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THE ALGEBRA OF THE SUBSPACE SEMIGROUP OF M>(Fy)

BY

JAN OKNINSKI (Warszawa)

Abstract. The semigroup S = S(Mz(Fy)) of subspaces of the algebra M2 (IFy) of 2x2
matrices over a finite field Fq is studied. The ideal structure of S, the regular [J-classes
of S and the structure of the complex semigroup algebra C[S] are described.

1. Introduction. Let M, (K) be the algebra of n x n matrices over a
field K. By S(M,(K)) we denote the subspace semigroup of M, (K), de-
fined as the set of all K-subspaces equipped with the operation V « W =
ling (VW). This semigroup arose in the context of discrete dynamical sys-
tems, [3], and was first studied in [6]. It was shown that there exists a finite
ideal chain Iy C ... C I; = S(M,(K)) such that I; and every Rees factor
Iy, /I 1 are either nil or 0-disjoint unions of completely 0-simple ideals.

In this paper we consider the case where K is a finite field. A nat-
ural problem is to determine the complex irreducible representations of
S(M,(K)) and to study the structure and symmetries of the algebra
C[S(M,(K))]. It is well known that a description of the regular [J-classes of
the semigroup is needed in this context. Our aim is to deal with these prob-
lems in the case where n = 2. A characterization of non-regular elements of
S(M(K)) is obtained and regular J-classes are fully described. Moreover,
the ideal structures of S(M2(K)) and of its complex semigroup algebra are
determined.

We refer to [2] for basic semigroup theory, to [5] for background on semi-
groups of matrices, while [4] is our reference for semigroup algebras.

2. Regular J-classes. Let S = S(Ma(K)) for a finite field K. Since
the idempotents of S play a crucial role, first we list unitary subalgebras of
M2 (K)
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1. Ay = My(K).

a-{(; )

For simplicity, we write Ay = (“

0
3.A3:<8 2)
4.A4:(8 Z)
5.A5:<8 2)

6. Ag = a field extension F' of dimension 2 over K.

a,b,ceK}.

b\ - .
c), if unambiguous.

(By the Noether—Skolem theorem any two such subfields are conjugate, as
they are isomorphic).

a 0
e (20)

Let J(A) be the radical of an algebra A C M>(K). Recall that by Wed-
derburn’s structure theorem for algebras over a perfect field [1] we know
that A = B+ J(A) where B is a subalgebra such that B = A/J(A). Also,
every nil subalgebra of M(K) is conjugate to (8 g) So it is easy to see
that, up to conjugation, the above list exhausts all unitary subalgebras of
Ms(K).

From [6] we know that every non-zero regular J-class J of S=5(My(K))
contains a unitary algebra, whence it contains one of the algebras A;. Recall
that this J-class consists of subspaces V' C My (K) such that V and A; gen-
erate the same ideal of S(Ma(K)). Clearly, As is the identity of S(Ma(K)).
Any two of the elements Ay, As, A3, Ay, A5, Ag are in different 7-classes of
S. This can be checked directly but it also follows from the fact that A7 B
implies that A, B are Morita equivalent [6]. Clearly A; and A7 are in the
same J-class of S.

For any n > 2, let A be a subalgebra of M, (K) which is basic. That is,
A has a unity and A/J(A) has no non-zero nilpotents. Let U = U(A) be
the unit group of A and N = N(A) be the normalizer of A in Gl,(K). So
N = {g € Gl,(K) | gA = Ag}. Notice that ling U(A) = A if K # Fy, the
field of two elements (it is enough to assume that A/J(A) has at most one
copy of Fa as a direct summand). Therefore, in this case N = {g € Gl,(K) |
gU = Ug}. By Hy we denote the maximal subgroup of S containing A,
treated as an idempotent of S. In other words, H4 consists of all subspaces
V of M,(K) such that V.= AV = VA and VW = WV = A for some
subspace W. Let e be the identity of A. Then eN = Ne is a subgroup of
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U(eMp(K)e) = Myank(ey(K), which we denote by N,. It is easy to see that
Hy = {A.%' ’ x e N} and Hy gNe/U.

In particular, if A contains the identity matrix, then U C N = N, and
Hy =[N : U]. Moreover

[Gl,(K) : N]=the number of H-classes of S of the form gH4, g€ Gl,(K)
=the number of H-classes of S of the form Hug, g€ Gl,(K).

We shall consider the case where K = g, a finite field of ¢ elements. We
count the subspaces of My (F,) of any given dimension:

Dimension Number of subspaces
0 1
1 @ -1D/a-1) ="+ +q+1
2 (1+q+¢)(1+4%
3 P+ +a+1
4 1

It follows that |S| = ¢* + 3¢® + 4¢® + 3¢ + 5.

Write G = Glz(K). We have seen above that {gAh | g,h € G} yields
[N : U][G : NJ]? elements in the J-class of A in the subspace semigroup
S = S(My(K)). We discuss the seven cases listed above.

1) A = My(K). Then ATB for B = (§ 8). Every non-zero subspace
VvV C (3 3) is a left B-module and satisfies VW = B for some right B-
module W. So the R-class of B consists of all such subspaces V', whence it
has g 4+ 2 elements. As the same holds for the £-class of B, it follows that
the J-class of B has > (¢ + 2)? elements.

2) A= (g lc’) It is easy to see that N = U and [G : N| = ¢ + 1. So the
J-class of A has > (g + 1)? elements.

3) A= (g 2). Then N consists of invertible matrices of the form (‘g 2)
or (2 o). Hence [N : U] =2 and [G : N] = (¢+1)q/2. Therefore the J-class

of A has > ¢*(q + 1)?/2 elements.

4) A= (8 Z) Then N consists of invertible matrices of the form (¢ ¥).

So |U| = (¢ —1)g and |[N| = (¢ —1)?q. Hence [N : U] = ¢— 1 and [G : N]
g+ 1 and therefore the J-class of A has > (¢ + 1)?(¢ — 1) elements.

5) A = (gg).ThenN:GandU%K*. So [N : U] = q(¢*> — 1) and
[G : N] = 1. It follows that the J-class of A has > q(¢® — 1) elements.

6) A is a subfield of dimension 2 over K. Now |A| = ¢?, so that |U| =
q*> — 1. Let C be the centralizer of A in My(K). Then C is a simple algebra,
so it is a maximal subfield of Ms(K) containing A, [1]. Hence C' = A. The
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Galois group G(A/K) is {Id, ¢}, where ¢(x) = 2. So n € N if and only if
nan~! = a or nan~! = a4 for a € A (as there are no other automorphisms).
Hence n € C = A or nan~! = a?. By the Noether-Skolem theorem there
exists an element n € N of the latter type. Then any other y € N satisfies
either y~'n € C ory € C. So N C C UCn and consequently N = U U Un.
Hence [N : U] = 2. But [G : U] = (¢> — ¢)(¢* = 1)/(¢* = 1) = ¢* — q. So
[G : N] = (¢>—q)/2. Therefore we get 2((¢>—q)/2)? = ¢*(¢—1)?/2 elements
in the J-class of A.

We now add the numbers of subspaces produced in cases 1)-6) (note
that they are in different [J-classes of 5):

1) (¢ + 1)? spaces of dimension 1,
2q + 2 spaces of dimension 2,
1 space of dimension 4,
2) (q +1)?2 spaces of dimension 3,
3) ¢*(q + 1) /2 spaces of dimension 2,
) (¢ +1)%(q — 1) spaces of dimension 2,
) (q — 1) spaces of dimension 1,
6) ¢*(q — 1)?/2 spaces of dimension 2.

O

So we have constructed
+E 2 +q+1=14q+) 1+

subspaces of dimension 2, whence these are all such subspaces. Also, we have
got ¢® + ¢ + g+ 1, hence all, subspaces of dimension 1. Moreover, there are

|S| — 1 — |{elements listed in 1)-6)}| = ¢*> — ¢

remaining non-zero elements of S (all of them of dimension 3). We will show
that they are all not regular. So, it will follow that the elements listed in
1)-6) cover all non-zero regular [J-classes of S, and hence they exhaust all
non-zero regular elements of S. It also follows that the regular [J-classes of
S consist of unit regular elements of S.

PROPOSITION 2.1. Assume that K is any field and let n > 2. Let V €
S = S(M,(K)) be a subspace of dimension n? — 1. Let V be described by a
linear equation ZZj:l ai;xi; =0, a5 € K. If VwV CV for some non-zero
w € M, (K), then the rank of the matriz A = (a;;) is 1. Moreover, the latter
s equivalent to the fact that V is a regqular element of S.

Proof. Assume that h € M,(K) is an elementary matrix. So it is a
transposition or h = 1+ Aeyq for some p # ¢ and A € K*, where e,, denotes
a matrix unit. Let B = (b;;) be the matrix determined by an equation
describing the subspace hV'. If h is a transposition with non-diagonal entries
hpg, hgp, then clearly we may take by; = apj, by; = a¢; and b;; = a;j if
i #p,q, for j =1,...,n. If h = 14 Aepyy, then it is easy to see that we
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may take byj = aqj — Aap; and b;; = a;; for i # ¢, and for all j. It follows
that rank(A) = rank(B). Hence every hV is described by an equation with
the corresponding matrix having the same rank as A. The same holds if
h =1+ Xep, with any p € {1,...,n} and X\ # —1, and therefore for every
h € Gl,(K). The same applies to Vh.

Suppose that VwV C V for some w € My, (K). If g, h € Gl,(K), then

g YWhh twgg VR C gV h.

Clearly, V is a regular element of S if and only if so is g~ 'V h. It follows that,
when proving both statements, we may replace V by any g~ 'V h. Hence we
may assume that the matrix A is of the form A = (é 8) for an identity
matrix I of size r < n.

First assume that rank(A) = 1. So, let a;; = 1 be the only non-zero

entry. This means that V = (g Z) where b,c,d are 1 x (n—1),(n —1) x 1,

(n — 1) x (n — 1) matrices, respectively. It is easy to see that W = (‘c‘ 8)
satisfies VWV = V. Therefore V is a regular element of S.

It is clear that if V' is a regular element of S then there exists a non-zero
w € My (K) such that VwV C V.

Finally, suppose that VwV C V for a non-zero matrix w. Because of the
diagonal idempotent form of A we have

V ={z = (2i5) € M\,(K) | z11 + ... + zr = 0}

If » = 1 then rank(A) = 1 and we are done. So suppose that r > 2. Let
w = (w;j) and suppose that wi; # 0 for some k,t. If k,t # 1 then let
v = (vi5),v" = (vj;) be such that vy = 1 = vj; and all the remaining entries
are 0. Then v,v" € V, so that vwv’ € V. But vwv’ has only one non-zero
entry and it is in position (1,1). This contradicts the above description of
V. It follows that w;; = 0if 4, j # 1. The same argument applied to position
(2,2) implies that also w;; = 0 if 4,5 # 2. So wi2, w21 can be the only
non-zero entries of w. Choose a matrix u = (u;;) whose only non-zero entry

is u9y and let ' = (ufm) be such that u;; = —1 and uey = 1 and all other
entries are zero. Then w,u’ € V and uwwu’ € V. The second row of uwu’ is
equal to (0,w12,0,...,0) and all other rows are zero. So the description of

V yields wyz = 0. A similar argument applied to the product u‘wu’ (where
u? is the transpose of u) yields wg; = 0. Therefore w = 0. This contradiction
shows that r = 1, completing the proof of the proposition. m

We come back to the case K = F, and n = 2. Notice that there are
IGL(K)|/(a-1) =(-a)(@—-1)/(ag—1)=¢"—q

subspaces of dimension 3 defined by an equation ax11+06x12+7yx21+0x22 =0
such that det (f: ?) # 0.
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Let V= {(Z I;) | a,b, CEK}. So, V is defined by the equation x15 — x91 =0,
and is of the desired type. We determine the stabilizer C of V under the
action of Glo(K) on S by left multiplication. So, let g=(gi;) € Glo(K) satisfy

g1 g2\ (a b)_ (gratgb gibtgec)

g3 g1) \b ¢ gsa +gab  gsb+ gac
for all a,b,c € K. Then g3a 4+ g4b = g1b + gac, whence g3 = 0 = go and
g4 = g1. So C consists of scalar matrices and

{9V | g € Gla(K)} = [GL(K)| - |[K* ™' =¢° —q.

Clearly, every element of the form gV, g € Gly(K), satisfies gV LV in S,
whence it is not regular by Proposition 2.1. It then follows that we have con-
structed ¢ — ¢ non-regular elements of the form gV. Therefore, comparing
the cardinality of S and the number of regular elements constructed before,
we see that the elements listed in cases 1)-6) exhaust all non-zero regular
J-classes of S and the elements gV, g € Gla(K), exhaust all non-regular
elements of S.

COROLLARY 2.2. Let V = {z = (xj;) € Ma(K) | 12 = x21}. Then the
J-class of V in S is equal to {gV | g € Gla(K)} ={Vg | g € Gla(K)} and
it coincides with the H-class of V. Moreover S has exactly eight [J-classes,
namely the classes of Ay, ..., Aq, V,{0}.

Proof. We have seen that {gV | g € Gla(K)} exhaust all non-regular
elements in S. A symmetric argument shows that {Vg | g € Gla(K)} also is
the set of all non-regular elements of S and hence {gV' | g € Glo(K)} = {Vg |
g € Gla(K)}. Therefore non-regular elements of S form a single H-class of
S and the assertion follows. =

3. Structure of the algebra. In this section we describe the radical
of C[S] and we show that, for every regular principal factor T of S, the
contracted semigroup algebra Co[T] is semisimple. Hence C[S]/J(C[S]) is a
direct product of all Co[T] (see [4]). As C[S] = B+ J(C[S]), a direct sum of
subspaces, for a subalgebra B = C[S]/J(C[S]), this yields a description of
the structure of the algebra.

LEmMMA 3.1. Let A C M,(K) be a subalgebra with 1 € A. Then A =
{gAh | g,h € G} with zero adjoined is a completely 0-simple inverse sub-
semigroup of the principal factor Ja of A in S(M,(K)). Moreover, A is a
union of H-classes of J4.

Proof. We know that Hy = {Ax | z € N}, where N is the normalizer of
A in Gl (K). It follows that A is a union of H-classes of J4. Moreover every
non-empty intersection R of A with an R-class of S contains an idempotent.
Namely, if uAv € R for some u,v € G, then udu~! € R.
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Suppose that B € A is an idempotent from the R-class of A in S.
Since BNG # () and B is a subalgebra of M, (K), we must have 1 € B. But
AB = B and BA = A. It follows that A = B. Now, if gAh is an idempotent,
where g, h € G, then Ahg is also an idempotent and ARAhg. So Ahg = A by
the preceding part of the proof. Then gAh = gAg~—'. Now, suppose that two
idempotents gAg~!, fAf~! (g, f € G) are in the same R-class of S. Then
ARg ' fAf~lg and again we get A = g~ fAf~1g. Hence gAg~' = fAfL.
Similarly one proves that every non-empty intersection of A with an £-class
of S contains exactly one idempotent. The assertion follows. m

We have seen that the regular J-classes of S described in cases 2)-6) are
of the form A, where A is a subalgebra containing 1. So, the lemma above
applies to these J-classes.

PROPOSITION 3.2. Let J be a completely 0-simple principal factor of the
semigroup S = S(M2(Fy)). Then ColJ] is a semisimple algebra.

Proof. Let J be one of the regular J-classes of S described in 2)-6),
with zero adjoined. Then by Lemma 3.1, Co[J] = M (C[H]) for the maximal
subgroup H of J and some k (see [4], Corollary 5.26). It remains to consider
the J-class J containing A = ( 8 8). The maximal subgroup of J is trivial.
So, to consider the Rees presentation of J (see [2]) in the coordinate system
corresponding to the maximal subgroup {A} of J, we list the elements of
the R-class of A (in the leading column) and of the L-class of A (in the
leading row). This yields the following form of the sandwich matrix P of J:

(2 o) | (o 0) (6 o) | (% 0)

b 0
<0 0> 0 1...1 1 1
1 0 1 1 1
b —a ' ) ) ]

0 0
1 1 0 1 1

0 b
<0 0) 1 1...1 0 1

d b
(0 0) 1 1...1 1 1

Here the second row (column, respectively) represents ¢ — 1 different
rows (columns) of P corresponding to different ¢ — 1 elements o of Fy.
Performing elementary operations on rows and columns of P, one brings P
to the identity matrix. So, P is invertible as a matrix over C and consequently
ColJ] = My4+2(C), again by Corollary 5.26 of [4]. The assertion follows. =
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It is easy to verify that the inverse of the above sandwich matrix is

-1 0 ... O 1
0 -1 0 1
pl= : : . : :
0 o ... -1 1
1 1 ... 1 —q

Finally, we describe the radical of the algebra Cy[S]. Let J be the J-class
containing M, (K) and A = (g 8), together with the zero subspace. Notice
that J is an ideal of S. Since Cy[J] is semisimple, it has an identity F, which
can be effectively determined. Namely, in the Munn algebra notation for
Co[J] (see [4]), E can be identified with P~!. Therefore E can be expressed
as a linear combination of elements of J with coefficients 1,—1 and ¢ as
follows:

= (o) (D)5 o)

0 a 0 0 a —ala
_<O 0>_<b O>_ Z <aa —a >_qM2<K)'
acK*
PROPOSITION 3.3. Let V = {z € Ma(K) | z12 = x21}. Then

J(Co[5]) =linc{gV — EgV | g € Glo(K)}
and J(Co[S])? = 0.

Proof. Denote the right hand side by I. Let J be the [J-class of S con-
taining M, (K) with zero adjoined. Then Cy[J] is an ideal of Cy[S] since
J is an ideal of S. We have Cy[J]I = ICy[J] = 0 because E is a central
idempotent in Co[S]. Moreover I2 = 0. Indeed, if g € Gly(K) then gV = Vh
for some h € Glp(K) by Corollary 2.2. Therefore

(V—EV)(gV — EgV) = (V — EV)(Vh — VhE).

Since V2 = My(K) € J, we get (V — EV)(Vh — VhE) =0, so I? = 0, as
desired.

We know that the set Hy = {gV | g € Glo(K)} has cardinality ¢* — g,
so the dimension of I is at most ¢3 — ¢. Since the image of I modulo Cq[J]
is spanned by Hy, it has dimension ¢® — g. Hence, this is the dimension of
I as well.

We claim that I is an ideal of Cy[S]. By symmetry of Hy and since F is
central, it is enough to show that [ is a left ideal. Let X € .S, X # 0. If X is
not regular in S, then X = gV for some g € Gla(K) and XV = My(K) € J.
If X is in one of the regular J-classes listed in cases 2)-6), then X contains
an invertible matrix u. Thus, XV is either of the form uV or it is equal to
M5(K). So X(V — EV) € I in the former case and X(V — EV) = 0 in the
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latter. Finally, if X € J, then we also get X(V — EV) = 0 because E is the
identity of Co[J]. So I is a left ideal, as claimed.

It follows that I C J(Cy[S]). By Proposition 3.2, the dimension of Cy[5]
modulo its radical is ¢> — g. Comparing dimensions we get J(Co[S]) = I. =

Notice that we have in fact shown that the H-class Hy of V in S, with
zero adjoined, is a minimal non-zero ideal of the Rees factor S/J.
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