THE ALGEBRA OF THE SUBSPACE SEMIGROUP OF $M_2(\mathbb{F}_q)$

ву

JAN OKNIŃSKI (Warszawa)

Abstract. The semigroup $S = S(M_2(\mathbb{F}_q))$ of subspaces of the algebra $M_2(\mathbb{F}_q)$ of 2×2 matrices over a finite field \mathbb{F}_q is studied. The ideal structure of S, the regular \mathcal{J} -classes of S and the structure of the complex semigroup algebra $\mathbb{C}[S]$ are described.

1. Introduction. Let $M_n(K)$ be the algebra of $n \times n$ matrices over a field K. By $S(M_n(K))$ we denote the subspace semigroup of $M_n(K)$, defined as the set of all K-subspaces equipped with the operation $V * W = \lim_K (VW)$. This semigroup arose in the context of discrete dynamical systems, [3], and was first studied in [6]. It was shown that there exists a finite ideal chain $I_1 \subset \ldots \subset I_t = S(M_n(K))$ such that I_1 and every Rees factor I_k/I_{k-1} are either nil or 0-disjoint unions of completely 0-simple ideals.

In this paper we consider the case where K is a finite field. A natural problem is to determine the complex irreducible representations of $S(M_n(K))$ and to study the structure and symmetries of the algebra $\mathbb{C}[S(M_n(K))]$. It is well known that a description of the regular \mathcal{J} -classes of the semigroup is needed in this context. Our aim is to deal with these problems in the case where n=2. A characterization of non-regular elements of $S(M_2(K))$ is obtained and regular \mathcal{J} -classes are fully described. Moreover, the ideal structures of $S(M_2(K))$ and of its complex semigroup algebra are determined.

We refer to [2] for basic semigroup theory, to [5] for background on semigroups of matrices, while [4] is our reference for semigroup algebras.

2. Regular \mathcal{J} -classes. Let $S = S(M_2(K))$ for a finite field K. Since the idempotents of S play a crucial role, first we list unitary subalgebras of $M_2(K)$:

 $^{2000\} Mathematics\ Subject\ Classification:$ Primary 20M25, 16S36; Secondary 20M20, 16P10.

Supported by KBN research grant 2P03A 030 18.

1.
$$A_1 = M_2(K)$$
.

2.
$$A_2 = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in K \right\}.$$

For simplicity, we write $A_2 = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, if unambiguous.

$$3. A_3 = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.$$

$$4. A_4 = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}.$$

$$5. A_5 = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}.$$

6. $A_6 =$ a field extension F of dimension 2 over K.

(By the Noether–Skolem theorem any two such subfields are conjugate, as they are isomorphic).

$$7. A_7 = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}.$$

Let J(A) be the radical of an algebra $A \subseteq M_2(K)$. Recall that by Wedderburn's structure theorem for algebras over a perfect field [1] we know that A = B + J(A) where B is a subalgebra such that $B \cong A/J(A)$. Also, every nil subalgebra of $M_2(K)$ is conjugate to $\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$. So it is easy to see that, up to conjugation, the above list exhausts all unitary subalgebras of $M_2(K)$.

From [6] we know that every non-zero regular \mathcal{J} -class J of $S = S(M_2(K))$ contains a unitary algebra, whence it contains one of the algebras A_i . Recall that this \mathcal{J} -class consists of subspaces $V \subseteq M_2(K)$ such that V and A_i generate the same ideal of $S(M_2(K))$. Clearly, A_5 is the identity of $S(M_2(K))$. Any two of the elements $A_1, A_2, A_3, A_4, A_5, A_6$ are in different \mathcal{J} -classes of S. This can be checked directly but it also follows from the fact that $A\mathcal{J}B$ implies that A, B are Morita equivalent [6]. Clearly A_1 and A_7 are in the same \mathcal{J} -class of S.

For any $n \geq 2$, let A be a subalgebra of $M_n(K)$ which is basic. That is, A has a unity and A/J(A) has no non-zero nilpotents. Let U = U(A) be the unit group of A and N = N(A) be the normalizer of A in $Gl_n(K)$. So $N = \{g \in Gl_n(K) \mid gA = Ag\}$. Notice that $\lim_K U(A) = A$ if $K \neq \mathbb{F}_2$, the field of two elements (it is enough to assume that A/J(A) has at most one copy of \mathbb{F}_2 as a direct summand). Therefore, in this case $N = \{g \in Gl_n(K) \mid gU = Ug\}$. By H_A we denote the maximal subgroup of S containing S0, treated as an idempotent of S1. In other words, S1, S2, and S3, S4 for some subspace S5. Let S6 be the identity of S7. Then S8 is a subgroup of

 $U(eM_n(K)e) \cong M_{\text{rank}(e)}(K)$, which we denote by N_e . It is easy to see that $H_A = \{Ax \mid x \in N\}$ and $H_A \cong N_e/U$.

In particular, if A contains the identity matrix, then $U\subseteq N=N_e$ and $H_A=[N:U].$ Moreover

 $[Gl_n(K): N]$ = the number of \mathcal{H} -classes of S of the form gH_A , $g \in Gl_n(K)$ = the number of \mathcal{H} -classes of S of the form H_Ag , $g \in Gl_n(K)$.

We shall consider the case where $K = \mathbb{F}_q$, a finite field of q elements. We count the subspaces of $M_2(\mathbb{F}_q)$ of any given dimension:

Dimension	Number of subspaces
0	1
1	$(q^4 - 1)/(q - 1) = q^3 + q^2 + q + 1$
2	$(1+q+q^2)(1+q^2)$
3	$q^3 + q^2 + q + 1$
4	1

It follows that $|S| = q^4 + 3q^3 + 4q^2 + 3q + 5$.

Write $G = Gl_2(K)$. We have seen above that $\{gAh \mid g, h \in G\}$ yields $[N:U][G:N]^2$ elements in the \mathcal{J} -class of A in the subspace semigroup $S = S(M_2(K))$. We discuss the seven cases listed above.

- 1) $A = M_2(K)$. Then $A\mathcal{J}B$ for $B = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. Every non-zero subspace $V \subseteq \begin{pmatrix} * & * \\ 0 & 0 \end{pmatrix}$ is a left *B*-module and satisfies VW = B for some right *B*-module W. So the \mathcal{R} -class of B consists of all such subspaces V, whence it has q+2 elements. As the same holds for the \mathcal{L} -class of B, it follows that the \mathcal{J} -class of B has $\geq (q+2)^2$ elements.
- the \mathcal{J} -class of B has $\geq (q+2)^2$ elements. 2) $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$. It is easy to see that N = U and [G:N] = q+1. So the \mathcal{J} -class of A has $\geq (q+1)^2$ elements.
- 3) $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Then N consists of invertible matrices of the form $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$ or $\begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix}$. Hence [N:U] = 2 and [G:N] = (q+1)q/2. Therefore the \mathcal{J} -class of A has $\geq q^2(q+1)^2/2$ elements.
- 4) $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Then N consists of invertible matrices of the form $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$. So |U| = (q-1)q and $|N| = (q-1)^2q$. Hence [N:U] = q-1 and [G:N] = q+1 and therefore the \mathcal{J} -class of A has $\geq (q+1)^2(q-1)$ elements.
- q+1 and therefore the \mathcal{J} -class of A has $\geq (q+1)^2(q-1)$ elements. 5) $A=\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$. Then N=G and $U\cong K^*$. So $[N:U]=q(q^2-1)$ and [G:N]=1. It follows that the \mathcal{J} -class of A has $\geq q(q^2-1)$ elements.
- 6) A is a subfield of dimension 2 over K. Now $|A| = q^2$, so that $|U| = q^2 1$. Let C be the centralizer of A in $M_2(K)$. Then C is a simple algebra, so it is a maximal subfield of $M_2(K)$ containing A, [1]. Hence C = A. The

Galois group G(A/K) is $\{\mathrm{Id},\phi\}$, where $\phi(x)=x^q$. So $n\in N$ if and only if $nan^{-1}=a$ or $nan^{-1}=a^q$ for $a\in A$ (as there are no other automorphisms). Hence $n\in C=A$ or $nan^{-1}=a^q$. By the Noether–Skolem theorem there exists an element $n\in N$ of the latter type. Then any other $y\in N$ satisfies either $y^{-1}n\in C$ or $y\in C$. So $N\subseteq C\cup Cn$ and consequently $N=U\cup Un$. Hence [N:U]=2. But $[G:U]=(q^2-q)(q^2-1)/(q^2-1)=q^2-q$. So $[G:N]=(q^2-q)/2$. Therefore we get $2((q^2-q)/2)^2=q^2(q-1)^2/2$ elements in the $\mathcal J$ -class of A.

We now add the numbers of subspaces produced in cases 1)-6) (note that they are in different \mathcal{J} -classes of S):

- 1) $(q+1)^2$ spaces of dimension 1, 2q+2 spaces of dimension 2, 1 space of dimension 4,
- 2) $(q+1)^2$ spaces of dimension 3,
- 3) $q^2(q+1)^2/2$ spaces of dimension 2,
- 4) $(q+1)^2(q-1)$ spaces of dimension 2,
- 5) $q(q^2-1)$ spaces of dimension 1,
- 6) $q^2(q-1)^2/2$ spaces of dimension 2.

So we have constructed

$$q^4 + q^3 + 2q^2 + q + 1 = (1 + q + q^2)(1 + q^2)$$

subspaces of dimension 2, whence these are all such subspaces. Also, we have got $q^3 + q^2 + q + 1$, hence all, subspaces of dimension 1. Moreover, there are

$$|S| - 1 - |\{\text{elements listed in 1}\}| = q^3 - q$$

remaining non-zero elements of S (all of them of dimension 3). We will show that they are all not regular. So, it will follow that the elements listed in 1)-6) cover all non-zero regular \mathcal{J} -classes of S, and hence they exhaust all non-zero regular elements of S. It also follows that the regular \mathcal{J} -classes of S consist of unit regular elements of S.

PROPOSITION 2.1. Assume that K is any field and let $n \geq 2$. Let $V \in S = S(M_n(K))$ be a subspace of dimension $n^2 - 1$. Let V be described by a linear equation $\sum_{i,j=1}^n a_{ij}x_{ij} = 0$, $a_{ij} \in K$. If $VwV \subseteq V$ for some non-zero $w \in M_n(K)$, then the rank of the matrix $A = (a_{ij})$ is 1. Moreover, the latter is equivalent to the fact that V is a regular element of S.

Proof. Assume that $h \in M_n(K)$ is an elementary matrix. So it is a transposition or $h = 1 + \lambda e_{pq}$ for some $p \neq q$ and $\lambda \in K^*$, where e_{pq} denotes a matrix unit. Let $B = (b_{ij})$ be the matrix determined by an equation describing the subspace hV. If h is a transposition with non-diagonal entries h_{pq}, h_{qp} , then clearly we may take $b_{qj} = a_{pj}, b_{pj} = a_{qj}$ and $b_{ij} = a_{ij}$ if $i \neq p, q$, for $j = 1, \ldots, n$. If $h = 1 + \lambda e_{pq}$, then it is easy to see that we

may take $b_{qj} = a_{qj} - \lambda a_{pj}$ and $b_{ij} = a_{ij}$ for $i \neq q$, and for all j. It follows that rank(A) = rank(B). Hence every hV is described by an equation with the corresponding matrix having the same rank as A. The same holds if $h = 1 + \lambda e_{pp}$ with any $p \in \{1, \ldots, n\}$ and $\lambda \neq -1$, and therefore for every $h \in \text{Gl}_n(K)$. The same applies to Vh.

Suppose that $VwV \subseteq V$ for some $w \in M_n(K)$. If $g, h \in Gl_n(K)$, then

$$g^{-1}Vhh^{-1}wgg^{-1}Vh \subseteq g^{-1}Vh.$$

Clearly, V is a regular element of S if and only if so is $g^{-1}Vh$. It follows that, when proving both statements, we may replace V by any $g^{-1}Vh$. Hence we may assume that the matrix A is of the form $A = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ for an identity matrix I of size $r \leq n$.

First assume that $\operatorname{rank}(A) = 1$. So, let $a_{11} = 1$ be the only non-zero entry. This means that $V = \begin{pmatrix} 0 & b \\ c & d \end{pmatrix}$ where b, c, d are $1 \times (n-1), (n-1) \times 1$, $(n-1) \times (n-1)$ matrices, respectively. It is easy to see that $W = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$ satisfies VWV = V. Therefore V is a regular element of S.

It is clear that if V is a regular element of S then there exists a non-zero $w \in M_n(K)$ such that $VwV \subseteq V$.

Finally, suppose that $VwV \subseteq V$ for a non-zero matrix w. Because of the diagonal idempotent form of A we have

$$V = \{x = (x_{ij}) \in M_n(K) \mid x_{11} + \ldots + x_{rr} = 0\}.$$

If r=1 then $\operatorname{rank}(A)=1$ and we are done. So suppose that $r\geq 2$. Let $w=(w_{ij})$ and suppose that $w_{kt}\neq 0$ for some k,t. If $k,t\neq 1$ then let $v=(v_{ij}),v'=(v'_{ij})$ be such that $v_{1k}=1=v'_{t1}$ and all the remaining entries are 0. Then $v,v'\in V$, so that $vwv'\in V$. But vwv' has only one non-zero entry and it is in position (1,1). This contradicts the above description of V. It follows that $w_{ij}=0$ if $i,j\neq 1$. The same argument applied to position (2,2) implies that also $w_{ij}=0$ if $i,j\neq 2$. So w_{12},w_{21} can be the only non-zero entries of w. Choose a matrix $u=(u_{ij})$ whose only non-zero entry is u_{21} and let $u'=(u'_{ij})$ be such that $u_{11}=-1$ and $u_{22}=1$ and all other entries are zero. Then $u,u'\in V$ and $uwu'\in V$. The second row of uwu' is equal to $(0,w_{12},0,\ldots,0)$ and all other rows are zero. So the description of V yields $w_{12}=0$. A similar argument applied to the product u^twu' (where u^t is the transpose of u) yields $w_{21}=0$. Therefore w=0. This contradiction shows that v=1, completing the proof of the proposition. \blacksquare

We come back to the case $K = \mathbb{F}_q$ and n = 2. Notice that there are

$$|Gl_2(K)|/(q-1) = (q^2 - q)(q^2 - 1)/(q-1) = q^3 - q$$

subspaces of dimension 3 defined by an equation $\alpha x_{11} + \beta x_{12} + \gamma x_{21} + \delta x_{22} = 0$ such that $\det \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \neq 0$.

Let $V = \{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} | a, b, c \in K \}$. So, V is defined by the equation $x_{12} - x_{21} = 0$, and is of the desired type. We determine the stabilizer C of V under the action of $Gl_2(K)$ on S by left multiplication. So, let $g = (g_{ij}) \in Gl_2(K)$ satisfy

$$\begin{pmatrix} g_1 & g_2 \\ g_3 & g_4 \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} = \begin{pmatrix} g_1a + g_2b & g_1b + g_2c \\ g_3a + g_4b & g_3b + g_4c \end{pmatrix} \in V$$

for all $a, b, c \in K$. Then $g_3a + g_4b = g_1b + g_2c$, whence $g_3 = 0 = g_2$ and $g_4 = g_1$. So C consists of scalar matrices and

$$|\{gV \mid g \in Gl_2(K)\}| = |Gl_2(K)| \cdot |K^*|^{-1} = q^3 - q.$$

Clearly, every element of the form gV, $g \in Gl_2(K)$, satisfies $gV\mathcal{L}V$ in S, whence it is not regular by Proposition 2.1. It then follows that we have constructed $q^3 - q$ non-regular elements of the form gV. Therefore, comparing the cardinality of S and the number of regular elements constructed before, we see that the elements listed in cases 1)–6) exhaust all non-zero regular \mathcal{J} -classes of S and the elements gV, $g \in Gl_2(K)$, exhaust all non-regular elements of S.

COROLLARY 2.2. Let $V = \{x = (x_{ij}) \in M_2(K) \mid x_{12} = x_{21}\}$. Then the \mathcal{J} -class of V in S is equal to $\{gV \mid g \in Gl_2(K)\} = \{Vg \mid g \in Gl_2(K)\}$ and it coincides with the \mathcal{H} -class of V. Moreover S has exactly eight \mathcal{J} -classes, namely the classes of $A_1, \ldots, A_6, V, \{0\}$.

Proof. We have seen that $\{gV \mid g \in \operatorname{Gl}_2(K)\}$ exhaust all non-regular elements in S. A symmetric argument shows that $\{Vg \mid g \in \operatorname{Gl}_2(K)\}$ also is the set of all non-regular elements of S and hence $\{gV \mid g \in \operatorname{Gl}_2(K)\} = \{Vg \mid g \in \operatorname{Gl}_2(K)\}$. Therefore non-regular elements of S form a single \mathcal{H} -class of S and the assertion follows. \blacksquare

3. Structure of the algebra. In this section we describe the radical of $\mathbb{C}[S]$ and we show that, for every regular principal factor T of S, the contracted semigroup algebra $\mathbb{C}_0[T]$ is semisimple. Hence $\mathbb{C}[S]/J(\mathbb{C}[S])$ is a direct product of all $\mathbb{C}_0[T]$ (see [4]). As $\mathbb{C}[S] = B + J(\mathbb{C}[S])$, a direct sum of subspaces, for a subalgebra $B \cong \mathbb{C}[S]/J(\mathbb{C}[S])$, this yields a description of the structure of the algebra.

LEMMA 3.1. Let $A \subseteq M_n(K)$ be a subalgebra with $1 \in A$. Then $A = \{gAh \mid g, h \in G\}$ with zero adjoined is a completely 0-simple inverse subsemigroup of the principal factor J_A of A in $S(M_n(K))$. Moreover, A is a union of \mathcal{H} -classes of J_A .

Proof. We know that $H_A = \{Ax \mid x \in N\}$, where N is the normalizer of A in $Gl_n(K)$. It follows that \mathcal{A} is a union of \mathcal{H} -classes of J_A . Moreover every non-empty intersection R of \mathcal{A} with an \mathcal{R} -class of S contains an idempotent. Namely, if $uAv \in R$ for some $u, v \in G$, then $uAu^{-1} \in R$.

Suppose that $B \in \mathcal{A}$ is an idempotent from the \mathcal{R} -class of A in S. Since $B \cap G \neq \emptyset$ and B is a subalgebra of $M_n(K)$, we must have $1 \in B$. But AB = B and BA = A. It follows that A = B. Now, if gAh is an idempotent, where $g, h \in G$, then Ahg is also an idempotent and $A\mathcal{R}Ahg$. So Ahg = A by the preceding part of the proof. Then $gAh = gAg^{-1}$. Now, suppose that two idempotents gAg^{-1} , fAf^{-1} ($g, f \in G$) are in the same \mathcal{R} -class of S. Then $A\mathcal{R}g^{-1}fAf^{-1}g$ and again we get $A = g^{-1}fAf^{-1}g$. Hence $gAg^{-1} = fAf^{-1}$. Similarly one proves that every non-empty intersection of \mathcal{A} with an \mathcal{L} -class of S contains exactly one idempotent. The assertion follows. \blacksquare

We have seen that the regular \mathcal{J} -classes of S described in cases 2)–6) are of the form \mathcal{A} , where \mathcal{A} is a subalgebra containing 1. So, the lemma above applies to these \mathcal{J} -classes.

PROPOSITION 3.2. Let J be a completely 0-simple principal factor of the semigroup $S = S(M_2(\mathbb{F}_q))$. Then $\mathbb{C}_0[J]$ is a semisimple algebra.

Proof. Let J be one of the regular \mathcal{J} -classes of S described in 2)–6), with zero adjoined. Then by Lemma 3.1, $\mathbb{C}_0[J] \cong M_k(\mathbb{C}[H])$ for the maximal subgroup H of J and some k (see [4], Corollary 5.26). It remains to consider the \mathcal{J} -class J containing $A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. The maximal subgroup of J is trivial. So, to consider the Rees presentation of J (see [2]) in the coordinate system corresponding to the maximal subgroup $\{A\}$ of J, we list the elements of the \mathcal{R} -class of A (in the leading column) and of the \mathcal{L} -class of A (in the leading row). This yields the following form of the sandwich matrix P of J:

	$\begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ \alpha a & 0 \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix}$
$\begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix}$	0	11	1	1
$\begin{pmatrix} b & -\alpha^{-1}b \\ 0 & 0 \end{pmatrix}$	1 : :	0 1 ··. 1 0	1 : 1	1 : 1
$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$	1	11	0	1
$\begin{pmatrix} d & b \\ 0 & 0 \end{pmatrix}$	1	11	1	1

Here the second row (column, respectively) represents q-1 different rows (columns) of P corresponding to different q-1 elements α of \mathbb{F}_q^* . Performing elementary operations on rows and columns of P, one brings P to the identity matrix. So, P is invertible as a matrix over \mathbb{C} and consequently $\mathbb{C}_0[J] \cong M_{q+2}(\mathbb{C})$, again by Corollary 5.26 of [4]. The assertion follows.

It is easy to verify that the inverse of the above sandwich matrix is

$$P^{-1} = \begin{pmatrix} -1 & 0 & \dots & 0 & 1\\ 0 & -1 & \dots & 0 & 1\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \dots & -1 & 1\\ 1 & 1 & \dots & 1 & -q \end{pmatrix}.$$

Finally, we describe the radical of the algebra $\mathbb{C}_0[S]$. Let J be the \mathcal{J} -class containing $M_n(K)$ and $A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, together with the zero subspace. Notice that J is an ideal of S. Since $\mathbb{C}_0[J]$ is semisimple, it has an identity E, which can be effectively determined. Namely, in the Munn algebra notation for $\mathbb{C}_0[J]$ (see [4]), E can be identified with P^{-1} . Therefore E can be expressed as a linear combination of elements of J with coefficients 1, -1 and q as follows:

$$E = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ b & d \end{pmatrix} + \sum_{\alpha \in K} \left(\begin{pmatrix} a & \alpha a \\ c & \alpha c \end{pmatrix} + \begin{pmatrix} a & b \\ \alpha a & \alpha b \end{pmatrix} \right) - \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} - \sum_{\alpha \in K^*} \begin{pmatrix} a & -\alpha^{-1}a \\ \alpha a & -a \end{pmatrix} - qM_2(K).$$

PROPOSITION 3.3. Let $V = \{x \in M_2(K) \mid x_{12} = x_{21}\}$. Then

$$J(\mathbb{C}_0[S]) = \lim_{\mathbb{C}} \{ gV - EgV \mid g \in Gl_2(K) \}$$

and $J(\mathbb{C}_0[S])^2 = 0$.

Proof. Denote the right hand side by I. Let J be the \mathcal{J} -class of S containing $M_n(K)$ with zero adjoined. Then $\mathbb{C}_0[J]$ is an ideal of $\mathbb{C}_0[S]$ since J is an ideal of S. We have $\mathbb{C}_0[J]I = I\mathbb{C}_0[J] = 0$ because E is a central idempotent in $\mathbb{C}_0[S]$. Moreover $I^2 = 0$. Indeed, if $g \in \mathrm{Gl}_2(K)$ then gV = Vh for some $h \in \mathrm{Gl}_2(K)$ by Corollary 2.2. Therefore

$$(V - EV)(gV - EgV) = (V - EV)(Vh - VhE).$$

Since $V^2 = M_2(K) \in J$, we get (V - EV)(Vh - VhE) = 0, so $I^2 = 0$, as desired.

We know that the set $H_V = \{gV \mid g \in \operatorname{Gl}_2(K)\}$ has cardinality $q^3 - q$, so the dimension of I is at most $q^3 - q$. Since the image of I modulo $\mathbb{C}_0[J]$ is spanned by H_V , it has dimension $q^3 - q$. Hence, this is the dimension of I as well.

We claim that I is an ideal of $\mathbb{C}_0[S]$. By symmetry of H_V and since E is central, it is enough to show that I is a left ideal. Let $X \in S$, $X \neq 0$. If X is not regular in S, then X = gV for some $g \in \mathrm{Gl}_2(K)$ and $XV = M_2(K) \in J$. If X is in one of the regular \mathcal{J} -classes listed in cases 2)–6), then X contains an invertible matrix u. Thus, XV is either of the form uV or it is equal to $M_2(K)$. So $X(V - EV) \in I$ in the former case and X(V - EV) = 0 in the

latter. Finally, if $X \in J$, then we also get X(V - EV) = 0 because E is the identity of $\mathbb{C}_0[J]$. So I is a left ideal, as claimed.

It follows that $I \subseteq J(\mathbb{C}_0[S])$. By Proposition 3.2, the dimension of $\mathbb{C}_0[S]$ modulo its radical is $q^3 - q$. Comparing dimensions we get $J(\mathbb{C}_0[S]) = I$.

Notice that we have in fact shown that the \mathcal{H} -class H_V of V in S, with zero adjoined, is a minimal non-zero ideal of the Rees factor S/J.

REFERENCES

- Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, Berlin, 1994.
- [2] J. M. Howie, Fundamentals of Semigroup Theory, Oxford Univ. Press, 1995.
- [3] J. Kwapisz, Cocyclic subshifts, Math. Z. 234 (2000), 255–290.
- [4] J. Okniński, Semigroup Algebras, Dekker, New York, 1991.
- [5] —, Semigroups of Matrices, World Sci., Singapore, 1998.
- [6] J. Okniński and M. S. Putcha, Subspace semigroups, J. Algebra 233 (2000), 87–104.

Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland E-mail: okninski@mimuw.edu.pl

> Received 4 June 2001; revised 6 September 2001 (4075)