COLLOQUIUM MATHEMATICUM

ON INDECOMPOSABLE PROJECTIVE REPRESENTATIONS OF FINITE GROUPS OVER FIELDS OF CHARACTERISTIC $p>0$

BY

LEONID F. BARANNYK and KAMILA SOBOLEWSKA (Słupsk)

Abstract

Let G be a finite group, F a field of characteristic p with $p \| G \mid$, and $F^{\lambda} G$ the twisted group algebra of the group G and the field F with a 2 -cocycle $\lambda \in Z^{2}\left(G, F^{*}\right)$. We give necessary and sufficient conditions for $F^{\lambda} G$ to be of finite representation type. We also introduce the concept of projective F-representation type for the group G (finite, infinite, mixed) and we exhibit finite groups of each type.

Introduction. Let F be a field of characteristic $p>0, F^{*}$ the multiplicative group of the field $F, F^{p}=\left\{a^{p}: a \in F\right\}, G$ a finite group of order $|G|$, where $p\left||G|\right.$, and G_{p} a Sylow p-subgroup of G. Let G^{\prime} be the commutant of G, C_{p} a Sylow p-subgroup of $G^{\prime}, C_{p} \subset G_{p}, G_{p}^{\prime}$ the commutant of G_{p}, and $Z^{2}\left(G, F^{*}\right)$ the group of all F^{*}-valued normalized 2-cocycles of the group G, where we assume that G acts trivially on F^{*} (see [26, Chapter 1]). Denote by $F^{\lambda} G$ the twisted group algebra of the group G and the field F with a cocycle $\lambda \in Z^{2}\left(G, F^{*}\right)$ and by $\operatorname{rad} F^{\lambda} G$ the radical of $F^{\lambda} G$. An F-basis $\left\{u_{g}: g \in G\right\}$ of $F^{\lambda} G$ satisfying $u_{a} u_{b}=\lambda_{a, b} u_{a b}$ for all $a, b \in G$ is called natural. By an $F^{\lambda} G$-module we mean a finitely generated left $F^{\lambda} G$-module. If H is a subgroup of G, then the restriction of $\lambda \in Z^{2}\left(G, F^{*}\right)$ to $H \times H$ will also be denoted by λ. In this case, $F^{\lambda} H$ is a subalgebra of $F^{\lambda} G$.

Higman [21] proved that a group algebra $F G$ is of finite representation type if and only if G_{p} is a cyclic group. In this case Kasch, Kneser and Kupisch [27] gave a sharper upper bound of the number of indecomposable $F G$-modules. They also obtained conditions on G under which the bound is attained. Later Janusz [22] gave a formula for the exact number of indecomposable $F G$-modules for the case when F is an algebraically closed field. In [23] he determined the structure of indecomposable modules in more detail. Indecomposable $F G$-modules with G_{p} being cyclic are also investigated in [5], [11], [24], [25], [28], [29] (see as well [16, Chapter VII]). The representation type of group rings $S G$, where S is an arbitrary commutative artinian ring or a local artinian ring whose quotient ring $S / \operatorname{rad} S$ is finitely generated over its center, is determined by Gustafson [20] and Dowbor and Simson [14].

2000 Mathematics Subject Classification: 20C20, 20C25, 16 S 35.

Generalizations to the case when S is an arbitrary finite-dimensional algebra over a field F and G is a finite group have been found by Meltzer and Skowroński [30], [31] and Skowroński [35], [36]. Representation-infinite group algebras $S G$ of polynomial growth are classified in [36]. Gudivok [18] and Janusz [24], [25] showed that if F is an infinite field and G is an abelian p-group which is neither cyclic nor of order 4 , then there exist infinitely many non-isomorphic indecomposable $F G$-modules of F-dimension n for every natural number $n>1$. If G is the non-cyclic group of order 4 , then the preceding result is valid for even natural numbers n.

Higman [21] proved, in fact, that the first Brauer-Thrall conjecture holds for group algebras of finite groups. Results by Gudivok [18] and Janusz [24], [25] give the solution of the second Brauer-Thrall conjecture for group algebras of finite groups. As is well known, the first Brauer-Thrall conjecture for finite-dimensional algebras over an arbitrary field was solved by Roŭter [34]. The second Brauer-Thrall conjecture was proved by Nazarova and Roĭter [32], Bautista [3], Bongartz [6], Bautista, Gabriel, Roŭter and Salmerón [4].

In [7], Conlon developed the theory of twisted group algebras $F^{\lambda} G$ by exploiting their analogy with group algebras $F G$ assuming that F is large enough. In this case $F^{\lambda} G_{p}$ is a group algebra and therefore $F^{\lambda} G$ is of finite representation type if and only if G_{p} is cyclic. Moreover, in the same paper Conlon established that if G_{p} is a cyclic group then a rough upper bound for the number of indecomposable $F G$-modules which was found in [21] also holds for the number of indecomposable $F^{\lambda} G$-modules. It should be noted that Reynolds [33] computed the number of non-isomorphic simple $K^{\mu} G$ modules where K is an arbitrary field, G is a finite group and $\mu \in Z^{2}\left(G, K^{*}\right)$. We also remark that if the characteristic of K does not divide the order of the group G, then $K^{\mu} G$ is a semisimple algebra for any $\mu \in Z^{2}\left(G, K^{*}\right)$, and hence is of finite representation type. Using Green's results [17], for the case when G is a finite abelian p-group and the radical of $F^{\lambda} G$ is not cyclic, Sobolewska [37] constructed increasing functions $f_{\lambda}: \mathbb{N} \rightarrow \mathbb{N}$ such that there exist infinitely many isomorphism classes of indecomposable $F^{\lambda} G$-modules of F-dimension $f_{\lambda}(n)$ for every natural number $n>1$.

In the present paper we shall characterize twisted group algebras $F^{\lambda} G$ of finite representation type. We shall also describe finite groups depending on a projective representation type over the field F.

Let us briefly present the main results of the paper. In Section 1, we prove that an algebra $F^{\lambda} G$ is of finite representation type if and only if $F^{\lambda} G_{p}$ is a uniserial algebra (Theorem 1.1; we use the terminology introduced in [15]). We also establish (Theorem 1.2) that if $p \neq 2$, then $F^{\lambda} G_{p}$ is a uniserial algebra if and only if C_{p} is cyclic and one of the following conditions holds:
(1) the quotient algebra $F^{\lambda} G_{p} / F^{\lambda} G_{p} \cdot \operatorname{rad} F^{\lambda} C_{p}$ is a field;
(2) $C_{p}=\{e\}$ and there exists a decomposition $G_{p}=H \times N$ such that H is cyclic and $F^{\lambda} N$ is a field;
(3) $C_{p} \neq\{e\}$ and there exists a decomposition $G_{p} / C_{p}=\left\langle a_{1} C_{p}\right\rangle \times$ $\ldots \times\left\langle a_{s} C_{p}\right\rangle$ such that $C_{p} \subset\left\langle a_{1}\right\rangle, C_{p} \not \subset\left\langle a_{j}\right\rangle$ for every $j=2, \ldots, s$ and $F^{\lambda} D / F^{\lambda} D \cdot \operatorname{rad} F^{\lambda} C_{p}$ is a field, where D is the subgroup of G_{p} generated by $C_{p}, a_{2}, \ldots, a_{s}$.

The proofs of these theorems are based on the characterization of local rings of finite representation type which was obtained in [12]-[14]. A special case of such rings was investigated in [19]. In Section 1 of this paper, we also obtain indecomposable $F^{\lambda} G$-modules for the case when G_{p} is a normal subgroup of G and $F^{\lambda} G_{p}$ is a uniserial algebra (Theorems 1.3 and 1.4).

We say that a group G is of finite (resp. infinite) PFR-type (Projective F-Representation type) if the algebra $F^{\lambda} G$ is of finite (resp. infinite) representation type for every cocycle $\lambda \in Z^{2}\left(G, F^{*}\right)$. Otherwise, G is said to be of mixed PFR-type.

In Section 2, we classify finite groups depending on their $P F R$-type (Theorems 2.1 and 2.2, Proposition 2.1). We also state necessary and sufficient conditions for G and G_{p} to be of the same $P F R$-type (Propositions $2.2-2.3)$.

1. Twisted group algebras of finite representation type and their representations

Lemma 1.1. Let $\lambda \in Z^{2}\left(G, F^{*}\right)$. Every $F^{\lambda} G$-module is isomorphic to an $F^{\lambda} G$-component of an induced $F^{\lambda} G$-module $F^{\lambda} G \otimes_{F^{\lambda} G_{p}} V$, where V is some $F^{\lambda} G_{p}$-module.

Lemma 1.2. Let H be a subgroup of G and $\lambda \in Z^{2}\left(G, F^{*}\right)$. If $F^{\lambda} H$ is of infinite representation type, then $F^{\lambda} G$ is also of infinite representation type.

Lemma 1.3. An algebra $F^{\lambda} G$ is of finite representation type if and only if $F^{\lambda} G_{p}$ is of finite representation type.

The proofs of Lemmas 1.1-1.3 are similar to those of the corresponding propositions about group algebras (see $[8, \S 63]$).

Lemma 1.4 ([21]). A group algebra $F G$ is of finite representation type if and only if G_{p} is a cyclic group.

Lemma 1.5. Suppose $p\left|\left|G^{\prime}\right|, C_{p} \subset G_{p}\right.$ and $\lambda \in Z^{2}\left(G, F^{*}\right)$. Then:
(1) Up to cohomology

$$
\begin{equation*}
\lambda_{g, h}=\lambda_{h, g}=1 \tag{1.1}
\end{equation*}
$$

for any $g \in G_{p}$ and any $h \in C_{p}$.
(2) Suppose λ satisfies condition (1.1), $\bar{G}_{p}=G_{p} / C_{p}, \bar{g}=g C_{p}$ for $g \in G_{p}$, and $\bar{\lambda}_{\bar{a}, \bar{b}}=\lambda_{a, b}$ for any $a, b \in G_{p}$. Then $\bar{\lambda} \in Z^{2}\left(\bar{G}_{p}, F^{*}\right)$ and

$$
F^{\bar{\lambda}} \bar{G}_{p} \cong F^{\lambda} G_{p} / F^{\lambda} G_{p} \cdot \operatorname{rad} F^{\lambda} C_{p}
$$

Proof. In view of [26, Proposition 5.17, p. 48] the restriction of every cocycle $\lambda \in Z^{2}\left(G, F^{*}\right)$ to $C_{p} \times C_{p}$ is a coboundary. Therefore, statements (1) and (2) follow from the properties of natural homomorphisms of twisted group algebras ([26, pp. 87-93]).

In what follows, we assume that every cocycle $\lambda \in Z^{2}\left(G, F^{*}\right)$ under consideration satisfies condition (1.1). In particular, $F^{\lambda} C_{p}$ will always be the group algebra $F C_{p}$.

The number $i_{F}=\sup \{0, m\}$ is important in describing twisted group algebras of abelian p-groups which are of finite representation type, where m is a natural number such that for some $\gamma_{1}, \ldots, \gamma_{m} \in F^{*}$ the algebra

$$
F[x] /\left(x^{p}-\gamma_{1}\right) \otimes_{F} \ldots \otimes_{F} F[x] /\left(x^{p}-\gamma_{m}\right)
$$

is a field. If F is a perfect field, then $i_{F}=0$, otherwise $i_{F} \neq 0$.
Proposition 1.1. Let K be a perfect field of characteristic p and $F=$ $K\left(x_{1}, \ldots, x_{n}\right)$ the quotient field of the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$. Then $i_{F}=n$.

Proof. By induction on i we prove that the algebra

$$
A_{i}=F[y] /\left(y^{p}-x_{1}\right) \otimes_{F} \ldots \otimes_{F} F[y] /\left(y^{p}-x_{i}\right)
$$

is a field for every $i \in\{1, \ldots, n\}$. From this it follows that $i_{F} \geq n$. Suppose that for some $\lambda_{1}, \ldots, \lambda_{m} \in F^{*}$ the algebra

$$
B=F[y] /\left(y^{p}-\lambda_{1}\right) \otimes_{F} \ldots \otimes_{F} F[y] /\left(y^{p}-\lambda_{m}\right)
$$

is a field. Let $C=B \otimes_{F} A_{n}$. The algebra A_{n} is isomorphic to the field $K\left(y_{1}, \ldots, y_{n}\right)$, where $y_{j}^{p}=x_{j}(j=1, \ldots, n)$. Every element of F is the p th power of some element of A_{n}. It follows that

$$
C \cong A_{n}[y] /\left(y^{p}-1\right) \otimes_{A_{n}} \ldots \otimes_{A_{n}} A_{n}[y] /\left(y^{p}-1\right) \quad(m \text { factors })
$$

Consequently, $C / \operatorname{rad} C \cong A_{n}$. On the other hand, C can be viewed as a twisted group algebra of an elementary abelian p-group of order p^{n} over the field B. Therefore, $C / \operatorname{rad} C$ is isomorphic to a purely inseparable extension of the field B of degree p^{s}, where $s \leq n$. It follows that $p^{n}=p^{s} \cdot[B: F]$ or $p^{n}=p^{s} \cdot p^{m}$, whence $m \leq n$. Hence $i_{F} \leq n$, and the proof is complete.

Proposition 1.2. Let K be a field of characteristic $p, X=\left\{x_{i}: i=\right.$ $1,2, \ldots\}$, and F the quotient field of the polynomial ring $K[X]$. Then $i_{F}=\infty$.

Theorem 1.1. Let G be a finite group, $p\left||G|\right.$ and $\lambda \in Z^{2}\left(G, F^{*}\right)$. The algebra $F^{\lambda} G$ is of finite representation type if and only if $F^{\lambda} G_{p}$ is a uniserial algebra.

Proof. By Lemma 1.3, we may assume that G is a p-group. Let $\left\{u_{g}\right.$: $g \in G\}$ be a natural F-basis of the algebra $F^{\lambda} G$ and e be the identity element of G. It is known (see [26, p. 74]) that $F^{\lambda} G / \operatorname{rad} F^{\lambda} G \cong K$, where K is a purely inseparable extension of the field F. Suppose $F^{\lambda} G$ is of finite representation type. Then by Lemmas $1.2,1.4$ and $1.5, G^{\prime}$ is a cyclic group and $F^{\lambda} G^{\prime}$ is a group algebra. Let $G^{\prime}=\langle c\rangle, A=F^{\lambda} G, V=\operatorname{rad} A /(\operatorname{rad} A)^{2}$, $m=\operatorname{dim}_{K} V$ and $m^{\prime}=\operatorname{dim} V_{K}$. We know (see [12]-[14]) that in the case under consideration we have $m \cdot m^{\prime} \leq 3$.

Suppose $m=1$. If $u_{c}-u_{e} \notin(\operatorname{rad} A)^{2}$, then $\left\{u_{c}-u_{e}+(\operatorname{rad} A)^{2}\right\}$ is a basis of the left vector space V over the field K. It follows that any element of V is of the form

$$
\bar{x}\left(u_{c}-u_{e}+(\operatorname{rad} A)^{2}\right)=x\left(u_{c}-u_{e}\right)+(\operatorname{rad} A)^{2}
$$

where $x \in A, \bar{x}=x+\operatorname{rad} A$. Since for each $x \in A$ there exists $y \in A$ such that $x\left(u_{c}-u_{e}\right)=\left(u_{c}-u_{e}\right) y$, we have

$$
\bar{x}\left(u_{c}-u_{e}+(\operatorname{rad} A)^{2}\right)=\left(u_{c}-u_{e}+(\operatorname{rad} A)^{2}\right) \bar{y}
$$

Hence, $m^{\prime}=1$. Suppose now that $u_{c}-u_{e} \in(\operatorname{rad} A)^{2}$. Since for arbitrary $x, y \in A$ there exists $z \in A$ such that $x y-y x=\left(u_{c}-u_{e}\right) z$, we obtain

$$
\bar{x}\left(y+(\operatorname{rad} A)^{2}\right)=\left(y+(\operatorname{rad} A)^{2}\right) \bar{x}
$$

for any $x, y \in A$. In this case $m^{\prime}=1$. By the same arguments we can establish that if $m^{\prime}=1$ then $m=1$.

Therefore, if $F^{\lambda} G$ is of finite representation type, then $F^{\lambda} G$ is a uniserial algebra. Conversely, every uniserial algebra is of finite representation type ([15, p. 171]).

Proposition 1.3. Let F be a field of characteristic p, G a finite abelian p-group and $\lambda \in Z^{2}\left(G, F^{*}\right)$. The algebra $F^{\lambda} G$ is of finite representation type if and only if $G=H \times N$, where H is a cyclic group and $F^{\lambda} N$ is a field.

Proof. Let $G=H \times N$, where H is cyclic and $F^{\lambda} N$ is a field. Then $F^{\lambda} G$ is a uniserial algebra, and hence it is of finite representation type. Now we suppose that there is no decomposition $G=H \times N$ such that H is a cyclic group and $F^{\lambda} N$ is a field. Let \bar{G} be the socle of G. Then $F^{\lambda} \bar{G} \cong F^{\mu} B$, where B is an elementary abelian p-group of order $|\bar{G}|$ and the following conditions are satisfied: $B=L \times M, L$ is a non-cyclic group of order p^{2} and $F^{\mu} L$ is the group algebra of the group L over the field F. By Lemmas 1.2 and 1.4, the algebra $F^{\mu} B$ is of infinite representation type. Applying again Lemma 1.2 to $F^{\lambda} \bar{G}$ and $F^{\lambda} G$, we conclude that the algebra $F^{\lambda} G$ is of infinite representation type.

Corollary 1. Let G be a finite abelian p-group and $\lambda \in Z^{2}\left(G, F^{*}\right)$. Assume that $G=H \times N$, where H is a cyclic group and $F^{\lambda} H$ is not a field. The algebra $F^{\lambda} G$ is of finite representation type if and only if $F^{\lambda} N$ is a field.

Corollary 2. Let G be a finite abelian p-group, \bar{G} the socle of G, and $\lambda \in Z^{2}\left(G, F^{*}\right)$. The algebra $F^{\lambda} G$ is of infinite representation type if and only if $F^{\lambda} \bar{G} \cong F^{\mu} H \otimes_{F} F^{\mu} N$, where $\bar{G} \cong H \times N, H$ is a non-cyclic group of order p^{2} and $F^{\mu} H$ is the group algebra.

Corollary 3. Let $G=\left\langle a_{1}\right\rangle \times \ldots \times\left\langle a_{s}\right\rangle$ be an abelian p-group. If $s \geq i_{F}+2$ then $F^{\lambda} G$ is of infinite representation type for every $\lambda \in$ $Z^{2}\left(G, F^{*}\right)$. If $s \leq i_{F}+1$ then there exists an algebra $F^{\lambda} G$ which is of finite representation type. If $s=1$ then $F^{\lambda} G$ is of finite representation type for every $\lambda \in Z^{2}\left(G, F^{*}\right)$.

Lemma 1.6. Let $p \neq 2, G$ be a non-abelian p-group with $G^{\prime}=\langle c\rangle$ of order p, and $\left\{u_{g}: g \in G\right\}$ be a natural F-basis of $F^{\lambda} G$. Then:
(1) $\left(u_{a} u_{b}\right)^{p}=u_{a}^{p} u_{b}^{p}$ for any $a, b \in G$.
(2) If $y \in F^{\lambda} G, g \in G$, then

$$
\begin{align*}
u_{g} y & =y u_{g}+\left(u_{c}-u_{e}\right) y^{\prime} u_{g} \tag{1.2}\\
\left(y u_{g}\right)^{p} & =y^{p} u_{g}^{p}+\left(u_{c}-u_{e}\right)^{2} z \tag{1.3}
\end{align*}
$$

for some $y^{\prime}, z \in F^{\lambda} G$.
(3) If

$$
x=\sum_{g \in G} \alpha_{g} u_{g}
$$

is an element of $F^{\lambda} G$, then

$$
x^{p}=\sum_{g \in G} \alpha_{g}^{p} u_{g}^{p}+\left(u_{c}-u_{e}\right)^{2} z, \quad z \in F^{\lambda} G
$$

Proof. We remark that u_{c} belongs to the center of $F^{\lambda} G$ and if $a b=c^{j} b a$, then $u_{a} u_{b}=u_{c}^{j} u_{b} u_{a}$. From this we obtain (1) and formula (1.2). Then

$$
\begin{aligned}
\left(y u_{g}\right)^{p}= & y\left[y+\left(u_{c}-u_{e}\right) y^{\prime}\right]\left[y+2\left(u_{c}-u_{e}\right) y^{\prime}\right] \ldots \\
& \ldots\left[y+(p-1)\left(u_{c}-u_{e}\right) y^{\prime}\right] u_{g}^{p}+\left(u_{c}-u_{e}\right)^{2} z^{\prime} \\
= & y^{p} u_{g}^{p}+\left(u_{c}-u_{e}\right)^{2} z, \quad z \in F^{\lambda} G
\end{aligned}
$$

Hence, formula (1.3) holds.
It remains to prove (3). Suppose $\alpha_{b} \neq 0$. Applying (1.3) and induction on the number of non-zero summands of x, we obtain

$$
\begin{aligned}
x^{p} & =\left\{\left[\alpha_{b} u_{e}+\sum_{g \neq b} \alpha_{g}\left(u_{g} u_{b}^{-1}\right)\right] u_{b}\right\}^{p} \\
& =\left[\alpha_{b} u_{e}+\sum_{g \neq b} \alpha_{g}\left(u_{g} u_{b}^{-1}\right)\right]^{p} u_{b}^{p}+\left(u_{c}-u_{e}\right)^{2} z^{\prime} \\
& =\left[\alpha_{b}^{p} u_{e}+\sum_{g \neq b} \alpha_{g}^{p}\left(u_{g} u_{b}^{-1}\right)^{p}+\left(u_{c}-u_{e}\right)^{2} z^{\prime \prime}\right] u_{b}^{p}+\left(u_{c}-u_{e}\right)^{2} z^{\prime} \\
& =\sum_{g \in G} \alpha_{g}^{p} u_{g}^{p}+\left(u_{c}-u_{e}\right)^{2} z .
\end{aligned}
$$

Lemma 1.7. Suppose $p \neq 2, i_{F} \neq 0, p| | G^{\prime} \mid$, and $\lambda \in Z^{2}\left(G, F^{*}\right)$. Assume that C_{p} is cyclic, $G_{p} / C_{p}=\left\langle a_{1} C_{p}\right\rangle \times \ldots \times\left\langle a_{m} C_{p}\right\rangle$ and $C_{p} \not \subset\left\langle a_{i}\right\rangle$ for all $i \in\{1, \ldots, m\}$. The algebra $F^{\lambda} G$ is of finite representation type if and only if $F^{\lambda} G_{p} / F^{\lambda} G_{p} \cdot \operatorname{rad} F C_{p}$ is a field.

Proof. Necessity. I. First we examine the case when G_{p} is a group of exponent p. Taking into consideration Corollary 1 to Proposition 1.3 we may assume that G_{p} is non-abelian. Let $C_{p}=\langle c\rangle$ and suppose $F^{\lambda} G_{p}$ is of finite representation type. We prove that $V=F^{\lambda} G_{p}\left(u_{c}-u_{e}\right)$ is the radical of the algebra $F^{\lambda} G_{p}$.

Any element $g \in G_{p}$ can be uniquely represented in the form

$$
g=a_{1}^{i_{1}} \ldots a_{m}^{i_{m}} c^{j}
$$

where $0 \leq i_{r}, j<p$. Up to cocycle cohomology we may suppose

$$
\begin{equation*}
u_{g}=u_{a_{1}}^{i_{1}} \ldots u_{a_{m}}^{i_{m}} u_{c}^{j} \tag{1.4}
\end{equation*}
$$

where

$$
u_{a_{r}}^{p}=\gamma_{r} u_{e}, \quad u_{c}^{p}=u_{e} \quad\left(\gamma_{r} \in F^{*}, 1 \leq r \leq m\right)
$$

Let $\overline{F^{\lambda} G_{p}}=F^{\lambda} G_{p} / V$ and $\bar{x}=x+V$ for every $x \in F^{\lambda} G_{p}$. The algebra $\overline{F^{\lambda} G_{p}}$ is the commutative twisted group algebra $F^{\bar{\lambda}} \bar{G}_{p}$ of the group $\bar{G}_{p}=G_{p} / C_{p}$ and the field F with the cocycle $\bar{\lambda}$, where $\bar{\lambda}_{\bar{g}_{1}, \bar{g}_{2}}=\lambda_{g_{1}, g_{2}}$ for any $g_{1}, g_{2} \in G_{p}$. Here $\bar{g}=g C_{p}$ for every $g \in G_{p}$. A natural F-basis of $F^{\bar{\lambda}} \bar{G}_{p}$ is formed by elements $\bar{u}_{g}\left(g \in G_{p}\right)$ which by (1.4) can be uniquely represented in the form

$$
\bar{u}_{g}=\bar{u}_{a_{1}}^{i_{1}} \ldots \bar{u}_{a_{m}}^{i_{m}}
$$

where $\bar{u}_{a_{r}}^{p}=\gamma_{r} \bar{u}_{e}, 1 \leq r \leq m$.
Suppose that V is not the radical of the algebra $F^{\lambda} G_{p}$. From Proposition 1.3 we conclude that up to reindexing a_{1}, \ldots, a_{m} the algebra $F\left[\bar{u}_{a_{1}}, \ldots, \bar{u}_{a_{m-1}}\right]$ is a field and $F\left[\bar{u}_{a_{1}}, \ldots, \bar{u}_{a_{m-1}}, \bar{u}_{a_{m}}\right]$ is not. In this case

$$
\gamma_{m}^{-1} \bar{u}_{e}=\bar{x}^{p}
$$

for some

$$
x=\sum_{i_{1}, \ldots, i_{m-1}} \alpha_{i_{1}, \ldots, i_{m-1}} u_{a_{1}}^{i_{1}} \ldots u_{a_{m-1}}^{i_{m-1}}
$$

where $\alpha_{i_{1}, \ldots, i_{m-1}} \in F, 0 \leq i_{j}<p$ for $j=1, \ldots, m-1$. In view of Lemma 1.6,

$$
x^{p}=\gamma_{m}^{-1} u_{e}+\left(u_{c}-u_{e}\right)^{2} z^{\prime}, \quad z^{\prime} \in F^{\lambda} G_{p}
$$

and consequently

$$
\left(x u_{a_{m}}\right)^{p}=x^{p} u_{a_{m}}^{p}+\left(u_{c}-u_{e}\right)^{2} z^{\prime \prime}=u_{e}+\left(u_{c}-u_{e}\right)^{2} z
$$

where $z^{\prime \prime} \in F^{\lambda} G_{p}, z=\gamma_{m} z^{\prime}+z^{\prime \prime}$. Let $w=x u_{a_{m}}-u_{e}$. Then $w^{p}=\left(u_{c}-u_{e}\right)^{2} z$. We also have $\operatorname{rad} \overline{F^{\lambda} G_{p}}=\overline{F^{\lambda} G_{p}} \cdot \bar{w}$.

By Theorem 1.1 the algebra $F^{\lambda} G_{p}$ is uniserial. Applying the Morita Theorem (see [10, p. 507]) and [10, Corollary 62.31, p. 510] we conclude that $\operatorname{rad} F^{\lambda} G_{p}=F^{\lambda} G_{p} \cdot \theta=\theta \cdot F^{\lambda} G_{p}$, where $\theta^{p^{2}}=0$ and $\theta^{l} \neq 0$ for every $l<p^{2}$. We also obtain $\operatorname{rad} \overline{F^{\lambda} G_{p}}=\overline{F^{\lambda} G_{p}} \cdot \bar{\theta}$. It follows that $\bar{w}=\bar{\theta} \cdot \overline{y^{\prime}}$, where y^{\prime} is an invertible element of $F^{\lambda} G_{p}$. The equality $u_{c}-u_{e}=\theta^{p} y^{\prime \prime}$, $y^{\prime \prime} \in F^{\lambda} G_{p}$, now shows that $w=\theta y=z \theta$, where y and z are invertible in $F^{\lambda} G_{p}$. This makes it possible to take $\theta=w$. However,

$$
w^{p(p+1) / 2}=\left(u_{c}-u_{e}\right)^{p+1} \widetilde{z}=0 \quad \text { and } \quad \frac{p+1}{2}<p
$$

This contradiction shows that V is the radical of $F^{\lambda} G_{p}$.
II. Now we examine the general case. Let $C_{p}=\langle c\rangle, \widetilde{G}_{p}=G_{p} /\left\langle c^{p}\right\rangle, \widetilde{C}_{p}=$ $C_{p} /\left\langle c^{p}\right\rangle, \widetilde{g}=g\left\langle c^{p}\right\rangle$ for every $g \in G_{p}$, and $\widetilde{\lambda}_{\tilde{a}, \widetilde{b}}=\lambda_{a, b}$ for any $a, b \in G_{p}$. Then $\widetilde{\lambda} \in Z^{2}\left(\widetilde{G}_{p}, F^{*}\right), F^{\tilde{\lambda}} \widetilde{C}_{p}$ is the group algebra, $F^{\widetilde{\lambda}} \widetilde{G}_{p}$ is a quotient algebra of $F^{\lambda} G_{p}$ and $F^{\widetilde{\lambda}} \widetilde{G}_{p} / F^{\widetilde{\lambda}} \widetilde{G}_{p} \cdot \operatorname{rad} F^{\widetilde{\lambda}} C_{p} \cong F^{\lambda} G_{p} / F^{\lambda} G_{p} \cdot \operatorname{rad} F^{\lambda} C_{p}$. Suppose that $F^{\lambda} G_{p}$ is of finite representation type. Then so is $F^{\widetilde{\lambda}} \widetilde{G}_{p}$. We have $\widetilde{G}_{p}^{\prime} \subset \widetilde{C}_{p}$ and \widetilde{c} is a central element of order p. Let

$$
\widetilde{b}_{i}=\widetilde{a}_{i}^{p^{r_{i}-1}}
$$

where $p^{r_{i}}$ is the order of $a_{i} C_{p}, 1 \leq i \leq m$. Denote by \widetilde{T} the subgroup of \widetilde{G}_{p} generated by $\widetilde{c}, \widetilde{b}_{1}, \ldots, \widetilde{b}_{m}$. The exponent of \widetilde{T} is p. From Lemma 1.2 and the result of case I, we conclude that $F^{\widetilde{\lambda}} \widetilde{T} / F^{\widetilde{\lambda}} \widetilde{T} \cdot \operatorname{rad} F^{\widetilde{\lambda}} \widetilde{C}_{p}$ is a field. Then so is $F^{\widetilde{\lambda}} \widetilde{G}_{p} / F^{\widetilde{\lambda}} \widetilde{G}_{p} \cdot \operatorname{rad} F^{\widetilde{\lambda}} \widetilde{C}_{p}$, and hence also $F^{\lambda} G_{p} / F^{\lambda} G_{p} \cdot \operatorname{rad} F^{\lambda} C_{p}$.

Sufficiency. If $F^{\lambda} G_{p} / F^{\lambda} G_{p} \cdot \operatorname{rad} F^{\lambda} C_{p}$ is a field, then $F^{\lambda} G_{p}$ is uniserial, and hence by Theorem 1.1 the algebra $F^{\lambda} G$ is of finite representation type.

Remark 1.1. If $p=2$, then the necessity in Lemma 1.7 does not hold. Indeed, let F be a field of characteristic 2 with $i_{F} \neq 0$, and $G_{2}=\langle a, b\rangle$ the dihedral group of order 8. Assume that $F^{\lambda} G_{2}$ is given by the defining
relations

$$
u_{a}^{4}=u_{e}, \quad u_{b}^{2}=\gamma u_{e}, \quad u_{b}^{-1} u_{a} u_{b}=u_{a}^{3}
$$

where $\gamma \in F^{*}$ and $\gamma \notin F^{2}$. In this case, $\operatorname{rad} F^{\lambda} G_{2}=F^{\lambda} G_{2}\left(u_{a}-u_{e}\right)$. The algebra $F^{\lambda} G_{2}$ is uniserial, and hence of finite representation type. At the same time, $C_{2}=G_{2}^{\prime}=\left\langle a^{2}\right\rangle, G_{2} / C_{2}=\left\langle a b C_{2}\right\rangle \times\left\langle b C_{2}\right\rangle, C_{2} \not \subset\langle a b\rangle, C_{2} \not \subset\langle b\rangle$ and $F^{\lambda} G_{2} / F^{\lambda} G_{2} \cdot \operatorname{rad} F C_{2}$ is not a field.

Theorem 1.2. Let G be a finite group, $p \neq 2, \bar{G}_{p}=G_{p} / C_{p}, \bar{g}=g C_{p}$ for every $g \in G_{p}, \lambda \in Z^{2}\left(G, F^{*}\right)$ and $\bar{\lambda}_{\bar{a}, \bar{b}}=\lambda_{a, b}$ for any $a, b \in G_{p}$. The algebra $F^{\lambda} G$ is of finite representation type if and only if C_{p} is cyclic and one of the following conditions is satisfied:
(1) $F^{\bar{\lambda}} \bar{G}_{p}$ is a field;
(2) there is a decomposition $\bar{G}_{p}=\left\langle\bar{a}_{1}\right\rangle \times \bar{D}$ with $\bar{D}=\left\langle\bar{a}_{2}\right\rangle \times \ldots \times\left\langle\bar{a}_{s}\right\rangle$ such that $F^{\bar{\lambda}} \bar{D}$ is a field, and if $C_{p} \neq\{e\}$ then $C_{p} \subset\left\langle a_{1}\right\rangle$ and $C_{p} \not \subset\left\langle a_{j}\right\rangle$ for all $j \in\{2, \ldots, s\}$.

Proof. Suppose $F^{\lambda} G_{p}$ is of finite representation type. From Lemmas 1.2, 1.4 and 1.5 we deduce that C_{p} is a cyclic group. Let $C_{p}=\langle c\rangle$. Assume that G_{p} is not cyclic. In view of Proposition 1.3 we also suppose $c \neq e$. Suppose $\bar{G}_{p}=\left\langle\bar{a}_{1}\right\rangle \times \ldots \times\left\langle\bar{a}_{s}\right\rangle$ is a group of type $\left(p^{m_{1}}, \ldots, p^{m_{s}}\right)$. If

$$
a_{i}^{p^{m_{i}}}=c^{p t_{i}}
$$

for all $i \in\{1, \ldots, s\}$, then by Lemma $1.7, F^{\bar{\lambda}} \bar{G}_{p}$ is a field. Suppose

$$
a_{1}^{p^{m_{1}}}=c^{k_{1}}, \quad a_{2}^{p^{m_{2}}}=c^{k_{2}}
$$

where $\left(k_{1}, p\right)=1,\left(k_{2}, p\right)=1$ and $m_{1} \geq m_{2}$. There exists an integer l such that $l k_{1}+k_{2} \equiv 0(\bmod p)$. Let $\widetilde{G}_{p}=G_{p} /\left\langle c^{p}\right\rangle$ and $\widetilde{g}=g\left\langle c^{p}\right\rangle$ for any $g \in G_{p}$. From the equality

$$
\left(\widetilde{a}_{1}^{l p^{m_{1}-m_{2}}} \cdot \widetilde{a}_{2}\right)^{p^{m_{2}}}=\widetilde{a}_{1}^{l p^{m_{1}}} \cdot \widetilde{a}_{2}^{p^{m_{2}}}=\widetilde{c}^{l k_{1}+k_{2}}=\widetilde{e}
$$

it follows that

$$
\left(a_{1}^{l p^{m_{1}-m_{2}}} \cdot a_{2}\right)^{p^{m_{2}}}=c^{p t}
$$

so we may assume that

$$
\begin{equation*}
C_{p}=\left\langle a_{1}^{p^{m_{1}}}\right\rangle \quad \text { and } \quad a_{j}^{p^{m_{j}}}=c^{p t_{j}} \tag{1.5}
\end{equation*}
$$

for all $j \in\{2, \ldots, s\}$. Let $\bar{D}=\left\langle\bar{a}_{2}\right\rangle \times \ldots \times\left\langle\bar{a}_{s}\right\rangle$ and D be the subgroup of G_{p} generated by c, a_{2}, \ldots, a_{s}. By Lemma 1.2 the algebra $F^{\lambda} D$ is of finite representation type. In view of Lemma $1.7, F^{\bar{\lambda}} \bar{D}$ is a field. This proves the necessity.

Let us prove the sufficiency. Keep the notation used in the proof of the necessity, and suppose that conditions (1.5) are satisfied. Assume also that
$F^{\bar{\lambda}} \bar{D}$ is a field and $F^{\bar{\lambda}} \bar{G}_{p}$ is not. Let $\left\{u_{g}: g \in G_{p}\right\}$ be a natural F-basis of $F^{\lambda} G_{p}$ and

$$
\begin{equation*}
u_{a_{1}}^{p^{m_{1}}}=\gamma_{1} u_{c}, \quad u_{a_{j}}^{p^{m_{j}}}=\gamma_{j} u_{c}^{p t_{j}}, \quad 2 \leq j \leq s \tag{1.6}
\end{equation*}
$$

where $\gamma_{i} \in F^{*}, 1 \leq i \leq s$. Let $c \neq e, U=F^{\lambda} G_{p}\left(u_{c}-u_{e}\right)$, and $V=$ $F^{\lambda} G_{p}\left(u_{c}^{p}-u_{e}\right)$. We have

$$
\begin{equation*}
u_{c} u_{g} \equiv u_{g} u_{c}(\bmod V), \quad u_{a}^{p} u_{g} \equiv u_{g} u_{a}^{p}(\bmod V) \tag{1.7}
\end{equation*}
$$

for all $a, g \in G_{p}$. We suppose that $F^{\bar{\lambda}} \bar{G}_{p}=F^{\lambda} G_{p} / U$ and a natural F-basis of $F^{\bar{\lambda}} \bar{G}_{p}$ is formed by elements $u_{\bar{g}}$, where $u_{\bar{g}}:=u_{g}+U$. Let K be the F-subalgebra of $F^{\lambda} G_{p} / U$ generated by $u_{a_{j}}^{p}+U, 2 \leq j \leq s$, and L the F-subalgebra of $F^{\lambda} G_{p} / V$ generated by $u_{a_{j}}^{p}+V, 2 \leq j \leq s$. By (1.7), L is commutative. In view of (1.6) the correspondence

$$
u_{a_{j}}^{p}+U \mapsto u_{a_{j}}^{p}+V, \quad 2 \leq j \leq s
$$

extends to an F-homomorphism f of the field K onto L. Hence f is an isomorphism and L is a field.

Let p^{d} be the nilpotency index of the radical of the algebra $F^{\lambda} G_{p} / U$. Evidently $d \leq m_{1}$. There exists an element

$$
x=\sum_{i_{2}, \ldots, i_{s}} \alpha_{i_{2}, \ldots, i_{s}} u_{a_{2}}^{i_{2}} \ldots u_{a_{s}}^{i_{s}}
$$

where $\alpha_{i_{2}, \ldots, i_{s}} \in F, 0 \leq i_{j}<p^{m_{j}}$, such that

$$
x^{p^{d}} \equiv \gamma_{1}^{-1} u_{e}(\bmod U) .
$$

Applying the isomorphism f, we obtain

$$
\begin{equation*}
\sum_{i_{2}, \ldots, i_{s}} \alpha_{i_{2}, \ldots, i_{s}}^{p^{d}} u_{a_{2}}^{i_{2} p^{d}} \ldots u_{a_{s}}^{i_{s} p^{d}} \equiv \gamma_{1}^{-1} u_{e}(\bmod V) \tag{1.8}
\end{equation*}
$$

Let

$$
w=x u_{a_{1}}^{p^{m_{1}-d}}-u_{e}
$$

Then $\left(F^{\lambda} G_{p} w+U\right) / U$ is the radical of the algebra $F^{\lambda} G_{p} / U$. By Lemma 1.6,

$$
\begin{align*}
w^{p} & \equiv x^{p} u_{a_{1}}^{p^{m_{1}-d+1}}-u_{e}+\left(u_{c}-u_{e}\right)^{2} z^{\prime}(\bmod V) \tag{1.9}\\
x^{p} & \equiv \sum_{i_{2}, \ldots, i_{s}} \alpha_{i_{2}, \ldots, i_{s}}^{p} u_{a_{2}}^{p i_{2}} \ldots u_{a_{s}}^{p i_{s}}+\left(u_{c}-u_{e}\right)^{2} z^{\prime \prime}(\bmod V)
\end{align*}
$$

where $z^{\prime}, z^{\prime \prime} \in F^{\lambda} G_{p}$. It follows from (1.6), (1.8) and (1.9) that

$$
w^{p^{d}} \equiv u_{c}-u_{e}+\left(u_{c}-u_{e}\right)^{2 p^{d-1}} z(\bmod V), \quad z \in F^{\lambda} G_{p}
$$

and hence

$$
w^{p^{d}}=\left(u_{c}-u_{e}\right) y
$$

where y is an invertible element of $F^{\lambda} G_{p}$. We proved that $F^{\lambda} G_{p} w$ is the radical of the algebra $F^{\lambda} G_{p}$. Therefore, $F^{\lambda} G_{p}$ is uniserial. By Theorem 1.1 the algebra $F^{\lambda} G$ is of finite representation type.

Corollary. Let G be a finite group. If the algebra $F^{\lambda} G$ is of finite representation type for some $\lambda \in Z^{2}\left(G, F^{*}\right)$, then C_{p} is a cyclic group and the number of invariants of the group G_{p} / C_{p} does not exceed $i_{F}+1$.

Remark 1.2. Theorem 1.2 is true for $p=2$ as well if we suppose that $G_{2}^{\prime} \neq C_{2}$ in the case when G_{2}^{\prime} is not the identity subgroup and C_{2} is a cyclic group.

TheOrem 1.3. Suppose $G=G_{p} \times B, \lambda \in Z^{2}\left(G, F^{*}\right)$, and $F^{\lambda} G_{p}$ is a uniserial algebra. Then every indecomposable $F^{\lambda} G$-module can be uniquely represented, up to isomorphism, in the form $V \# W$, where V is an indecomposable $F^{\lambda} G_{p}$-module and W is a simple $F^{\lambda} B$-module. Moreover, the outer tensor product of any indecomposable $F^{\lambda} G_{p}$-module and any simple $F^{\lambda} B$-module is an indecomposable $F^{\lambda} G$-module.

The proof of Theorem 1.3 is analogous to the one of Theorem 3.1 in [1], where the case of G_{p} abelian is investigated.

Lemma 1.8. Suppose $p \neq 2, p| | G^{\prime} \mid$ and C_{p} is cyclic. Assume that G contains $G_{p} \rtimes B$, where $\left[G_{p}, B\right] \neq\{e\}$. Then $G_{p}=C_{p} \rtimes H$, where H is an abelian subgroup and $[B, H]=\{e\}$.

Proof. By hypothesis, $C_{p}=\langle c\rangle,|c|=p^{n}$ and $n \geq 1$. Let $T=G_{p} \rtimes B$. The subgroup C_{p} is normal in T. Let $b \in B$ and φ_{b} be the automorphism of C_{p} such that $\varphi_{b}(c)=b c b^{-1}$. The mapping $\varphi: b \mapsto \varphi_{b}$ is a homomorphism of the group B into Aut C_{p}. Since Aut C_{p} is a cyclic group it follows that $\varphi(B)$ is cyclic. Let K be the kernel of φ. If $B / K=\langle g K\rangle$, then

$$
\left(g^{t} k\right) c\left(g^{t} k\right)^{-1}=g^{t} c g^{-t}, \quad k x k^{-1}=x
$$

for all $k \in K$ and $x \in G_{p}$.
Let $g c g^{-1}=c^{i}$. Then $i \not \equiv 1(\bmod p)$. Let $h \in G_{p}$ and $g h g^{-1}=h c^{l}$. Then $g\left(h c^{s}\right) g^{-1}=h c^{l+s i}$. We choose s in such a way that $l+s i \equiv s\left(\bmod p^{n}\right)$. If $g c^{j} g^{-1}=c^{j}$, then $j \equiv 0\left(\bmod p^{n}\right)$. From this and the equality $h=h c^{s} c^{-s}$ it follows that $G_{p}=C_{p} \rtimes H$, where $H=\left\{h \in G_{p}: g h g^{-1}=h\right\}$.

REmark 1.3. Suppose $p=2, G=G_{2} \rtimes B$ and $\left[G, G_{2}\right]$ is a cyclic group. Then $G=G_{2} \times B$.

Theorem 1.4. Suppose $p \neq 2, G=G_{p} \rtimes B,\left[G, G_{p}\right]=\langle c\rangle,|c|=p^{n}$ $(n>0)$ and $\left[B, G_{p}\right] \neq\{e\}$. Then:
(1) $G_{p}=\langle c\rangle \rtimes H$, where H is abelian and $[B, H]=\{e\}$.
(2) Let $\lambda \in Z^{2}\left(G, F^{*}\right)$. The algebra $F^{\lambda} G$ is of finite representation type if and only if $F^{\lambda} H$ is a field.
(3) Suppose that $F^{\lambda} H$ is a field. Let e_{1}, \ldots, e_{d} be a complete system of primitive pairwise orthogonal idempotents of the semisimple algebra $F^{\lambda} B$, and $V_{i j}=F^{\lambda} G\left(u_{c}-u_{e}\right)^{i} e_{j}$, where $i \in\left\{0,1, \ldots, p^{n}-1\right\}, j \in\{1, \ldots, d\}$. Then every left ideal $V_{i j}$ of the algebra $F^{\lambda} G$ is indecomposable as a left $F^{\lambda} G$-module and any indecomposable $F^{\lambda} G$-module is isomorphic to one of these ideals. The ideals $V_{i_{1} j_{1}}$ and $V_{i_{2} j_{2}}$ are isomorphic if and only if $i_{1}=i_{2}$ and the ideals $F^{\lambda} B e_{j_{1}}, F^{\lambda} B e_{j_{2}}$ of the algebra $F^{\lambda} B$ are isomorphic as $F^{\lambda} B$ modules.

Proof. The first statement is a particular case of Lemma 1.8. The second statement follows from Lemma 1.7.

Suppose $F^{\lambda} H$ is a field. Then $\operatorname{rad} F^{\lambda} G=F^{\lambda} G\left(u_{c}-u_{e}\right)$. From the Morita Theorem (see [10, p. 507]) we conclude that $F^{\lambda} G$ is a serial algebra. In view of $\left[2\right.$, Theorem 2], e_{1}, \ldots, e_{d} is a complete system of primitive pairwise orthogonal idempotents of the semisimple algebra $A=F^{\lambda} H \otimes_{F} F^{\lambda} B$. By the Deuring-Noether Theorem ([8, p. 200]), we also have

$$
A e_{r} \cong A e_{s} \Leftrightarrow F^{\lambda} B e_{r} \cong F^{\lambda} B e_{s}
$$

In view of [9, Theorem 6.8, p. 124], e_{1}, \ldots, e_{d} is a complete system of primitive pairwise orthogonal idempotents of $F^{\lambda} G$. Furthermore, for $1 \leq r, s \leq d$ we have

$$
F^{\lambda} G e_{r} \cong F^{\lambda} G e_{s} \Leftrightarrow A e_{r} \cong A e_{s}
$$

Applying Lemma 1.1 and [10, Lemma 62.28, p. 508], we finish the proof.
Corollary. Keep the notation of Theorem 1.4 and suppose that $F^{\lambda} H$ is a field. Then every simple $F^{\lambda} G$-module is isomorphic to one of the ideals $V_{p^{n}-1, j}$; moreover, any ideal $V_{p^{n}-1, j}, 1 \leq j \leq d$, is minimal.
2. Projective representation types of finite groups. A group G is said to be of finite (resp. infinite) PFR-type if the number of indecomposable projective F-representations of the group G with a cocycle λ is finite (resp. infinite) for any $\lambda \in Z^{2}\left(G, F^{*}\right)$. Other groups are said to be of mixed PFRtype.

Let Γ and Γ^{\prime} be equivalent projective matrix F-representations of G with a cocycle λ. Then there exists an invertible matrix C over F and a mapping $\alpha: G \rightarrow F^{*}$ such that $C^{-1} \Gamma(g) C=\alpha_{g} \Gamma^{\prime}(g)$ for all $g \in G$. In this case,

$$
\lambda_{a, b}=\frac{\alpha_{a} \alpha_{b}}{\alpha_{a b}} \lambda_{a, b}
$$

for all $a, b \in G$. Hence, α is a linear F-character of the group G. But the number of linear F-characters of G is finite. Therefore, the number of pairwise inequivalent indecomposable projective F-representations of G with a cocycle λ is finite if and only if the algebra $F^{\lambda} G$ is of finite representation
type. This allows one to define the type of projective F-representations of G as in the Introduction.

Applying Lemma 1.3 we may establish some connection between $P F R$ type of a group G and $P F R$-type of a Sylow p-subgroup G_{p} of G. If G_{p} is of finite (resp. infinite) $P F R$-type, then so is G. Suppose G_{p} is of mixed $P F R$-type. In view of Corollary 3 to Proposition $1.3, G_{p}$ is not cyclic. By Lemma 1.4 the group algebra $F G$ is of infinite representation type. It follows that G is not of finite $P F R$-type. If G is of finite $P F R$-type, then by Lemma $1.4, G_{p}$ is cyclic, and hence, in view of Corollary 3 to Proposition 1.3, G_{p} is of finite $P F R$-type. If G is of infinite $P F R$-type, then G_{p} is not of finite $P F R$-type. If G is of mixed $P F R$-type, then G_{p} is also of mixed $P F R$-type.

Let G be a finite group and $p \|\left|G^{\prime}\right|$. The group G / G^{\prime} can be written as a direct product of its Sylow q-subgroups $G_{q} G^{\prime} / G^{\prime}$, where G_{q} is a Sylow q-subgroup of G and q is a prime divisor of $\left|G: G^{\prime}\right|$. Denote by C_{p} a Sylow p-subgroup of G^{\prime}. We shall assume that $C_{p} \subset G_{p}$ and $C_{p} \neq G_{p}$. Then $G_{p}^{\prime} \subset C_{p}$, and hence $C_{p} \triangleleft G_{p}$. The group G_{p} / C_{p} is isomorphic to the Sylow p-subgroup $G_{p} G^{\prime} / G^{\prime}$ of G / G^{\prime}. Let $\varphi: G \rightarrow G / G^{\prime}$ be the canonical homomorphism, $\psi: G / G^{\prime} \rightarrow G_{p} G^{\prime} / G^{\prime}$ a projector and $\chi: G_{p} G^{\prime} / G^{\prime} \rightarrow$ G_{p} / C_{p} the isomorphism defined by $\chi\left(a G^{\prime}\right)=a C_{p}$ for any $a \in G_{p}$. Then

$$
\begin{equation*}
f=\chi \psi \varphi \tag{2.1}
\end{equation*}
$$

is a homomorphism of G onto G_{p} / C_{p}. The restriction of f to G_{p} is the canonical homomorphism of G_{p} onto G_{p} / C_{p}.

Lemma 2.1. Let $H=G_{p} / C_{p}, f: G \rightarrow H$ be the epimorphism (2.1), $\mu \in Z^{2}\left(H, F^{*}\right)$ and $\lambda_{a, b}=\mu_{f(a), f(b)}$ for any $a, b \in G$. Then $\lambda \in Z^{2}\left(G, F^{*}\right)$ and $\lambda_{x, y}=\lambda_{y, x}=1$ for all $x \in G_{p}, y \in C_{p}$. If $V=F^{\lambda} G_{p} \cdot \operatorname{rad} F C_{p}$, then V is an ideal of the algebra $F^{\lambda} G_{p}$ and $F^{\lambda} G_{p} / V \cong F^{\mu} H$.

Proof. Direct calculation.
Theorem 2.1. Suppose $i_{F} \neq 0, G$ is a finite group, $p \| G^{\prime} \mid$ and G_{p} / C_{p} is a direct product of s cyclic p-subgroups for $C_{p} \neq G_{p}$. Then:
(1) If C_{p} is not cyclic or $s \geq i_{F}+2$, then G is of infinite PFR-type.
(2) If G_{p} is cyclic, then G is of finite PFR-type.
(3) If C_{p} is a cyclic group and G_{p} is not a cyclic group and $1 \leq s \leq i_{F}$, then G is of mixed PFR-type.
(4) Suppose $C_{p}=\langle c\rangle, G_{p} / C_{p}=\left\langle a_{1} C_{p}\right\rangle \times \ldots \times\left\langle a_{s} C_{p}\right\rangle$ and $s=i_{F}+1$. If $c \in\left\langle a_{r}\right\rangle$ for some $r \in\{1, \ldots, s\}$, then G is of mixed PFR-type. If $c \notin\left\langle a_{j}\right\rangle$ for every $j \in\{1, \ldots, s\}$ and $C_{2} \neq G_{2}^{\prime}$ for $p=2$ then G is of infinite PFR-type.

Proof. The assertion for $p \neq 2$ follows from Theorem 1.2 and Lemmas $1.5,2.1$. Now we turn to the case when p is an arbitrary prime. State-
ments (1)-(3) follow from Lemmas 1.2-1.5, 2.1 and Corollary 3 to Proposition 1.3 .

We prove (4). Let

$$
c=a_{1}^{p^{m_{1}}}, \quad H=G_{p} / C_{p}, \quad \bar{H}=G_{p} /\left\langle a_{1}\right\rangle
$$

Then

$$
\bar{H} \cong H /\left(\left\langle a_{1}\right\rangle / C_{p}\right) \cong\left\langle a_{2} C_{p}\right\rangle \times \ldots \times\left\langle a_{s} C_{p}\right\rangle
$$

There is a cocycle $\bar{\mu} \in Z^{2}\left(\bar{H}, F^{*}\right)$ such that $F^{\bar{\mu}} \bar{H}$ is a field. Let $\varphi: G_{p} \rightarrow \bar{H}$ be the canonical homomorphism. Put $\mu_{x, y}=\bar{\mu}_{\varphi(x), \varphi(y)}$ for any $x, y \in G_{p}$. Then $\mu \in Z^{2}\left(G_{p}, F^{*}\right)$. Let $\left\{u_{x}: x \in G_{p}\right\}$ be a natural F-basis of the algebra $F^{\mu} G_{p}$. We have

$$
u_{a_{1}}^{p^{m_{1}}}=u_{c}, \quad u_{c}^{|c|}=u_{e}
$$

$\operatorname{rad} F^{\mu} G_{p}=F^{\mu} G_{p}\left(u_{a_{1}}-u_{e}\right)$ and $F^{\mu} G_{p} / \operatorname{rad} F^{\mu} G_{p} \cong F^{\bar{\mu}} \bar{H}$. Let $\pi: G_{p} \rightarrow$ G_{p} / C_{p} be the canonical homomorphism. If $\pi(x)=\pi\left(x^{\prime}\right)$ then $\varphi(x)=\varphi\left(x^{\prime}\right)$. It follows that the formula $\nu_{\pi(x), \pi(y)}=\bar{\mu}_{\varphi(x), \varphi(y)}$, where $x, y \in G_{p}$, gives a cocycle $\nu \in Z^{2}\left(H, F^{*}\right)$. In view of Lemma 2.1 there is a cocycle $\lambda \in Z^{2}\left(G, F^{*}\right)$ such that $\lambda_{a, b}=\nu_{f(a), f(b)}$ for all $a, b \in G$, where f is the epimorphism (2.1). If $a, b \in G_{p}$ then $\lambda_{a, b}=\nu_{\pi(a), \pi(b)}=\mu_{a, b}$. It follows that $F^{\lambda} G_{p} \cong F^{\mu} G_{p}$, and hence $F^{\lambda} G_{p}$ is a uniserial algebra. Applying Theorem 1.1 we conclude that $F^{\lambda} G$ is of finite representation type. But G_{p} is not cyclic. Therefore, by Lemma 1.4 the group algebra $F G$ is of infinite representation type. Thus, the group G is of mixed $P F R$-type.

Let $\left|a_{j} C_{p}\right|=p^{m_{j}}$ and

$$
a_{j}^{p^{m_{j}}}=c^{p t_{j}}
$$

for every $j \in\{1, \ldots, s\}$. If $p \neq 2$ then by Lemma $1.7, G$ is of infinite $P F R$ type. Suppose $p=2, G_{2}^{\prime} \neq C_{2}, H=\left\langle c^{2}\right\rangle$ and $\lambda \in Z^{2}\left(G, F^{*}\right)$. Then $G_{2}^{\prime} \subset H$ and $G_{2} / H=\langle c H\rangle \times\left\langle a_{1} H\right\rangle \times \ldots \times\left\langle a_{s} H\right\rangle$. In view of Lemma $1.5, F^{\lambda} H$ is a group algebra and the set $V=F^{\lambda} G_{2} \cdot \operatorname{rad} F^{\lambda} H$ is a two-sided ideal of the algebra $F^{\lambda} G_{2}$. The quotient algebra $F^{\lambda} G_{2} / V$ is a commutative twisted group algebra of the group G_{2} / H and the field F. From Corollary 3 to Proposition 1.3 we conclude that $F^{\lambda} G / V$ is of infinite representation type. From this and Lemma 1.3 it follows that G is of infinite $P F R$-type.

Corollary 1. Suppose $i_{F}=\infty$. If C_{p} is a non-cyclic group then G is of infinite PFR-type. If C_{p} is cyclic and G_{p} is not cyclic then G is of mixed PFR-type. If G_{p} is a cyclic group then G is of finite PFR-type.

Corollary 2. Suppose $i_{F} \neq 0, p \neq 2, G=G_{p} \rtimes B,\left[G, G_{p}\right]=\langle c\rangle$ and $\left[B, G_{p}\right] \neq\{e\}$. Suppose $G_{p} /\langle c\rangle$ is a direct product of s cyclic subgroups for $G_{p} \neq\langle c\rangle$. If $1 \leq s \leq i_{F}$ then G is of mixed PFR-type. If $s \geq i_{F}+1$ then G is of infinite PFR-type. For $G_{p}=\langle c\rangle$ the group G is of finite PFR-type.

Proof. Apply Theorems 1.4 and 2.1.

Theorem 2.2. Suppose $i_{F} \neq 0, G$ is a finite group and $p\left|\left|G^{\prime}\right|\right.$. Assume that G_{p} is abelian and C_{p} is cyclic. Let s be the number of invariants of G_{p}. If $s=1$ then G is of finite PFR-type. If $1<s \leq i_{F}+1$ then G is of mixed PFR-type. If $s \geq i_{F}+2$ then G is of infinite PFR-type.

Proof. From Lemma 1.3 and Corollary 3 to Proposition 1.3 we conclude that if $s=1$ then G is of finite $P F R$-type, and if $s \geq i_{F}+2$ then G is of infinite $P F R$-type. Let $1<s \leq i_{F}+1$ and $C_{p}=\langle c\rangle$. We have $G_{p} / C_{p}=$ $\left\langle a_{1} C_{p}\right\rangle \times \ldots \times\left\langle a_{t} C_{p}\right\rangle, t \leq s$. If $t \leq i_{F}$ then by Lemmas 1.3 and $2.1, G$ is of mixed $P F R$-type. Suppose that $t=i_{F}+1$. If $c \notin\left\langle a_{i}\right\rangle$ for all $i \in\{1, \ldots, t\}$ then $G_{p} / H=\langle c H\rangle \times\left\langle a_{1} H\right\rangle \times \ldots \times\left\langle a_{t} H\right\rangle$, where $H=\left\langle c^{p}\right\rangle$. This contradiction shows that $c \in\left\langle a_{r}\right\rangle$ for some $r \in\{1, \ldots, t\}$. In this case, G is also of mixed $P F R$-type, by Lemmas 1.3 and 2.1, Corollary 3 to Proposition 1.3 and Theorem 2.1.

Proposition 2.1. Suppose $i_{F}=0$. If G_{p} is not cyclic then G is of infinite PFR-type. If G_{p} is cyclic then G is of finite PFR-type.

Proof. The algebra $F^{\lambda} G_{p}$ is the group algebra $F G_{p}$ for every $\lambda \in$ $Z^{2}\left(G, F^{*}\right)$ (see [26, p. 43]). It remains to apply Lemmas 1.3 and 1.4.

We remark that Proposition 2.1 was, in fact, formulated in [7].
Two groups are said to be PFR-isotypic if they are of the same $P F R$-type. From the above results, we will derive necessary and sufficient conditions for G and G_{p} to be $P F R$-isotypic. In view of Lemmas 1.3, 1.5 and 2.1 groups G and G_{p} are $P F R$-isotypic if $C_{p}=G_{p}^{\prime}$.

Proposition 2.2. Let G be a finite group with $p \|\left|G^{\prime}\right|$ and G_{p} an abelian group, and s the number of invariants of G_{p}. If C_{p} is cyclic then G and G_{p} are PFR-isotypic. If C_{p} is not cyclic then G and G_{p} are PFR-isotypic if and only if $s \geq i_{F}+2$.

Proof. If C_{p} is cyclic we apply Theorem 2.2. If C_{p} is not cyclic we apply the Corollary of Theorem 1.2 and Theorem 2.2.

Proposition 2.3. Suppose $i_{F} \neq 0, G$ is a finite group, $p \|\left|G^{\prime}\right|$, and s is the number of invariants of G_{p} / G_{p}^{\prime}. Assume that G_{p} is non-abelian and if G_{p}^{\prime} is cyclic then $s \neq i_{F}+1$ for $p=2$. The groups G and G_{p} are PFR-isotypic if and only if one of the following conditions holds:
(1) $s \geq i_{F}+2$ or G_{p}^{\prime} is non-cyclic;
(2) $s \leq i_{F}+1$ and C_{p} is cyclic;
(3) $s=i_{F}+1, G_{p}^{\prime}$ is cyclic, C_{p} is non-cyclic and $G_{p} / G_{p}^{\prime}=\left\langle b_{1} G_{p}^{\prime}\right\rangle \times$ $\ldots \times\left\langle b_{s} G_{p}^{\prime}\right\rangle$, where $G_{p}^{\prime} \not \subset\left\langle b_{j}\right\rangle$ for every $j \in\{1, \ldots, s\}$.

Proof．Apply Theorem 2．1．If condition（1）holds，then G_{p} is of infinite $P F R$－type．If condition（2）holds and $G_{p}^{\prime} \neq C_{p}$ ，then by the same arguments as in the proof of Theorem 2.2 we can establish that G is of mixed $P F R$－ type．Suppose that conditions（1）and（2）do not hold．Then $s \leq i_{F}+1$ ， G_{p}^{\prime} is cyclic and C_{p} is non－cyclic．In this case，G is of infinite $P F R$－type． The subgroup G_{p} is of infinite $P F R$－type if and only if $s=i_{F}+1$ and $G_{p} / G_{p}^{\prime}=\left\langle b_{1} G_{p}^{\prime}\right\rangle \times \ldots \times\left\langle b_{s} G_{p}^{\prime}\right\rangle$ ，where $G_{p}^{\prime} \not \subset\left\langle b_{j}\right\rangle$ for every $j \in\{1, \ldots, s\}$ ．

Corollary．Suppose $i_{F}=\infty, G$ is a finite group and $p \| G^{\prime} \mid$ ．The groups G and G_{p} are PFR－isotypic if and only if C_{p} is cyclic or G_{p}^{\prime} is not cyclic．

REFERENCES

［1］L．F．Barannyk，Modular projective representations of direct products of finite groups， Publ．Math．Debrecen 64 （2004）（in press）．
［2］L．F．Barannyk and K．Sobolewska，On modular projective representations of finite nilpotent groups，Colloq．Math． 87 （2001），181－193．
［3］R．Bautista，On algebras of strongly unbounded representation type，Comment． Math．Helv． 60 （1985），392－399．
［4］R．Bautista，P．Gabriel，A．V．Roŭter and L．Salmerón，Representation－finite algebras and multiplicative bases，Invent．Math． 81 （1985），217－285．
［5］S．D．Berman，Representations of finite groups over an arbitrary field and over rings of integers，Izv．Akad．Nauk SSSR Ser．Mat． 30 （1966），69－132（in Russian）；English transl．：Amer．Math．Soc．Transl．（2） 64 （1967），147－215．
［6］K．Bongartz，Indecomposables are standard，Comment．Math．Helv． 60 （1985），400－ 410.
［7］S．B．Conlon，Twisted group algebras and their representations，J．Austral．Math． Soc． 4 （1964），152－173．
［8］C．W．Curtis and I．Reiner，Representation Theory of Finite Groups and Associative Algebras，Interscience，New York， 1962 （2nd ed．，1966）．
［9］—，一，Methods of Representation Theory with Applications to Finite Groups and Orders，Vol．1，Wiley，New York， 1981.
［10］－，一，Methods of Representation Theory with Applications to Finite Groups and Orders，Vol．2，Wiley，New York， 1987.
［11］E．C．Dade，Blocks with cyclic defect groups，Ann．of Math． 84 （1966），20－48．
［12］V．Dlab and C．M．Ringel，Decomposition of modules over right uniserial rings， Math．Z． 129 （1972），207－230．
［13］一，一，On algebras of finite representation type，J．Algebra 33 （1975），306－394．
［14］P．Dowbor and D．Simson，Quasi－Artin species and rings of finite representation type，J．Algebra 63 （1980），435－443．
［15］Yu．A．Drozd and V．V．Kirichenko，Finite Dimensional Algebras，Springer，Berlin， 1994.
［16］W．Feit，The Representation Theory of Finite Groups，North－Holland，Amsterdam， 1982.
［17］J．A．Green，On the indecomposable representations of a finite group，Math．Z． 70 （1959），430－445．
［18］P．M．Gudivok，On modular representations of finite groups，Dokl．Uzhgorod．Univ． Ser．Fiz．－Mat． 4 （1961），86－87（in Russian）．
[19] P. M. Gudivok, On boundedness of degrees of indecomposable modular representations of finite groups over principal ideal rings, Dopovīd̄̄ Akad. Nauk USSR Ser. A 1971, 683-685 (in Ukrainian).
[20] W. H. Gustafson, Group rings of finite representation type, Math. Scand. 34 (1974), 58-60.
[21] D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J. 21 (1954), 377-381.
[22] G. J. Janusz, Indecomposable representations of groups with a cyclic Sylow subgroup, Trans. Amer. Math. Soc. 125 (1966), 288-295.
[23] —, Indecomposable modules for finite groups, Ann. of Math. (2) 89 (1969), 209-241.
[24] -, Faithful representations of p-groups at characteristic p, I, J. Algebra 15 (1970), 335-351.
[25] -, Faithful representations of p-groups at characteristic p,II, ibid. 22 (1972), 137160.
[26] G. Karpilovsky, Group Representations, Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
[27] F. Kasch, M. Kneser und H. Kupisch, Unzerlegbare modulare Darstellungen endlicher Gruppen mit zyklischer p-Sylow-Gruppe, Arch. Math. (Basel) 8 (1957), 320321.
[28] H. Kupisch, Projektive Moduln endlicher Gruppen mit zyklischer p-Sylow-Gruppe, J. Algebra 10 (1968), 1-7.
[29] -, Unzerlegbare Moduln endlicher Gruppen mit zyklischer p-Sylow-Gruppe, Math. Z. 108 (1969), 77-104.
[30] H. Meltzer and A. Skowroński, Group algebras of finite representation type, Math. Z. 182 (1983), 129-148.
[31] -, —, Correction to "Group algebras of finite representation type", ibid. 187 (1984), 563-569.
[32] L. A. Nazarova und A. V. Roĭter, Kategorielle Matrizen-Probleme und die Brauer-Thrall-Vermutung, Mitt. Math. Sem. Giessen 115 (1975), 1-153.
[33] W. F. Reynolds, Twisted group algebras over arbitrary fields, Illinois J. Math. 15 (1971), 91-103.
[34] A. V. Roĭter, Unboundedness of the dimensions of the indecomposable representations of an algebra which has infinitely many indecomposable representations, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1275-1282 (in Russian).
[35] A. Skowroński, The representation type of group algebras, in: CISM Courses and Lectures 287, Springer, Wien, 1984, 517-531.
[36] -, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499-516.
[37] K. Sobolewska, On the number of indecomposable representations with a given degree of a twisted group algebra over a field of characteristic p, Słupskie Prace Mat.-Fiz. 2 (2002), 81-89.

Institute of Mathematics
Pedagogical Academy
Arciszewskiego 22b
76-200 Słupsk, Poland
E-mail: barannykleo@poczta.onet.pl kamiles@poczta.onet.pl

