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POSITIVE SOLUTIONS FOR SUBLINEAR ELLIPTIC EQUATIONS

BY

BOGDAN PRZERADZKI and ROBERT STAŃCZY (Łódź)

Abstract. The existence of a positive radial solution for a sublinear elliptic bound-
ary value problem in an exterior domain is proved, by the use of a cone compression
fixed point theorem. The existence of a nonradial, positive solution for the corresponding
nonradial problem is obtained by the sub- and supersolution method, under an additional
monotonicity assumption.

1. Introduction. In the first part of the paper we consider the problem

(1)

−∆u = f(‖x‖, u) for ‖x‖ > 1, x ∈ R
n, n ≥ 3,

u = 0 for ‖x‖ = 1,
u→ 0 as ‖x‖ → ∞.

Looking for its radial solutions u(x) = z(‖x‖), where z : [1,∞) → R, one
can substitute v(t) = z((1 − t)1/(2−n)), thus reducing the elliptic BVP (1)
to the following BVP for ODE, which is singular at 1:

(2)
v′′(t) + g(t, v(t)) = 0 for t ∈ (0, 1),
v(0) = v(1) = 0,

where

(3) g(t, v) =
1

(n− 2)2 (1− t)
(2n−2)/(2−n)f((1− t)1/(2−n), v(t)).

Using some fixed point theorem in a cone [6] we obtain the existence of at
least one positive solution for (2) and therefore a radial positive solution for
BVP (1). The nonlinearity g (or f) is assumed to be sublinear with respect to
the second variable both at 0 and ∞. We relax the sublinearity assumption
on g at 0 used in [8], where some results for BVP (2) were obtained by
means of lower and upper solutions. BVP (2) generalizes the Emden–Fowler
equation considered in [23]. Related problems were considered in [3], [7],
[10], [11], [21]. A similar method (with another cone) has been used in [4].
Problems of the form (1) but with superlinear nonlinearity were considered
in [9], [22]. In problem (1) we have used the exterior of the unit ball only
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for the sake of convenient notation (one could replace it with the exterior of
a ball with an arbitrary radius).

In the second part using the existence result for the radial case together
with the existence theorem of Noussair [13] we obtain the existence of a
nonradial solution for the following nonradial BVP:

(4)

−∆u = f(x, u) for ‖x‖ > 1, x ∈ R
n, n ≥ 3,

u(x) = 0 for ‖x‖ = 1,
u(x)→ 0 as ‖x‖ → ∞.

The method of sub- and supersolutions developed in [13] cannot be applied
directly, since we do not know any positive subsolution. If we allow f(x, ·)
≡ 0 then we have the trivial solution which cannot be used as a subsolution
to produce a new one (the theorem of Noussair does not exclude that a
solution is different from a subsolution). The existence of a nonnegative
subsolution (which is neither zero nor positive) was used in [14] to obtain a
nonnegative solution; in our approach we obtain a positive one. The problem
of symmetry for BVP (4) was studied in the autonomous case in [19], while
the multiplicity result was obtained in [12], [16]. Related problems were
considered in [15], [17].

In our paper we treat the case of f decaying as x tends to infinity,
therefore the autonomous case cannot be considered in this framework.

2. Radial case. First we establish the existence result for the following
BVP (possibly singular at 0 and 1):

(5)
v′′(t) + g(t, v(t)) = 0 for t ∈ (0, 1),
v(0) = v(1) = 0,

where g : (0, 1) × [0,∞) → [0,∞). We shall use the following theorem [6,
Theorem 2.3.4]:

Theorem 2.1. Let E be a Banach space, and let P ⊂ E be a cone in
E. Let Ω1 and Ω2 be two bounded open sets in E such that 0 ∈ Ω1 and
Ω1 ⊂ Ω2. Let A : P ∩ (Ω2 \Ω1) → P be a completely continuous operator.
Suppose that either

(6)
‖Ax‖ ≤ ‖x‖ for any x ∈ P ∩ ∂Ω1,
‖Ax‖ ≥ ‖x‖ for any x ∈ P ∩ ∂Ω2,

or

(7)
‖Ax‖ ≥ ‖x‖ for any x ∈ P ∩ ∂Ω1,
‖Ax‖ ≤ ‖x‖ for any x ∈ P ∩ ∂Ω2.

Then A has at least one fixed point in P ∩ (Ω2 \Ω1).
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Let E be the space C([0, 1]) of continuous functions with the norm
‖v‖∞ = supt∈[0,1] |v(t)|. Define

H =
{

h ∈ C((0, 1)) : h > 0,
1\
0

t(1− t)h(t) dt <∞
}

.

Theorem 2.2. Let g : (0, 1) × [0,∞) → R be a continuous function.

Assume that :

(A1) for any M > 0 there exists a function hM ∈ H such that for any
0 ≤ v ≤M , t ∈ (0, 1) we have

0 ≤ g(t, v) ≤ hM (t), lim sup
M→∞

T1
0 s(1− s)hM (s) ds

M
< 1,

(A2) there exists a set A ⊂ (0, 1) of positive measure such that

lim inf
v→0+

g(t, v)

v
=∞ uniformly w.r.t. t ∈ A.

Then BVP (5) has at least one positive solution.

Proof. The Green function corresponding to the linear homogeneous
problem has the form

(8) G(t, s) =

{

s(1− t) for 0 ≤ s ≤ t,
t(1− s) for t ≤ s ≤ 1,

and satisfies the following estimate:

(9) |G(t, s)| ≤ s(1− s) for all t, s ∈ [0, 1].
Taking any set of positive measure B ⊂ A ∩ (δ, 1− δ), for some positive δ,
where A is the set from assumption (A2), we can define a cone P in E by

(10) P = {v ∈ E : v(t) ≥ 0, t ∈ [0, 1], inf
t∈B
v(t) ≥ min{a, 1− b}‖v‖∞},

where a = inf B and b = supB. Then BVP (5) can be restated as an
equation in E:

(11) Sv = v,

where S : P → E is defined by

(12) Sv(t) :=

1\
0

G(t, s)g(s, v(s)) ds.

By (A1) and (9) one can see that S is well defined on the set of all non-
negative, continuous functions and maps it into E. Moreover, it maps all
nonnegative functions into the cone P . Indeed, for v ≥ 0 we have g(t, v) ≥ 0
by (A1), therefore

inf
t∈B
Sv(t) = inf

t∈B

t\
0

(1− t)sg(s, v(s)) ds+
1\
t

t(1− s)g(s, v(s)) ds
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≥ min{1− b, a} inf
t∈B

(

t\
0

sg(s, v(s))ds+

1\
t

(1− s)g(s, v(s)) ds
)

≥ min{1− b, a}
1\
0

s(1− s)g(s, v(s)) ds

= min{1− b, a} sup
t∈[0,1]

(

t\
0

s(1− s)g(s, v(s)) ds+
1\
t

s(1− s)g(s, v(s)) ds
)

≥ min{1− b, a} sup
t∈[0,1]

(

t\
0

s(1− t)g(s, v(s)) ds+
1\
t

t(1− s)g(s, v(s)) ds
)

= min{1− b, a}‖Sv‖∞.
By standard reasoning one can show that assumption (A1) guarantees that
S maps E into itself and is also continuous. To prove that S is compact
take any closed ball B(0,M) in E. We shall show that the functions from
S(B(0,M)) = {Sv : ‖v‖∞ ≤ M, v ∈ P} are equicontinuous and equi-
bounded.

To this end take ε > 0 and notice that by the integrability of the function
s 7→ s(1− s)hM (s), there exists δ > 0 such that

t′\
t

s(1− s)hM (s) ds < ε if |t′ − t| < δ.

Thus, for such t and t′, we have

|Sv(t)− Sv(t′)| ≤
max{t,t′}\
min{t,t′}

s(1− s)hM (s) ds < ε

where we have used (9). This proves that the Sv are equicontinuous. Sim-
ilarly, one can show they are equibounded. Hence the functions from the
set {Sv : ‖v‖∞ ≤ M} satisfy the assumptions of the Ascoli–Arzelà Theo-
rem and in consequence this set must be compact in E. Since M > 0 was
arbitrary we get compactness of the operator S : P → E.
Now we shall show that assumptions (7) from Theorem 2.1 are satisfied.

By (A1) we can chooseM > 0 large enough so that
T1
0 t(1− t)hM (t) dt ≤M ,

whence for any 0 ≤ v ≤M and t ∈ (0, 1),
(13) 0 ≤ g(t, v) ≤ hM (t).
Then for any v ∈ P such that ‖v‖∞ =M , by (9) one obtains

Sv(t) =

1\
0

G(t, s)g(s, v(s)) ds ≤
1\
0

s(1− s)g(s, v(s)) ds
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≤
1\
0

s(1− s)hM (s) ds ≤M = ‖v‖∞

for any t ∈ [0, 1]. Therefore ‖Sv‖∞ ≤ ‖v‖∞ for any v ∈ ∂Ω2 ∩ P , where
Ω2 := {v ∈ E : ‖v‖∞ < M}.
Finally, choose µ > 0 such that µmin{a, 1− b}

T
B
G((a+ b)/2, s) ds ≥ 1

(B ⊂ A ∩ (δ, 1 − δ) for some positive constant δ as in the definition of the
cone P ). By (A2), there exists R < M such that for 0 ≤ v ≤ R,

inf
t∈B
g(t, v) ≥ µv.

Let Ω1 = {v ∈ E : ‖v‖∞ < R}. If v ∈ P ∩ ∂Ω1, then g(t, v(t)) ≥ µv(t) for
all t ∈ B. Then

Sv

(

a+ b

2

)

=

1\
0

G

(

a+ b

2
, s

)

g(s, v(s)) ds ≥
\
B

G

(

a+ b

2
, s

)

g(s, v(s)) ds

≥ µ
\
B

G

(

a+ b

2
, s

)

v(s) ds

≥ ‖v‖∞µmin{a, 1− b}
\
B

G

(

a+ b

2
, s

)

ds ≥ ‖v‖∞.

Therefore ‖Sv‖∞ ≥ ‖v‖∞ for v ∈ P ∩ ∂Ω1. Applying Theorem 2.1 to S one
obtains a fixed point v0 in P ∩ (Ω2 \Ω1).
Moreover, since v0 is nonnegative and ‖v0‖∞ ≥ R we have v0(t0) > 0 at

some point t0. Since v0 satisfies integral equation (11), the function g(·, v0(·))
cannot vanish on the whole interval (0, 1) (otherwise v0 ≡ 0 by (11)) so once
again by (11), v0 must be positive in (0, 1).

Remark 1. One can see from the proof of the theorem that the assump-
tion (A2) could be replaced by

(A2′) there exists a set B ⊂ (0, 1) of positive measure and ε > 0 such
that

g(t, v) ≥ µBv for t ∈ B, 0 < v < ε,
where

µB := inf
C⊂B

(

min{inf C, 1− supC} sup
t∈(0,1)

\
C

G(t, s) ds
)−1
.

Obviously, if C ⊂ B then the inequality holds on C as well, but the constant
in round brackets can be less than the one for B.

Remark 2. For example, if B = (0, 1), then µB = 24
√
3, which is ob-

tained for C = (1/(2
√
3), 1 − 1/(2

√
3)). In this case assumption (A2′) can

be compared with the assumption
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(A) there exists k > 1 and for any compact set K ⊂ (0, 1), there is ε > 0
such that

g(t, v) ≥ k2v for all t ∈ K, u ∈ (0, ε]
from [8]. Obviously, our constant is worse than this one, but our theorem
also works for nonlinearities that satisfy the inequality on smaller sets than
t ∈ (0, 1).
Define K := {p ∈ C((1,∞)) :

T∞
1 s(1 − s2−n)p(s) ds < ∞}. Now we are

ready to formulate the main result for elliptic BVP (1) in the radial case,
which is an immediate consequence of Theorem 2.2:

Theorem 2.3. Let f : (1,∞)×[0,∞)→ [0,∞) be a continuous function
satisfying

(B1) for any M > 0 there exists a function pM ∈ K such that , for any
0 ≤ u ≤M , s > 1,

0 ≤ f(s, u) ≤ pM (s), lim sup
M→∞

T∞
1 s(1− s2−n)pM (s) ds

M
< 1,

(B2) there exists a set B of positive Lebesgue measure such that

lim
u→0+

f(s, u)

u
=∞ uniformly w.r.t. s ∈ B.

Then BVP (1) has at least one positive solution.

Remark 3. It is worth noticing that even if f(s, 0) ≡ 0 then by the
above theorem we obtain additionally a positive solution.

Remark 4. One can see from the proof of the theorem that the assump-
tion (B2) could be replaced by

(B2′) there exists a set B ⊂ (1,∞) of positive measure and a sufficiently
large constant LB such that

f(s, u) ≥ LBu for s ∈ B, u ≥ R.
Remark 5. The assumption (B1) excludes the case of the nonlinearity

f depending only on u. In fact f not only has to depend on s but also to
decay sufficiently fast as s → ∞. The case of slower decay was considered
in [2].

Corollary 1. If f(s, u) = p(s)h(u), where p : (1,∞) → (0,∞) and
h : [0,∞)→ [0,∞) are continuous functions, then the assumptions of The-
orem 2.3 reduce to:

(C1) p0 :=

∞\
1

s(1− s2−n)p(s) ds <∞,
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(C2) lim sup
u→∞

h(u)

u
<
1

p0
,

(C3) lim inf
u→0+

h(u)

u
=∞.

This includes the following

Example 1. The equation

(14) −∆u = u
α

‖x‖β for ‖x‖ ≥ 1,

where α < 1, β > 2, has a positive solution satisfying the boundary condi-
tions as in (1).

Theorem 2.3 also applies to the case where one cannot separate the
variables of the function f , as in the following:

Example 2. Consider the equation

(15) −∆u = u
α(‖x‖)

‖x‖β for ‖x‖ ≥ 1,

where β > 2 and α : [1,∞) → R satisfies sups∈[1,∞) α(s) < 1. Then (15)
with the boundary conditions as in (1) has a positive solution.

Remark 6. Considering f : (1,∞) × R → R and assuming only (B1),
by the Schauder Theorem, one can obtain the existence of at least one
solution to BVP (1). If f(·, 0) 6≡ 0 then the solution is not trivial, otherwise
(f(·, 0) ≡ 0) we do not know whether a nonzero solution exists. Therefore
the situation is quite different from the one considered above.

3. Nonradial case. Consider the following BVP in an exterior domain
Ω ⊂ R

n (n ≥ 3):

(16)
−∆u = f(x, u,∇u) for x ∈ Ω,
u(x) = 0 for x ∈ ∂Ω.

We look for classical solutions u ∈ C2(Ω) ∩ C(Ω). We recall a well known
notion of sub- and supersolution for BVP (16). We shall call u ∈ C2(Ω) ∩
C(Ω) a subsolution for (16) if it satisfies

(17)
−∆u ≤ f(x, u,∇u) for x ∈ Ω,
u(x) ≤ 0 for x ∈ ∂Ω,

In a similar way we define a supersolution u for (16)—it suffices to reverse
the inequalities in (17). A good survey of results obtained by the sub- and
supersolution method is the book of Pao [18].
Now we recall the existence result for a nonradial elliptic BVP in an

exterior domain due to Noussair [13]:
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Theorem 3.1. Let Ω be an exterior domain. Assume that f : Ω × R×
R
n → R satisfies the following conditions:

(D1) for each bounded domain M ⊂ Ω there exists a continuous function
̺M : R→ R such that for all x ∈M , u ∈ R and p ∈ R

n,

|f(x, u, p)| ≤ ̺M (u)(1 + |p|2),
(D2) f is Hölder continuous (C0,r) with respect to (x, u, p) and C1 with

respect to u, p,

(D3) there exist sub- and supersolutions for (16), u and u respectively ,
such that u(x) ≤ u(x) for any x ∈ Ω.

Then there exists at least one solution u of (16) such that u(x) ≤ u(x) ≤
u(x) for any x ∈ Ω.
Let Ω be the exterior of the closed ball B(0, 1) of radius 1 in R

n and let
n ≥ 3. We consider the following BVP in Ω with a not necessarily radial
nonlinearity f :

(18)

−∆u = f(x, u) in Ω,

u(x) = 0 on ∂Ω,

u(x)→ 0 as ‖x‖ → ∞.
Theorem 3.2. Assume that a function f : Ω× [0,∞)→ [0,∞) satisfies:

(E1) f is Hölder continuous (C0,r) with respect to (x, u) and continuously
differentiable and nonincreasing with respect to the second variable,

(E2) for any M > 0 there exists a function pM : (1,∞) → (0,∞) such
that

T∞
1 s(1− s2−n)pM (s) ds <∞ and
0 ≤ f(x, u) ≤ pM (‖x‖) for any 0 ≤ u ≤M, 1 < ‖x‖,

(E3) there exists a set B ⊂ (1,∞) of positive measure such that

lim inf
u→0+

f(x, u)

u
=∞ uniformly w.r.t. ‖x‖ ∈ B.

Then there exists at least one positive solution to BVP (18).

Proof. Define f1 : (1,∞) × [0,∞) → [0,∞) and f2 : (1,∞) × [0,∞) →
[0,∞) by

f1(r, u) = inf
‖x‖=r

f(x, u), f2(r, u) = sup
‖x‖=r

f(x, u).

Since f1 and f2 satisfy the assumptions of Theorem 2.3 we obtain the exis-
tence of two radial solutions u1 and u2 to BVP (1) with f = f1 and f = f2
respectively. But then

−∆u1 = f1(‖x‖, u1) ≤ f(x, u1)
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so u1 is a subsolution to BVP (18). By a similar reasoning u2 is a super-
solution to BVP (18). Moreover if u1(x0) > u2(x0) for some x0 ∈ Ω then
taking the connected component U of the set {x ∈ Ω : u1(x) > u2(x)} such
that x0 ∈ U and considering the function h(x) = u2(x)− u1(x) we arrive at

−∆h(x) = f2(‖x‖, u2(x))− f1(‖x‖, u1(x))
≥ f1(‖x‖, u2(x))− f1(‖x‖, u1(x)),

which together with the monotonicity (by (E1) the function f1(r, ·) is non-
increasing) implies −∆h(x) ≥ f1(‖x‖, u1(x)) − f1(‖x‖, u1(x)) = 0 for any
x ∈ U (since u1(x) > u2(x) for those x). Consequently,

−∆h(x) ≥ 0 for x ∈ U,
h(x) = 0 for x ∈ ∂U,
h(x)→ 0 as ‖x‖ → ∞, x ∈ U,

so if h is negative at some point it has to attain a negative minimum at some
x0. Then take r0 > 0 such that ‖x0‖ < r0 and h(x) ≥ 12h(x0) for ‖x‖ ≥ r0.
Consequently, by the maximum principle (see [5] or [20]) applied in the set
U1 = {x ∈ U : 1 < ‖x‖ < r0}, the function h attains its minimum on the
boundary of U1 so we get h(x0) ≥ inf∂U1 h(x) ≥ 12h(x0), which contradicts
the fact that x0 ∈ U .
Therefore by Theorem 3.1 we obtain the existence of a solution u0 for

(18) such that u1 ≤ u0 ≤ u2. Thus if f is not radial with respect to x then
obviously neither is u0.

Remark 7. The above theorem provides a nonradial solution only if the
nonlinearity f is nonradial with respect to x.

Example 3. Consider the following BVP:

(19)

−∆u = g(x)uσ in Ω,

u(x) = 0 on ∂Ω,

u(x)→ 0 as ‖x‖ → ∞,

where σ < 1 and g : Ω → (0,∞) is a continuous, nonnegative function,
strictly positive on some annulus Ω1 = {x ∈ Ω : a ≤ ‖x‖ ≤ b} ⊂ Ω
(1 < a < b some positive constants) satisfying

∞\
1

r(1− r2−n) sup
‖x‖=r

g(x) dr <∞.

Then BVP (19) has a positive solution (nonradial if g is such).
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