THE ALGEBRA OF THE SUBSPACE SEMIGROUP OF $M_2(\mathbb{F}_q)$

BY

JAN OKNIŃSKI (Warszawa)

Abstract. The semigroup $S = S(M_2(\mathbb{F}_q))$ of subspaces of the algebra $M_2(\mathbb{F}_q)$ of 2×2 matrices over a finite field \mathbb{F}_q is studied. The ideal structure of S, the regular J-classes of S and the structure of the complex semigroup algebra $\mathbb{C}[S]$ are described.

1. Introduction. Let $M_n(K)$ be the algebra of $n \times n$ matrices over a field K. By $S(M_n(K))$ we denote the subspace semigroup of $M_n(K)$, defined as the set of all K-subspaces equipped with the operation $V \ast W = \text{lin}_K(VW)$. This semigroup arose in the context of discrete dynamical systems, [3], and was first studied in [6]. It was shown that there exists a finite ideal chain $I_1 \subset \ldots \subset I_t = S(M_n(K))$ such that I_1 and every Rees factor I_k/I_{k-1} are either nil or 0-disjoint unions of completely 0-simple ideals.

In this paper we consider the case where K is a finite field. A natural problem is to determine the complex irreducible representations of $S(M_n(K))$ and to study the structure and symmetries of the algebra $\mathbb{C}[S(M_n(K))]$. It is well known that a description of the regular J-classes of the semigroup is needed in this context. Our aim is to deal with these problems in the case where $n = 2$. A characterization of non-regular elements of $S(M_2(K))$ is obtained and regular J-classes are fully described. Moreover, the ideal structures of $S(M_2(K))$ and of its complex semigroup algebra are determined.

2. Regular J-classes. Let $S = S(M_2(K))$ for a finite field K. Since the idempotents of S play a crucial role, first we list unitary subalgebras of $M_2(K)$:

2000 Mathematics Subject Classification: Primary 20M25, 16S36; Secondary 20M20, 16P10.

Supported by KBN research grant 2P03A 030 18.
1. \(A_1 = M_2(K) \).

2. \(A_2 = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in K \right\} \).

For simplicity, we write \(A_2 = (a \ b \\ 0 \ c) \), if unambiguous.

3. \(A_3 = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \).

4. \(A_4 = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \).

5. \(A_5 = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \).

6. \(A_6 = \) a field extension \(F \) of dimension 2 over \(K \).

(By the Noether–Skolem theorem any two such subfields are conjugate, as they are isomorphic).

7. \(A_7 = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \).

Let \(J(A) \) be the radical of an algebra \(A \subseteq M_2(K) \). Recall that by Wedderburn’s structure theorem for algebras over a perfect field [1] we know that \(A = B + J(A) \) where \(B \) is a subalgebra such that \(B \cong A/J(A) \). Also, every nil subalgebra of \(M_2(K) \) is conjugate to \(\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \). So it is easy to see that, up to conjugation, the above list exhausts all unitary subalgebras of \(M_2(K) \).

From [6] we know that every non-zero regular \(J \)-class of \(S = S(M_2(K)) \) contains a unitary algebra, whence it contains one of the algebras \(A_i \). Recall that this \(J \)-class consists of subspaces \(V \subseteq M_2(K) \) such that \(V \) and \(A_i \) generate the same ideal of \(S(M_2(K)) \). Clearly, \(A_5 \) is the identity of \(S(M_2(K)) \).

Any two of the elements \(A_1, A_2, A_3, A_4, A_5, A_6 \) are in different \(J \)-classes of \(S \). This can be checked directly but it also follows from the fact that \(A JB \) implies that \(A, B \) are Morita equivalent [6]. Clearly \(A_1 \) and \(A_7 \) are in the same \(J \)-class of \(S \).

For any \(n \geq 2 \), let \(A \) be a subalgebra of \(M_n(K) \) which is basic. That is, \(A \) has a unity and \(A/J(A) \) has no non-zero nilpotents. Let \(U = U(A) \) be the unit group of \(A \) and \(N = N(A) \) be the normalizer of \(A \) in \(\text{Gl}_n(K) \). So \(N = \{ g \in \text{Gl}_n(K) \mid gA = Ag \} \). Notice that \(\text{lin}_K U(A) = A \) if \(K \neq \mathbb{F}_2 \), the field of two elements (it is enough to assume that \(A/J(A) \) has at most one copy of \(\mathbb{F}_2 \) as a direct summand). Therefore, in this case \(N = \{ g \in \text{Gl}_n(K) \mid gU = Ug \} \). By \(H_A \) we denote the maximal subgroup of \(S \) containing \(A \), treated as an idempotent of \(S \). In other words, \(H_A \) consists of all subspaces \(V \) of \(M_n(K) \) such that \(V = AV = VA \) and \(VW = WV = A \) for some subspace \(W \). Let \(e \) be the identity of \(A \). Then \(eN = Ne \) is a subgroup of
$U(eM_n(K)e) \cong M_{\text{rank}(e)}(K)$, which we denote by N_e. It is easy to see that

$$H_A = \{Ax \mid x \in N\} \quad \text{and} \quad H_A \cong N_e/U.$$

In particular, if A contains the identity matrix, then $U \subseteq N = N_e$ and $H_A = [N : U]$. Moreover

$$[\text{Gl}_n(K) : N] = \text{the number of } \mathcal{H}\text{-classes of } S \text{ of the form } gH_A, \ g \in \text{Gl}_n(K)$$

$$= \text{the number of } \mathcal{H}\text{-classes of } S \text{ of the form } H_Ag, \ g \in \text{Gl}_n(K).$$

We shall consider the case where $K = \mathbb{F}_q$, a finite field of q elements. We count the subspaces of $M_2(\mathbb{F}_q)$ of any given dimension:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Number of subspaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$(q^4 - 1)/(q - 1) = q^3 + q^2 + q + 1$</td>
</tr>
<tr>
<td>2</td>
<td>$(1 + q + q^2)(1 + q^2)$</td>
</tr>
<tr>
<td>3</td>
<td>$q^3 + q^2 + q + 1$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

It follows that $|S| = q^4 + 3q^3 + 4q^2 + 3q + 5$.

Write $G = \text{Gl}_2(K)$. We have seen above that $\{gAh \mid g, h \in G\}$ yields $[N : U][G : N]^2$ elements in the $\mathcal{J}\text{-class of } A$ in the subspace semigroup $S = S(M_2(K))$. We discuss the seven cases listed above.

1) $A = M_2(K)$. Then $A \mathcal{J} B$ for $B = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. Every non-zero subspace $V \subseteq \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ is a left B-module and satisfies $VW = B$ for some right B-module W. So the $\mathcal{R}\text{-class of } B$ consists of all such subspaces V, whence it has $q + 2$ elements. As the same holds for the $\mathcal{L}\text{-class of } B$, it follows that the $\mathcal{J}\text{-class of } B$ has $\geq (q + 2)^2$ elements.

2) $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$. It is easy to see that $N = U$ and $[G : N] = q + 1$. So the $\mathcal{J}\text{-class of } A$ has $\geq (q + 1)^2$ elements.

3) $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Then N consists of invertible matrices of the form $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$ or $\begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix}$. Hence $[N : U] = 2$ and $[G : N] = (q + 1)q/2$. Therefore the $\mathcal{J}\text{-class of } A$ has $\geq q^2(q + 1)^2/2$ elements.

4) $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$. Then N consists of invertible matrices of the form $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$. So $|U| = (q - 1)q$ and $|N| = (q - 1)^2q$. Hence $[N : U] = q - 1$ and $[G : N] = q + 1$ and therefore the $\mathcal{J}\text{-class of } A$ has $\geq (q + 1)^2(q - 1)$ elements.

5) $A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$. Then $N = G$ and $U \cong K^*$. So $[N : U] = q(q^2 - 1)$ and $[G : N] = 1$. It follows that the $\mathcal{J}\text{-class of } A$ has $\geq q(q^2 - 1)$ elements.

6) A is a subfield of dimension 2 over K. Now $|A| = q^2$, so that $|U| = q^2 - 1$. Let C be the centralizer of A in $M_2(K)$. Then C is a simple algebra, so it is a maximal subfield of $M_2(K)$ containing A, [1]. Hence $C = A$. The
Galois group $G(A/K)$ is $\{\text{Id}, \phi\}$, where $\phi(x) = x^q$. So $n \in N$ if and only if $nan^{-1} = a$ or $nan^{-1} = a^q$ for $a \in A$ (as there are no other automorphisms). Hence $n \in C = A$ or $nan^{-1} = a^q$. By the Noether–Skolem theorem there exists an element $n \in N$ of the latter type. Then any other $y \in N$ satisfies either $y^{-1}n \in C$ or $y \in C$. So $n \in N$ if and only if $nan - 1 = a$ or $nan - 1 = a^q$ for $a \in A$ (as there are no other automorphisms).

Hence $n \in C = A$ or $nan - 1 = a$. By the Noether–Skolem theorem there exists an element $n \in N$ of the latter type. Then any other $y \in N$ satisfies either $y - 1 n \in C$ or $y \in C$. So $N \subseteq C \cup Cn$ and consequently $N = U \cup Un$.

We now add the numbers of subspaces produced in cases 1)–6) (note that they are in different J-classes of S):

1) $(q + 1)^2$ spaces of dimension 1,
 2) $2q + 2$ spaces of dimension 2,
 1 space of dimension 4,
2) $(q + 1)^2$ spaces of dimension 3,
3) $q^2(q + 1)^2/2$ spaces of dimension 2,
4) $(q + 1)^2(q - 1)$ spaces of dimension 2,
5) $q(q^2 - 1)$ spaces of dimension 1,
6) $q^2(q - 1)^2/2$ spaces of dimension 2.

So we have constructed

$$q^4 + q^3 + 2q^2 + q + 1 = (1 + q + q^2)(1 + q^2)$$

subspaces of dimension 2, whence these are all such subspaces. Also, we have got $q^3 + q^2 + q + 1$, hence all, subspaces of dimension 1. Moreover, there are

$$|S| - 1 - |\{\text{elements listed in 1)–6}\}| = q^3 - q$$

remaining non-zero elements of S (all of them of dimension 3). We will show that they are all not regular. So, it will follow that the elements listed in 1)–6) cover all non-zero regular J-classes of S, and hence they exhaust all non-zero regular elements of S. It also follows that the regular J-classes of S consist of unit regular elements of S.

Proposition 2.1. Assume that K is any field and let $n \geq 2$. Let $V \in S = S(M_n(K))$ be a subspace of dimension $n^2 - 1$. Let V be described by a linear equation $\sum_{i,j=1}^n a_{ij} x_{ij} = 0$, $a_{ij} \in K$. If $VwV \subseteq V$ for some non-zero $w \in M_n(K)$, then the rank of the matrix $A = (a_{ij})$ is 1. Moreover, the latter is equivalent to the fact that V is a regular element of S.

Proof. Assume that $h \in M_n(K)$ is an elementary matrix. So it is a transposition or $h = 1 + \lambda e_{pq}$ for some $p \neq q$ and $\lambda \in K^*$, where e_{pq} denotes a matrix unit. Let $B = (b_{ij})$ be the matrix determined by an equation describing the subspace hV. If h is a transposition with non-diagonal entries h_{pq}, h_{qp}, then clearly we may take $b_{qj} = a_{pj}, b_{pj} = a_{qj}$ and $b_{ij} = a_{ij}$ if $i \neq p, q$, for $j = 1, \ldots, n$. If $h = 1 + \lambda e_{pq}$, then it is easy to see that we
may take $b_{qj} = a_{qj} - \lambda a_{pj}$ and $b_{ij} = a_{ij}$ for $i \neq q$, and for all j. It follows that $\text{rank}(A) = \text{rank}(B)$. Hence every hV is described by an equation with the corresponding matrix having the same rank as A. The same holds if $h = 1 + \lambda e_{pp}$ with any $p \in \{1, \ldots, n\}$ and $\lambda \neq -1$, and therefore for every $h \in \text{GL}_n(K)$. The same applies to Vh.

Suppose that $VwV \subseteq V$ for some $w \in M_n(K)$. If $g, h \in \text{GL}_n(K)$, then

$$g^{-1}Vhh^{-1}wgg^{-1}Vh \subseteq g^{-1}Vh.$$

Clearly, V is a regular element of S if and only if so is $g^{-1}Vh$. It follows that, when proving both statements, we may replace $(V, 1)$ matrices, respectively. It is easy to see that $W = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)$ satisfies $VWV = V$. Therefore V is a regular element of S.

It is clear that if V is a regular element of S then there exists a non-zero $w \in M_n(K)$ such that $VwV \subseteq V$.

Finally, suppose that $VwV \subseteq V$ for a non-zero matrix w. Because of the diagonal idempotent form of A we have

$$V = \{x = (x_{ij}) \in M_n(K) \mid x_{11} + \ldots + x_{rr} = 0\}.$$

If $r = 1$ then $\text{rank}(A) = 1$ and we are done. So suppose that $r \geq 2$. Let $w = (w_{ij})$ and suppose that $w_{kl} \neq 0$ for some k, t. If $k, t \neq 1$ then let $v = (v_{ij}), v' = (v'_{ij})$ be such that $v_{1k} = 1 = v'_{tt}$ and all the remaining entries are 0. Then $v, v' \in V$, so that $vvv' \in V$. But vvv' has only one non-zero entry and it is in position $(1,1)$. This contradicts the above description of V. It follows that $w_{ij} = 0$ if $i, j \neq 1$. The same argument applied to position $(2,2)$ implies that also $w_{ij} = 0$ if $i, j \neq 2$. So w_{12}, w_{21} can be the only non-zero entries of w. Choose a matrix $u = (u_{ij})$ whose only non-zero entry is u_{21} and let $u' = (u'_{ij})$ be such that $u_{11} = -1$ and $u_{22} = 1$ and all other entries are zero. Then $u, u' \in V$ and $uuu' \in V$. The second row of uuu' is equal to $(0, w_{12}, 0, \ldots, 0)$ and all other rows are zero. So the description of V yields $w_{12} = 0$. A similar argument applied to the product uuu' (where u' is the transpose of u) yields $w_{21} = 0$. Therefore $w = 0$. This contradiction shows that $r = 1$, completing the proof of the proposition.

We come back to the case $K = \mathbb{F}_q$ and $n = 2$. Notice that there are

$$|\text{GL}_2(K)|/(q - 1) = (q^2 - q)(q^2 - 1)/(q - 1) = q^3 - q$$

subspaces of dimension 3 defined by an equation $\alpha x_{11} + \beta x_{12} + \gamma x_{21} + \delta x_{22} = 0$ such that $\det \left(\begin{smallmatrix} \alpha & \beta \\ \gamma & \delta \end{smallmatrix}\right) \neq 0$.

Let \(V = \{(a b c) \mid a, b, c \in K\} \). So, \(V \) is defined by the equation \(x_{12} - x_{21} = 0 \), and is of the desired type. We determine the stabilizer \(C \) of \(V \) under the action of \(\text{Gl}_2(K) \) on \(S \) by left multiplication. So, let \(g = (g_{ij}) \in \text{Gl}_2(K) \) satisfy

\[
\begin{pmatrix} g_1 & g_2 \\ g_3 & g_4 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} g_1a + g_2b & g_1b + g_2c \\ g_3a + g_4b & g_3b + g_4c \end{pmatrix} \in V
\]

for all \(a, b, c \in K \). Then \(g_3a + g_4b = g_1b + g_2c \), whence \(g_3 = 0 = g_2 \) and \(g_4 = g_1 \). So \(C \) consists of scalar matrices and

\[|\{gV \mid g \in \text{Gl}_2(K)\}| = |\text{Gl}_2(K)| \cdot |K^*|^{-1} = q^3 - q. \]

Clearly, every element of the form \(gV, g \in \text{Gl}_2(K) \), satisfies \(gV \Lambda V \) in \(S \), whence it is not regular by Proposition 2.1. It then follows that we have constructed \(q^3 - q \) non-regular elements of the form \(gV \). Therefore, comparing the cardinality of \(S \) and the number of regular elements constructed before, we see that the elements listed in cases 1)–6) exhaust all non-zero regular \(J \)-classes of \(S \) and the elements \(gV, g \in \text{Gl}_2(K) \), exhaust all non-regular elements of \(S \).

Corollary 2.2. Let \(V = \{x = (x_{ij}) \in M_2(K) \mid x_{12} = x_{21}\} \). Then the \(J \)-class of \(V \) in \(S \) is equal to \(\{gV \mid g \in \text{Gl}_2(K)\} = \{Vg \mid g \in \text{Gl}_2(K)\} \) and it coincides with the \(\mathcal{H} \)-class of \(V \). Moreover \(S \) has exactly eight \(J \)-classes, namely the classes of \(A_1, \ldots, A_6, V, \{0\} \).

Proof. We have seen that \(\{gV \mid g \in \text{Gl}_2(K)\} \) exhaust all non-regular elements in \(S \). A symmetric argument shows that \(\{Vg \mid g \in \text{Gl}_2(K)\} \) also is the set of all non-regular elements of \(S \) and hence \(\{gV \mid g \in \text{Gl}_2(K)\} = \{Vg \mid g \in \text{Gl}_2(K)\} \). Therefore non-regular elements of \(S \) form a single \(\mathcal{H} \)-class of \(S \) and the assertion follows.

3. Structure of the algebra. In this section we describe the radical of \(\mathbb{C}[S] \) and we show that, for every regular principal factor \(T \) of \(S \), the contracted semigroup algebra \(\mathbb{C}_0[T] \) is semisimple. Hence \(\mathbb{C}[S]/J(\mathbb{C}[S]) \) is a direct product of all \(\mathbb{C}_0[T] \) (see [4]). As \(\mathbb{C}[S] = B + J(\mathbb{C}[S]) \), a direct sum of subspaces, for a subalgebra \(B \cong \mathbb{C}[S]/J(\mathbb{C}[S]) \), this yields a description of the structure of the algebra.

Lemma 3.1. Let \(A \subseteq M_n(K) \) be a subalgebra with \(1 \in A \). Then \(A = \{gAh \mid g, h \in G\} \) with zero adjoined is a completely 0-simple inverse subsemigroup of the principal factor \(J_A \) of \(A \) in \(S(M_n(K)) \). Moreover, \(A \) is a union of \(\mathcal{H} \)-classes of \(J_A \).

Proof. We know that \(H_A = \{Ax \mid x \in N\} \), where \(N \) is the normalizer of \(A \) in \(\text{Gl}_n(K) \). It follows that \(A \) is a union of \(\mathcal{H} \)-classes of \(J_A \). Moreover every non-empty intersection \(R \) of \(A \) with an \(\mathcal{R} \)-class of \(S \) contains an idempotent. Namely, if \(uAv \in R \) for some \(u, v \in G \), then \(uAu^{-1} \in R \).
Suppose that $B \in A$ is an idempotent from the \mathcal{R}-class of A in S. Since $B \cap G \neq \emptyset$ and B is a subalgebra of $M_n(K)$, we must have $1 \in B$. But $AB = B$ and $BA = A$. It follows that $A = B$. Now, if gAh is an idempotent, where $g, h \in G$, then Ahg is also an idempotent and $A \Delta Ahg$. So $Ahg = A$ by the preceding part of the proof. Then $gAh = gAg^{-1}$. Now, suppose that two idempotents gAg^{-1}, fAf^{-1} ($g, f \in G$) are in the same \mathcal{R}-class of S. Then $A \Delta fAf^{-1}g$ and again we get $A = g^{-1}fAf^{-1}g$. Hence $gAg^{-1} = fAf^{-1}$. Similarly one proves that every non-empty intersection of A with an \mathcal{L}-class of S contains exactly one idempotent. The assertion follows.

We have seen that the regular \mathcal{J}-classes of S described in cases 2)–6) are of the form A, where A is a subalgebra containing 1. So, the lemma above applies to these \mathcal{J}-classes.

Proposition 3.2. Let J be a completely 0-simple principal factor of the semigroup $S = S(M_2(\mathbb{F}_q))$. Then $\mathbb{C}_0[J]$ is a semisimple algebra.

Proof. Let J be one of the regular \mathcal{J}-classes of S described in 2)–6), with zero adjoined. Then by Lemma 3.1, $\mathbb{C}_0[J] \cong M_k(\mathbb{C}[H])$ for the maximal subgroup H of J and some k (see [4], Corollary 5.26). It remains to consider the \mathcal{J}-class J containing $A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. The maximal subgroup of J is trivial. So, to consider the Rees presentation of J (see [2]) in the coordinate system corresponding to the maximal subgroup $\{A\}$ of J, we list the elements of the \mathcal{R}-class of A (in the leading column) and of the \mathcal{L}-class of A (in the leading row). This yields the following form of the sandwich matrix P of J:

$$
\begin{pmatrix}
0 & 0 \\
\begin{pmatrix} b \\ 0 \end{pmatrix} & \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \\
\begin{pmatrix} b \\ 0 \end{pmatrix} & \begin{pmatrix} -a^{-1}b \\ 0 \end{pmatrix} \\
\begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} b \\ 0 \end{pmatrix} \\
\begin{pmatrix} d \\ 0 \end{pmatrix} & \begin{pmatrix} b \\ 0 \end{pmatrix}
\end{pmatrix}
$$

Here the second row (column, respectively) represents $q - 1$ different rows (columns) of P corresponding to different $q - 1$ elements α of \mathbb{F}_q^*. Performing elementary operations on rows and columns of P, one brings P to the identity matrix. So, P is invertible as a matrix over \mathbb{C} and consequently $\mathbb{C}_0[J] \cong M_{q+2}(\mathbb{C})$, again by Corollary 5.26 of [4]. The assertion follows.
It is easy to verify that the inverse of the above sandwich matrix is

$$P^{-1} = \begin{pmatrix} -1 & 0 & \ldots & 0 & 1 \\ 0 & -1 & \ldots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & -1 & 1 \\ 1 & 1 & \ldots & 1 & -q \end{pmatrix}.$$

Finally, we describe the radical of the algebra $\mathbb{C}_0[S]$. Let J be the \mathcal{J}-class containing $M_n(K)$ and $A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, together with the zero subspace. Notice that J is an ideal of S. Since $\mathbb{C}_0[J]$ is semisimple, it has an identity E, which can be effectively determined. Namely, in the Munn algebra notation for $\mathbb{C}_0[J]$ (see [4]), E can be identified with P^{-1}. Therefore E can be expressed as a linear combination of elements of J with coefficients 1, -1 and q as follows:

$$E = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ b & d \end{pmatrix} + \sum_{\alpha \in K} \left(\begin{pmatrix} a & \alpha a \\ c & \alpha c \end{pmatrix} + \begin{pmatrix} a & b \\ \alpha a & \alpha b \end{pmatrix} \right) - \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} - \sum_{\alpha \in K^*} \begin{pmatrix} a & -\alpha^{-1}a \\ \alpha a & -a \end{pmatrix} - qM_2(K).$$

Proposition 3.3. Let $V = \{ x \in M_2(K) \mid x_{12} = x_{21} \}$. Then

$$J(\mathbb{C}_0[S]) = \text{lin}_C \{ gV - EgV \mid g \in \text{Gl}_2(K) \}$$

and $J(\mathbb{C}_0[S])^2 = 0$.

Proof. Denote the right hand side by I. Let J be the \mathcal{J}-class of S containing $M_n(K)$ with zero adjoined. Then $\mathbb{C}_0[J]$ is an ideal of $\mathbb{C}_0[S]$ since J is an ideal of S. We have $\mathbb{C}_0[J]I = I\mathbb{C}_0[J] = 0$ because E is a central idempotent in $\mathbb{C}_0[S]$. Moreover $I^2 = 0$. Indeed, if $g \in \text{Gl}_2(K)$ then $gV = Vh$ for some $h \in \text{Gl}_2(K)$ by Corollary 2.2. Therefore

$$(V - EV)(gV - EgV) = (V - EV)(Vh - VhE).$$

Since $V^2 = M_2(K) \in J$, we get $(V - EV)(Vh - VhE) = 0$, so $I^2 = 0$, as desired.

We know that the set $H_V = \{ gV \mid g \in \text{Gl}_2(K) \}$ has cardinality $q^3 - q$, so the dimension of I is at most $q^3 - q$. Since the image of I modulo $\mathbb{C}_0[J]$ is spanned by H_V, it has dimension $q^3 - q$. Hence, this is the dimension of I as well.

We claim that I is an ideal of $\mathbb{C}_0[S]$. By symmetry of H_V and since E is central, it is enough to show that I is a left ideal. Let $X \in S$, $X \neq 0$. If X is not regular in S, then $X = gV$ for some $g \in \text{Gl}_2(K)$ and $XV = M_2(K) \in J$. If X is in one of the regular \mathcal{J}-classes listed in cases 2)–6), then X contains an invertible matrix u. Thus, XV is either of the form uV or it is equal to $M_2(K)$. So $X(V - EV) \in I$ in the former case and $X(V - EV) = 0$ in the
latter. Finally, if $X \in J$, then we also get $X(V - EV) = 0$ because E is the identity of $C_0[J]$. So I is a left ideal, as claimed.

It follows that $I \subseteq J(C_0[S])$. By Proposition 3.2, the dimension of $C_0[S]$ modulo its radical is $q^3 - q$. Comparing dimensions we get $J(C_0[S]) = I$. ■

Notice that we have in fact shown that the \mathcal{H}-class H_V of V in S, with zero adjoined, is a minimal non-zero ideal of the Rees factor S/J.

REFERENCES

Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: okninski@mimuw.edu.pl

Received 4 June 2001;
revised 6 September 2001