an integer whose smallest prime factor is at least log p. This
statement follows from simpler sieve methods such as Brun’s or Selberg’s.
Of course, when p goes to infinity through such primes, S(p) approaches
o(m)/m, which is enough for the arguments employed in the proof of our
Theorem 2 to go through.

Proof of Theorem 3. We use the notations from the proofs of Lemmas 2
and 3. Let A be the set of all integers n which are not primes and for which
M(n) | ¢(n) and inequalities (18) and (19) hold. By Lemmas 2 and 3, A has
asymptotic density 1. We now show that inequality (9) holds for all values
of n € A which are large enough. We start by finding suitable upper and
lower bounds on ¢(n — ¢(n)). Notice that

(82) pn—pmn)= > 1

m<n—g¢(n)
(m,n—¢(n))=1
< )1+ > 1
m<n—g¢(n) m<n—¢(n)
(m,n)=1 (m,n—¢(n))=1, (m,n)>1
- Zl + Zg'
Clearly,
(83) D =(m—¢m) - V‘_—WJ + > V——W‘)J —...
pln b pq|n, p<q ba
<= om) A 4 7).

Here, 7(n) is the number-of-divisors function of n. For the second sum, we
use the fact that M (n) | ¢(n). Hence, if m is a number such that (m,n) > 1,
but (m,n—¢(n)) = 1, it follows that m has to be a multiple of a prime p | n
with p > g(n). Of course, for such n, one has

s X< X | w2 S

pfg?n) pfg?n)
i oy (= 0() logy(n)
= (1= (s (n) < LRI,
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Putting together inequalities (82)-(84), we get

g5 Qo) o) () lomy(n) _ 2logs(n)

n— ¢(n) n o n—¢(m) logy(n) ~ logy(n)
For the rightmost inequality in (85) we used the fact that n — ¢(n) > n'/?,
which holds because n is not prime, and the fact that 7(n) < n'/4, which
holds for all n large enough, thus

7(n) 1 logs(n)
n—a¢(n) ~nl/t " logy(n)

for n € A large enough. Inequality (85) proves half of (9). For the other half,
we write

(86) pn—odm)= > 1

m<n—e¢(n)
(mon—(n))=1
> ) 1- > 1
m<n—eo(n) m<n—e¢(n)
(m,n)=1 (m,n—¢(n))>1, (m,n)=1.

=2, "2

From elementary arguments similar to the ones employed above, we get

(57) >, > (=) - 2 o)

and

(58) Y o<m-om) Y -
p>g(n)

pl(n—¢(n)), ptn

e sty < = 9() logs(n)
= (n = o(m)han) < TSI,

Putting together inequalities (86)—(88), we get
¢(n—¢(n)) ¢n) ( 7(n) 10g3(”)> 2logg(n)
- > - + > -
n—¢(n) n n—¢(n)  logy(n) logy (n)
for n € A large enough. With (85) we thus have (9).
To see (8), say (n) tends to 0 arbitrarily slowly as n — oo, and let

8(n) = ((n) + 21ogz(n)/logy(n)) /2.
Thus, §(n) — 0 as n — co. By Lemma 1, we may assume that ¢(n) > §(n)n,

and by (9), which we have just proved, we may assume that

89 o o) < = on)) + T 0 ()
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But for ¢(n) > §(n)n, the right side of (89) is less than ¢(n) — e(n)n, which
gives (8).
This completes the proof of Theorem 3.

4. Comments and problems. Let u(n) = n — ¢(n). In many respects,
the function u(n) resembles the sum of aliquot divisors of n, namely, the
function s(n) = o(n) — n. It seems interesting to iterate the function u at a
starting value of n until 0 is reached. Let uj, be the kth iterate. Let k(n) be
the first positive integer k for which ux(n) = 0. It is easy to see that

(90) k(n) < cg6log(n)logy(n)

for all n large enough, where cog can be taken to be any constant strictly
larger than e”, but we suspect that k(n) = o(log(n)log,(n)). It would be
interesting to investigate both the average and the normal behavior of the
function k(n).

Note also that ug(n) is defined for all n > 1 and that us(n) = 0 if
and only if n is prime, so that us(n) is defined and us(n) > 0 for a set of
asymptotic density 1. Note, too, that (ii) of Theorem 3 says that n/u(n) is
asymptotically equal to u(n)/uz(n) on a set of asymptotic density 1. Our
Theorem 3 is analogous to some results from [7] and [9], where it was shown
that s(n)/n is asymptotically equal to sa(n)/s(n) on a set of n of asymptotic
density 1. In analogy with Conjecture 3 in [9] which deals with higher iterates
of the function s(n), we conjecture that for each fixed number k, ug(n) is
defined, ux(n) > 0, and n/u(n) is asymptotically equal to ug_1(n)/ug(n)
on a set of asymptotic density 1. That at least ux(n) is defined, ux(n) > 0,
and

ug—1(n) n

) < (1+ E)u(n)
on a set of asymptotic density 1, for any fixed £ > 0, follows by the same
methods as in [7].

While as we said above, we know by (ii) of Theorem 3 that n/u(n)
and wui(n)/uz(n) are asymptotically equal on a set of asymptotic density
1, what is still in doubt is which one is larger, and the same question can
also be formulated for the pair of asymptotically equal functions n/s(n) and
s1(n)/s2(n). Computations revealed that 550177 numbers n smaller than
10° satisfy

(91)

(92) nua(n) < uy(n)?
and 608799 numbers n smaller than 10% satisfy
(93) nsa(n) < s1(n)?.

Of these, 371154 numbers satisfy both (92) and (93). Notice that when



PROBLEMS OF MAKOWSKI-SCHINZEL AND ERDOS 129

n is prime, both (92) and (93) hold. Of course, the set of all primes is
of asymptotic density O but this is less noticeable computationally in small
ranges. In particular, (92) holds for 471679 of the 921500 composite numbers
n smaller than 10%, or about 51%, while (93) holds for 530301 composites,
or about 58%. Both inequalities hold for 292656 composites, or about 32%.
Based on our computations, it may be reasonable to conjecture that both
inequalities (92) and (93) hold on a set of asymptotic density 1/2 and that
they are independent, that is, that they both hold on a set of asymptotic
density 1/4.

Recall that an integer n is called a cototient if it is in the range of the
function w, that is, n = m — ¢(m) for some integer m. It is not known if
the set of cototients has an asymptotic density nor if the upper density of
the set is < 1. In fact, until a few years ago it was not even known that
there are infinitely many non-cototients, until an infinite family of such was
pointed out by Browkin and Schinzel in [3] (see also [12] for more examples
of such infinite families of non-cototients). In analogy with the notion of a
cototient, let us call a positive integer n a strong cototient if the equation
ug(x) = n has a positive solution x for every k > 1. Does the set of strong
cototients have a density and if so, what is it? Clearly, since uy(p™**) = p™
holds for all m > 0, k > 1 and p > 2 prime, it follows that all prime powers
are strong cototients. Moreover, by looking at the values of u(pq) with p and
q odd primes, Goldbach’s conjecture would imply that all odd integers are
cototients, therefore strong cototients.
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