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POSITIVE SOLUTIONS FOR SUBLINEAR ELLIPTIC EQUATIONS

BY

BOGDAN PRZERADZKI and ROBERT STANCZY (L6d2)

Abstract. The existence of a positive radial solution for a sublinear elliptic bound-
ary value problem in an exterior domain is proved, by the use of a cone compression
fixed point theorem. The existence of a nonradial, positive solution for the corresponding
nonradial problem is obtained by the sub- and supersolution method, under an additional
monotonicity assumption.

1. Introduction. In the first part of the paper we consider the problem
—Au= f(||z|,u) for|z| >1, x€R" n>3,
(1) u=0 for ||z]| =1,
u—0 as ||z|| — oc.
Looking for its radial solutions u(xz) = z(||z||), where z : [1,00) — R, one
can substitute v(t) = z((1 — ¢t)/(~™)), thus reducing the elliptic BVP (1)
to the following BVP for ODE, which is singular at 1:
@) v"(t) + g(t,v(t)) =0 fort e (0,1),
v(0) =v(1) =0,
where

B) gl = g = 0 (=, o),

Using some fixed point theorem in a cone [6] we obtain the existence of at
least one positive solution for (2) and therefore a radial positive solution for
BVP (1). The nonlinearity g (or f) is assumed to be sublinear with respect to
the second variable both at 0 and co. We relax the sublinearity assumption
on g at 0 used in [8], where some results for BVP (2) were obtained by
means of lower and upper solutions. BVP (2) generalizes the Emden—Fowler
equation considered in [23]. Related problems were considered in [3], [7],
[10], [11], [21]. A similar method (with another cone) has been used in [4].
Problems of the form (1) but with superlinear nonlinearity were considered
n [9], [22]. In problem (1) we have used the exterior of the unit ball only
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for the sake of convenient notation (one could replace it with the exterior of
a ball with an arbitrary radius).

In the second part using the existence result for the radial case together
with the existence theorem of Noussair [13] we obtain the existence of a
nonradial solution for the following nonradial BVP:

—Au = f(z,u) for ||z >1, z€R", n>3,
(4) u(z) =0 for ||z|| = 1,
u(z) — 0 as ||z|| — oo.

The method of sub- and supersolutions developed in [13] cannot be applied
directly, since we do not know any positive subsolution. If we allow f(z, )
= 0 then we have the trivial solution which cannot be used as a subsolution
to produce a new one (the theorem of Noussair does not exclude that a
solution is different from a subsolution). The existence of a nonnegative
subsolution (which is neither zero nor positive) was used in [14] to obtain a
nonnegative solution; in our approach we obtain a positive one. The problem
of symmetry for BVP (4) was studied in the autonomous case in [19], while
the multiplicity result was obtained in [12], [16]. Related problems were
considered in [15], [17].

In our paper we treat the case of f decaying as x tends to infinity,
therefore the autonomous case cannot be considered in this framework.

2. Radial case. First we establish the existence result for the following
BVP (possibly singular at 0 and 1):

"(t) + g(t,v(t)) =0 for t € (0,1),
v(0) = v(1) = 0,

where g : (0,1) x [0,00) — [0,00). We shall use the following theorem [6,
Theorem 2.3.4]:

()

THEOREM 2.1. Let E be a Banach space, and let P C E be a cone in
E. Let {21 and §25 be two bounded open sets in E such that 0 € {21 and
21 C . Let A: PN (025\ £21) — P be a completely continuous operator.
Suppose that either

(6)

or

(7)

|Az| < ||z||  for any = € PN OS2,
|Az| > ||z|| for any = € PN OS2,

|Az|| > ||z||  for any = € PN Oy,
|Az| < ||z||  for any x € PN OL2s.

Then A has at least one fived point in PN (2 \ §21).
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Let E be the space C([0,1]) of continuous functions with the norm
||U||OO = Supte[o’l} |U(t)’ Define

1
H:{heC((o h>0,§t1—t )dt<oo}.

THEOREM 2.2. Let g : (0,1) x [0,00) — R be a continuous function.
Assume that:
(A1)  for any M > 0 there exists a function hyy € H such that for any
0<v<M,te(0,1) we have

1
1—23)h d
0< gt,0) < har(t),  Timsup W 2L = V() ds
M — o0 M

(A2)  there exists a set A C (0,1) of positive measure such that

t
lim inf M =00 uniformly w.r.t. t € A.
v—0t v

Then BVP (5) has at least one positive solution.

<1,

Proof. The Green function corresponding to the linear homogeneous
problem has the form
_ [s(1—t) for0<s<t,
(8) G(t’s)_{t(l—s) fort <s<1,
and satisfies the following estimate:
9) |G(t,s)] <s(1—s) forallt,se]l0,1].

Taking any set of positive measure B C AN (d,1 — ¢), for some positive 0,
where A is the set from assumption (A2), we can define a cone P in F by

(10) P={veFE:v(t) >0, te]01], tingv(t) > min{a, 1 — b}||v]|so},
€

where ¢ = inf B and b = sup B. Then BVP (5) can be restated as an
equation in E:
(11) Sv =,
where S : P — F is defined by

1
(12) Sv(t) := SG(t, s)g(s,v(s))ds.

0
By (Al) and (9) one can see that S is well defined on the set of all non-
negative, continuous functions and maps it into E. Moreover, it maps all
nonnegative functions into the cone P. Indeed, for v > 0 we have g(¢,v) > 0
by (A1), therefore

1

tlél]fg Sv(t) = tiggé(l —t)sg(s,v(s))ds + §t(1 —5)g(s,v(s))ds
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> min{l — b,a} tlélg (Ssg(s, v(s))ds + S (1—=1s)g(s,v(s)) ds)
> min{l — b,a} S s(1—s)g(s,v(s))ds

= min{l — b,a} sup (
t€[0,1]

> min{l — b,a} sup (
te[0,1]

= min{l — b, a}||5V||cc-

By standard reasoning one can show that assumption (A1) guarantees that
S maps FE into itself and is also continuous. To prove that S is compact
take any closed ball B(0, M) in E. We shall show that the functions from
S(B(0,M)) = {Sv : ||v]leo < M, v € P} are equicontinuous and equi-
bounded.
To this end take € > 0 and notice that by the integrability of the function

s+ s(1 — s)has(s), there exists § > 0 such that

W

[s(1—s)hu(s)ds <e it [t —t| <o

t
Thus, for such ¢ and ¢, we have

max{t,t'}
1Su(t) = Su(t)| < | s(1—s)hu(s)ds <e
min{¢,t’}
where we have used (9). This proves that the Sv are equicontinuous. Sim-
ilarly, one can show they are equibounded. Hence the functions from the
set {Sv : ||[v||eo < M} satisfy the assumptions of the Ascoli-Arzela Theo-
rem and in consequence this set must be compact in E. Since M > 0 was
arbitrary we get compactness of the operator S': P — FE.
Now we shall show that assumptions (7) from Theorem 2.1 are satisfied.

By (A1) we can choose M > 0 large enough so that S[lj t(1—t)ha(t)dt < M,
whence for any 0 <v < M and t € (0, 1),

(13) 0 <g(t,v) < hp(t).

Then for any v € P such that ||v]. = M, by (9) one obtains
1

Sv(t) = SG(t, s)g(s,v(s))ds < Ss(l —35)g(s,v(s))ds
0 0
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1
< | s(1 = 9)har(s)ds < M = |[v]|
0

for any ¢t € [0,1]. Therefore ||Sv|loc < ||v||oc for any v € 9§25 N P, where
2 ={veFE:||v[w< M}

Finally, choose y > 0 such that pgmin{a,1 —b}{, G((a+0)/2,s)ds > 1
(B C AN (6,1 —9) for some positive constant § as in the definition of the
cone P). By (A2), there exists R < M such that for 0 < v < R,

inf g(t,v) > pw.
inf g(t,v) 2 po

Let £ ={v € E : ||v]lec < R}. If v € PN OS2, then g(t,v(t)) > pv(t) for
all t € B. Then

sv<“;b> _ §G<a;—b,s>g(s,v(s))ds > iG(a;—b,s>g(s,v(s))ds
2u§3G<a;b,s>v(s)ds

> ulepeminga 1 -} 6
B

a+b
5 ,s) ds > ||v]]co-
Therefore |[Sv||eo > [|v]|oo for v € PN O§21. Applying Theorem 2.1 to S one
obtains a fixed point vy in PN (22 \ £21).
Moreover, since vy is nonnegative and ||[vg||s > R we have vg(tg) > 0 at
some point g. Since vg satisfies integral equation (11), the function g(-, vo(+))

cannot vanish on the whole interval (0,1) (otherwise vg = 0 by (11)) so once
again by (11), vp must be positive in (0,1). m

REMARK 1. One can see from the proof of the theorem that the assump-
tion (A2) could be replaced by

(A2')  there exists a set B C (0,1) of positive measure and ¢ > 0 such
that

g(t,v) > pupv forte B, 0<v<e,

where

—1
= inf ( min{infC;1 —supC} sup \ G(t,s)ds) .

Obviously, if C C B then the inequality holds on C' as well, but the constant
in round brackets can be less than the one for B.

REMARK 2. For example, if B = (0, 1), then up = 24v/3, which is ob-
tained for C' = (1/(2v/3),1 — 1/(2v/3)). In this case assumption (A2') can
be compared with the assumption



146 B. PRZERADZKI AND R. STANCZY

(A)  there exists kK > 1 and for any compact set K C (0,1), there is € > 0
such that

g(t,v) >k*v foralltec K, u € (0,¢]

from [8]. Obviously, our constant is worse than this one, but our theorem
also works for nonlinearities that satisfy the inequality on smaller sets than
t€(0,1).

Define K := {p € C((1,00)) : §;" s(1 — s*™)p(s) ds < co}. Now we are
ready to formulate the main result for elliptic BVP (1) in the radial case,

which is an immediate consequence of Theorem 2.2:

THEOREM 2.3. Let f: (1,00)%x[0,00) — [0,00) be a continuous function
satisfying

(B1)  for any M > 0 there exists a function py; € K such that, for any
0<u<<M,s>1,

o0 . 2—n
0< f(s,u) < pum(s), limsup Sl s(1 —5"")pu(s)ds

<1,
M —o0 M

(B2)  there exists a set B of positive Lebesque measure such that

lim F(s,u)

u—0+ u

=00 uniformly w.r.t. s € B.

Then BVP (1) has at least one positive solution.

REMARK 3. It is worth noticing that even if f(s,0) = 0 then by the
above theorem we obtain additionally a positive solution.

REMARK 4. One can see from the proof of the theorem that the assump-
tion (B2) could be replaced by

(B2')  there exists a set B C (1,00) of positive measure and a sufficiently
large constant Lp such that

f(s,u) > Lpu for s € B,u > R.

REMARK 5. The assumption (B1) excludes the case of the nonlinearity
f depending only on w. In fact f not only has to depend on s but also to
decay sufficiently fast as s — oco. The case of slower decay was considered
in [2].

COROLLARY 1. If f(s,u) = p(s)h(u), where p : (1,00) — (0,00) and
h:[0,00) — [0,00) are continuous functions, then the assumptions of The-

orem 2.3 reduce to:
oo

(C1) po:= S 5(1 = s*"™)p(s) ds < oo,
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1
(C2) limsup hlu) < —,
U— 00 u Po
(C3) liminf hlw) =00
u—0t U

This includes the following

ExXAMPLE 1. The equation

uOL

]|
where a < 1, 8 > 2, has a positive solution satisfying the boundary condi-
tions as in (1).

(14) —Au =

for ||z] > 1,

Theorem 2.3 also applies to the case where one cannot separate the
variables of the function f, as in the following;:

ExAMPLE 2. Consider the equation
wellzl)
]|

where 3 > 2 and a : [1,00) — R satisfies sup e ooy @(s) < 1. Then (15)
with the boundary conditions as in (1) has a positive solution.

(15) —Au =

for ||z] > 1,

REMARK 6. Considering f : (1,00) x R — R and assuming only (B1),
by the Schauder Theorem, one can obtain the existence of at least one
solution to BVP (1). If f(-,0) # 0 then the solution is not trivial, otherwise
(f(-,0) = 0) we do not know whether a nonzero solution exists. Therefore
the situation is quite different from the one considered above.

3. Nonradial case. Consider the following BVP in an exterior domain
2 CR" (n>3):
—Au = f(z,u,Vu) for z € (2,
u(z) =0 for x € 012.
We look for classical solutions u € C?(£2) N C(£2). We recall a well known

notion of sub- and supersolution for BVP (16). We shall call u € C?(£2) N
C(£2) a subsolution for (16) if it satisfies

—Au < f(z,u,Vu) forz e 2,
u(xz) <0 for x € 042,

(16)

(17)

In a similar way we define a supersolution u for (16)—it suffices to reverse
the inequalities in (17). A good survey of results obtained by the sub- and
supersolution method is the book of Pao [18].

Now we recall the existence result for a nonradial elliptic BVP in an
exterior domain due to Noussair [13]:
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THEOREM 3.1. Let {2 be an exterior domain. Assume that f: 2 x R X
R"™ — R satisfies the following conditions:

(D1)  for each bounded domain M C {2 there exists a continuous function
orv R — R such that for all x € M, uw € R and p € R",

|f(z,u,p)| < onr(w)(1+ |p?),

(D2)  f is Hélder continuous (CO) with respect to (x,u,p) and C* with
respect to u, p,

(D3)  there exist sub- and supersolutions for (16), u and w respectively,
such that u(z) <u(zx) for any x € §2.

Then there exists at least one solution u of (16) such that u(x) < u(x) <
u(x) for any x € (2.

Let {2 be the exterior of the closed ball B(0,1) of radius 1 in R and let
n > 3. We consider the following BVP in {2 with a not necessarily radial
nonlinearity f:

—Au = f(xz,u) in £,
(18) u(z) =0 on 012,
u(z) — 0 as ||z|| — oo.
THEOREM 3.2. Assume that a function f : £2x[0,00) — [0,00) satisfies:

(E1)  f is Holder continuous (C%) with respect to (x,u) and continuously
differentiable and nonincreasing with respect to the second variable,
(E2)  for any M > 0 there exists a function ppr : (1,00) — (0,00) such
that §° s(1 — s> ™)pa(s) ds < oo and
0< flz,u) <pu(lzl]) forany0<u<M, 1<z,
(E3)  there exists a set B C (1,00) of positive measure such that

liminfM =00 uniformly w.r.t. ||z| € B.
u—0+t u
Then there exists at least one positive solution to BVP (18).
Proof. Define f1 : (1,00) x [0,00) — [0,00) and fa : (1,00) x [0,00) —
[0, 00) by
fl(T,U) = inf f($,U), fg(?",U) = Ssup f(CC,’LL)

llzl|=r llzll=r

Since fi and fs satisfy the assumptions of Theorem 2.3 we obtain the exis-
tence of two radial solutions u; and us to BVP (1) with f = f; and f = fo
respectively. But then

—Aup = fl(HZL‘H,’LLl) < f(l’,U1)
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so u; is a subsolution to BVP (18). By a similar reasoning ug is a super-
solution to BVP (18). Moreover if uj(zg) > us(xg) for some zy € (2 then
taking the connected component U of the set {x € £2: uj(x) > ug(x)} such
that z¢ € U and considering the function h(z) = us(x) — uy(x) we arrive at

—Ah(z) = fa(llzll, uz(x)) — fr(llz], v ()

> filllzll; ug(x)) = fi(ll]l, ur(z)),

which together with the monotonicity (by (E1) the function fi(r,-) is non-
increasing) implies —Ah(z) > fi(||z|, u1(z)) — fi(||z], u1(z)) = 0 for any
x € U (since ui(x) > uz(z) for those z). Consequently,

—Ah(x) >0 forxeUl,

h(z) =0 for z € OU,

h(z) — 0 as ||z|| = o0, z €U,
so if h is negative at some point it has to attain a negative minimum at some
zo. Then take ro > 0 such that ||zo| < ro and h(z) > 1h(z¢) for ||z]| > ro.
Consequently, by the maximum principle (see [5] or [20]) applied in the set
Up={x€U:1<|z| <o}, the function h attains its minimum on the
boundary of Uy so we get h(xo) > infau, h(z) > h(xo), which contradicts
the fact that zg € U.

Therefore by Theorem 3.1 we obtain the existence of a solution ug for
(18) such that u; < ug < ug. Thus if f is not radial with respect to = then
obviously neither is ug. =

REMARK 7. The above theorem provides a nonradial solution only if the
nonlinearity f is nonradial with respect to x.

ExaMPLE 3. Consider the following BVP:
—Au=g(x)u’ in £,
(19) u(x) =0 on 02,
u(z) =0 as [|lz]| — oo,

where 0 < 1 and g : 2 — (0,00) is a continuous, nonnegative function,
strictly positive on some annulus 1 = {z € 2 : a < |z| < b} C 2
(1 < a < b some positive constants) satisfying

S r(1—72"") sup g(zx)dr < oco.
1 llzll=r

Then BVP (19) has a positive solution (nonradial if g is such).
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