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ON INDECOMPOSABLE PROJECTIVE REPRESENTATIONS
OF FINITE GROUPS OVER FIELDS OF CHARACTERISTIC p > 0
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Abstract. Let G be a finite group, F a field of characteristic p with p | |G|, and F λG
the twisted group algebra of the group G and the field F with a 2-cocycle λ ∈ Z2(G,F ∗).
We give necessary and sufficient conditions for FλG to be of finite representation type.
We also introduce the concept of projective F -representation type for the group G (finite,
infinite, mixed) and we exhibit finite groups of each type.

Introduction. Let F be a field of characteristic p > 0, F ∗ the multi-
plicative group of the field F , F p = {ap : a ∈ F}, G a finite group of order
|G|, where p | |G|, and Gp a Sylow p-subgroup of G. Let G′ be the commutant
of G, Cp a Sylow p-subgroup of G′, Cp ⊂ Gp, G′p the commutant of Gp, and
Z2(G,F ∗) the group of all F ∗-valued normalized 2-cocycles of the group G,
where we assume that G acts trivially on F ∗ (see [26, Chapter 1]). Denote
by FλG the twisted group algebra of the group G and the field F with
a cocycle λ ∈ Z2(G,F ∗) and by radF λG the radical of F λG. An F -basis
{ug : g ∈ G} of FλG satisfying uaub = λa,buab for all a, b ∈ G is called nat-
ural. By an FλG-module we mean a finitely generated left F λG-module. If
H is a subgroup of G, then the restriction of λ ∈ Z2(G,F ∗) to H ×H will
also be denoted by λ. In this case, F λH is a subalgebra of F λG.

Higman [21] proved that a group algebra FG is of finite representation
type if and only if Gp is a cyclic group. In this case Kasch, Kneser and
Kupisch [27] gave a sharper upper bound of the number of indecomposable
FG-modules. They also obtained conditions on G under which the bound is
attained. Later Janusz [22] gave a formula for the exact number of indecom-
posable FG-modules for the case when F is an algebraically closed field. In
[23] he determined the structure of indecomposable modules in more detail.
Indecomposable FG-modules with Gp being cyclic are also investigated in
[5], [11], [24], [25], [28], [29] (see as well [16, Chapter VII]). The representa-
tion type of group rings SG, where S is an arbitrary commutative artinian
ring or a local artinian ring whose quotient ring S/radS is finitely generated
over its center, is determined by Gustafson [20] and Dowbor and Simson [14].
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Generalizations to the case when S is an arbitrary finite-dimensional alge-
bra over a field F and G is a finite group have been found by Meltzer and
Skowroński [30], [31] and Skowroński [35], [36]. Representation-infinite group
algebras SG of polynomial growth are classified in [36]. Gudivok [18] and
Janusz [24], [25] showed that if F is an infinite field and G is an abelian
p-group which is neither cyclic nor of order 4, then there exist infinitely
many non-isomorphic indecomposable FG-modules of F -dimension n for
every natural number n > 1. If G is the non-cyclic group of order 4, then
the preceding result is valid for even natural numbers n.

Higman [21] proved, in fact, that the first Brauer−Thrall conjecture
holds for group algebras of finite groups. Results by Gudivok [18] and Janusz
[24], [25] give the solution of the second Brauer–Thrall conjecture for group
algebras of finite groups. As is well known, the first Brauer–Thrall conjec-
ture for finite-dimensional algebras over an arbitrary field was solved by
Rŏıter [34]. The second Brauer–Thrall conjecture was proved by Nazarova
and Rŏıter [32], Bautista [3], Bongartz [6], Bautista, Gabriel, Rŏıter and
Salmerón [4].

In [7], Conlon developed the theory of twisted group algebras F λG by
exploiting their analogy with group algebras FG assuming that F is large
enough. In this case F λGp is a group algebra and therefore F λG is of finite
representation type if and only if Gp is cyclic. Moreover, in the same paper
Conlon established that if Gp is a cyclic group then a rough upper bound
for the number of indecomposable FG-modules which was found in [21] also
holds for the number of indecomposable F λG-modules. It should be noted
that Reynolds [33] computed the number of non-isomorphic simple KµG-
modules whereK is an arbitrary field,G is a finite group and µ ∈ Z2(G,K∗).
We also remark that if the characteristic of K does not divide the order of
the group G, then KµG is a semisimple algebra for any µ ∈ Z2(G,K∗),
and hence is of finite representation type. Using Green’s results [17], for the
case when G is a finite abelian p-group and the radical of F λG is not cyclic,
Sobolewska [37] constructed increasing functions fλ : N→ N such that there
exist infinitely many isomorphism classes of indecomposable F λG-modules
of F -dimension fλ(n) for every natural number n > 1.

In the present paper we shall characterize twisted group algebras F λG
of finite representation type. We shall also describe finite groups depending
on a projective representation type over the field F .

Let us briefly present the main results of the paper. In Section 1, we prove
that an algebra F λG is of finite representation type if and only if F λGp is a
uniserial algebra (Theorem 1.1; we use the terminology introduced in [15]).
We also establish (Theorem 1.2) that if p 6= 2, then F λGp is a uniserial
algebra if and only if Cp is cyclic and one of the following conditions holds:
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(1) the quotient algebra F λGp/FλGp·radFλCp is a field;
(2) Cp = {e} and there exists a decomposition Gp = H × N such that

H is cyclic and F λN is a field;
(3) Cp 6= {e} and there exists a decomposition Gp/Cp = 〈a1Cp〉 ×

. . . × 〈asCp〉 such that Cp ⊂ 〈a1〉, Cp 6⊂ 〈aj〉 for every j = 2, . . . , s and
FλD/FλD · radFλCp is a field, where D is the subgroup of Gp generated
by Cp, a2, . . . , as.

The proofs of these theorems are based on the characterization of local
rings of finite representation type which was obtained in [12]–[14]. A special
case of such rings was investigated in [19]. In Section 1 of this paper, we
also obtain indecomposable F λG-modules for the case when Gp is a normal
subgroup of G and F λGp is a uniserial algebra (Theorems 1.3 and 1.4).

We say that a group G is of finite (resp. infinite) PFR-type (Projective
F -Representation type) if the algebra F λG is of finite (resp. infinite) repre-
sentation type for every cocycle λ ∈ Z2(G,F ∗). Otherwise, G is said to be
of mixed PFR-type.

In Section 2, we classify finite groups depending on their PFR-type
(Theorems 2.1 and 2.2, Proposition 2.1). We also state necessary and suf-
ficient conditions for G and Gp to be of the same PFR-type (Propositions
2.2–2.3).

1. Twisted group algebras of finite representation type and
their representations

Lemma 1.1. Let λ ∈ Z2(G,F ∗). Every FλG-module is isomorphic to an
FλG-component of an induced F λG-module FλG⊗FλGp V , where V is some
FλGp-module.

Lemma 1.2. Let H be a subgroup of G and λ ∈ Z2(G,F ∗). If FλH is of
infinite representation type, then F λG is also of infinite representation type.

Lemma 1.3. An algebra F λG is of finite representation type if and only
if FλGp is of finite representation type.

The proofs of Lemmas 1.1–1.3 are similar to those of the corresponding
propositions about group algebras (see [8, §63]).

Lemma 1.4 ([21]). A group algebra FG is of finite representation type if
and only if Gp is a cyclic group.

Lemma 1.5. Suppose p | |G′|, Cp ⊂ Gp and λ ∈ Z2(G,F ∗). Then:

(1) Up to cohomology

(1.1) λg,h = λh,g = 1

for any g ∈ Gp and any h ∈ Cp.
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(2) Suppose λ satisfies condition (1.1), Gp = Gp/Cp, g = gCp for g ∈ Gp,
and λa,b = λa,b for any a, b ∈ Gp. Then λ ∈ Z2(Gp, F ∗) and

FλGp ∼= FλGp/F
λGp · radFλCp.

Proof. In view of [26, Proposition 5.17, p. 48] the restriction of every
cocycle λ ∈ Z2(G,F ∗) to Cp × Cp is a coboundary. Therefore, statements
(1) and (2) follow from the properties of natural homomorphisms of twisted
group algebras ([26, pp. 87–93]).

In what follows, we assume that every cocycle λ ∈ Z2(G,F ∗) under
consideration satisfies condition (1.1). In particular, F λCp will always be
the group algebra FCp.

The number iF = sup {0,m} is important in describing twisted group
algebras of abelian p-groups which are of finite representation type, where
m is a natural number such that for some γ1, . . . , γm ∈ F ∗ the algebra

F [x]/(xp − γ1)⊗F . . .⊗F F [x]/(xp − γm)

is a field. If F is a perfect field, then iF = 0, otherwise iF 6= 0.

Proposition 1.1. Let K be a perfect field of characteristic p and F =
K(x1, . . . , xn) the quotient field of the polynomial ring K[x1, . . . , xn]. Then
iF = n.

Proof. By induction on i we prove that the algebra

Ai = F [y]/(yp − x1)⊗F . . .⊗F F [y]/(yp − xi)
is a field for every i ∈ {1, . . . , n}. From this it follows that iF ≥ n. Suppose
that for some λ1, . . . , λm ∈ F ∗ the algebra

B = F [y]/(yp − λ1)⊗F . . .⊗F F [y]/(yp − λm)

is a field. Let C = B ⊗F An. The algebra An is isomorphic to the field
K(y1, . . . , yn), where ypj = xj (j = 1, . . . , n). Every element of F is the pth
power of some element of An. It follows that

C ∼= An[y]/(yp − 1)⊗An . . .⊗An An[y]/(yp − 1) (m factors).

Consequently, C/radC ∼= An. On the other hand, C can be viewed as a
twisted group algebra of an elementary abelian p-group of order pn over the
field B. Therefore, C/radC is isomorphic to a purely inseparable extension
of the field B of degree ps, where s ≤ n. It follows that pn = ps · [B : F ] or
pn = ps · pm, whence m ≤ n. Hence iF ≤ n, and the proof is complete.

Proposition 1.2. Let K be a field of characteristic p, X = {xi : i =
1, 2, . . .}, and F the quotient field of the polynomial ring K[X]. Then iF =∞.
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Theorem 1.1. Let G be a finite group, p | |G| and λ ∈ Z2(G,F ∗). The
algebra FλG is of finite representation type if and only if F λGp is a uniserial
algebra.

Proof. By Lemma 1.3, we may assume that G is a p-group. Let {ug :
g ∈ G} be a natural F -basis of the algebra F λG and e be the identity
element of G. It is known (see [26, p. 74]) that F λG/radFλG ∼= K, where
K is a purely inseparable extension of the field F . Suppose F λG is of finite
representation type. Then by Lemmas 1.2, 1.4 and 1.5, G′ is a cyclic group
and FλG′ is a group algebra. Let G′ = 〈c〉, A = FλG, V = radA/(radA)2,
m = dimK V and m′ = dimVK . We know (see [12]–[14]) that in the case
under consideration we have m ·m′ ≤ 3.

Suppose m = 1. If uc − ue 6∈ (radA)2, then {uc − ue + (radA)2} is a
basis of the left vector space V over the field K. It follows that any element
of V is of the form

x(uc − ue + (radA)2) = x(uc − ue) + (radA)2,

where x ∈ A, x = x + radA. Since for each x ∈ A there exists y ∈ A such
that x(uc − ue) = (uc − ue)y, we have

x(uc − ue + (radA)2) = (uc − ue + (radA)2)y.

Hence, m′ = 1. Suppose now that uc − ue ∈ (radA)2. Since for arbitrary
x, y ∈ A there exists z ∈ A such that xy − yx = (uc − ue)z, we obtain

x(y + (radA)2) = (y + (radA)2)x

for any x, y ∈ A. In this case m′ = 1. By the same arguments we can
establish that if m′ = 1 then m = 1.

Therefore, if F λG is of finite representation type, then F λG is a uniserial
algebra. Conversely, every uniserial algebra is of finite representation type
([15, p. 171]).

Proposition 1.3. Let F be a field of characteristic p, G a finite abelian
p-group and λ ∈ Z2(G,F ∗). The algebra FλG is of finite representation type
if and only if G = H ×N , where H is a cyclic group and F λN is a field.

Proof. Let G = H×N , where H is cyclic and F λN is a field. Then F λG
is a uniserial algebra, and hence it is of finite representation type. Now we
suppose that there is no decomposition G = H ×N such that H is a cyclic
group and F λN is a field. Let G be the socle of G. Then F λG ∼= FµB,
where B is an elementary abelian p-group of order |G| and the following
conditions are satisfied: B = L×M , L is a non-cyclic group of order p2 and
FµL is the group algebra of the group L over the field F . By Lemmas 1.2
and 1.4, the algebra F µB is of infinite representation type. Applying again
Lemma 1.2 to FλG and FλG, we conclude that the algebra F λG is of infinite
representation type.
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Corollary 1. Let G be a finite abelian p-group and λ ∈ Z2(G,F ∗).
Assume that G = H×N , where H is a cyclic group and F λH is not a field.
The algebra FλG is of finite representation type if and only if F λN is a
field.

Corollary 2. Let G be a finite abelian p-group, G the socle of G, and
λ ∈ Z2(G,F ∗). The algebra FλG is of infinite representation type if and
only if FλG ∼= FµH ⊗F FµN , where G ∼= H ×N , H is a non-cyclic group
of order p2 and FµH is the group algebra.

Corollary 3. Let G = 〈a1〉 × . . . × 〈as〉 be an abelian p-group.
If s ≥ iF + 2 then FλG is of infinite representation type for every λ ∈
Z2(G,F ∗). If s ≤ iF + 1 then there exists an algebra F λG which is of finite
representation type. If s = 1 then F λG is of finite representation type for
every λ ∈ Z2(G,F ∗).

Lemma 1.6. Let p 6= 2, G be a non-abelian p-group with G′ = 〈c〉 of
order p, and {ug : g ∈ G} be a natural F -basis of F λG. Then:

(1) (uaub)p = upau
p
b for any a, b ∈ G.

(2) If y ∈ FλG, g ∈ G, then

ugy = yug + (uc − ue)y′ug,(1.2)

(yug)p = ypupg + (uc − ue)2z(1.3)

for some y′, z ∈ FλG.
(3) If

x =
∑

g∈G
αgug

is an element of FλG, then

xp =
∑

g∈G
αpgu

p
g + (uc − ue)2z, z ∈ FλG.

Proof. We remark that uc belongs to the center of F λG and if ab = cjba,
then uaub = ujcubua. From this we obtain (1) and formula (1.2). Then

(yug)p = y[y + (uc − ue)y′][y + 2(uc − ue)y′] . . .
. . . [y + (p− 1)(uc − ue)y′]upg + (uc − ue)2z′

= ypupg + (uc − ue)2z, z ∈ FλG.
Hence, formula (1.3) holds.

It remains to prove (3). Suppose αb 6= 0. Applying (1.3) and induction
on the number of non-zero summands of x, we obtain
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xp =
{[
αbue +

∑

g 6=b
αg(ugu−1

b )
]
ub

}p

=
[
αbue +

∑

g 6=b
αg(ugu−1

b )
]p
upb + (uc − ue)2z′

=
[
αpbue +

∑

g 6=b
αpg(ugu

−1
b )p + (uc − ue)2z′′

]
upb + (uc − ue)2z′

=
∑

g∈G
αpgu

p
g + (uc − ue)2z.

Lemma 1.7. Suppose p 6= 2, iF 6= 0, p | |G′|, and λ ∈ Z2(G,F ∗). Assume
that Cp is cyclic, Gp/Cp = 〈a1Cp〉 × . . . × 〈amCp〉 and Cp 6⊂ 〈ai〉 for all
i ∈ {1, . . . ,m}. The algebra F λG is of finite representation type if and only
if FλGp/FλGp · radFCp is a field.

Proof. Necessity. I. First we examine the case when Gp is a group of
exponent p. Taking into consideration Corollary 1 to Proposition 1.3 we
may assume that Gp is non-abelian. Let Cp = 〈c〉 and suppose F λGp is of
finite representation type. We prove that V = F λGp(uc − ue) is the radical
of the algebra F λGp.

Any element g ∈ Gp can be uniquely represented in the form

g = ai11 . . . aimm cj ,

where 0 ≤ ir, j < p. Up to cocycle cohomology we may suppose

(1.4) ug = ui1a1
. . . uimamu

j
c,

where

upar = γrue, upc = ue (γr ∈ F ∗, 1 ≤ r ≤ m).

Let FλGp = FλGp/V and x = x+V for every x ∈ F λGp. The algebra F λGp
is the commutative twisted group algebra F λGp of the group Gp = Gp/Cp
and the field F with the cocycle λ, where λg1,g2

= λg1,g2 for any g1, g2 ∈ Gp.
Here g = gCp for every g ∈ Gp. A natural F -basis of F λGp is formed by
elements ug (g ∈ Gp) which by (1.4) can be uniquely represented in the form

ug = ui1a1
. . . uimam ,

where upar = γrue, 1 ≤ r ≤ m.
Suppose that V is not the radical of the algebra F λGp. From Pro-

position 1.3 we conclude that up to reindexing a1, . . . , am the algebra
F [ua1 , . . . , uam−1 ] is a field and F [ua1 , . . . , uam−1 , uam ] is not. In this case

γ−1
m ue = xp
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for some
x =

∑

i1,...,im−1

αi1,...,im−1u
i1
a1
. . . uim−1

am−1
,

where αi1,...,im−1 ∈ F , 0 ≤ ij < p for j = 1, . . . ,m−1. In view of Lemma 1.6,

xp = γ−1
m ue + (uc − ue)2z′, z′ ∈ FλGp,

and consequently

(xuam)p = xpupam + (uc − ue)2z′′ = ue + (uc − ue)2z,

where z′′ ∈ FλGp, z = γmz
′+z′′. Let w = xuam−ue. Then wp = (uc−ue)2z.

We also have radF λGp = FλGp · w.
By Theorem 1.1 the algebra F λGp is uniserial. Applying the Morita

Theorem (see [10, p. 507]) and [10, Corollary 62.31, p. 510] we conclude
that radFλGp = FλGp · θ = θ · FλGp, where θp

2
= 0 and θl 6= 0 for every

l < p2. We also obtain radF λGp = FλGp · θ. It follows that w = θ · y′,
where y′ is an invertible element of F λGp. The equality uc − ue = θpy′′,
y′′ ∈ FλGp, now shows that w = θy = zθ, where y and z are invertible in
FλGp. This makes it possible to take θ = w. However,

wp(p+1)/2 = (uc − ue)p+1z̃ = 0 and
p+ 1

2
< p.

This contradiction shows that V is the radical of F λGp.
II. Now we examine the general case. Let Cp = 〈c〉, G̃p = Gp/〈cp〉, C̃p =

Cp/〈cp〉, g̃ = g〈cp〉 for every g ∈ Gp, and λ̃ã,b̃ = λa,b for any a, b ∈ Gp. Then

λ̃ ∈ Z2(G̃p, F ∗), F λ̃C̃p is the group algebra, F λ̃G̃p is a quotient algebra of
FλGp and F λ̃G̃p/F

λ̃G̃p·radF λ̃Cp ∼= FλGp/F
λGp · radFλCp. Suppose that

FλGp is of finite representation type. Then so is F λ̃G̃p. We have G̃′p ⊂ C̃p
and c̃ is a central element of order p. Let

b̃i = ãp
ri−1

i ,

where pri is the order of aiCp, 1 ≤ i ≤ m. Denote by T̃ the subgroup of G̃p
generated by c̃, b̃1, . . . , b̃m. The exponent of T̃ is p. From Lemma 1.2 and the
result of case I, we conclude that F λ̃T̃ /F λ̃T̃ · radF λ̃C̃p is a field. Then so is
F λ̃G̃p/F

λ̃G̃p · radF λ̃C̃p, and hence also F λGp/FλGp·radFλCp.
Sufficiency. If FλGp/FλGp · radFλCp is a field, then F λGp is uniserial,

and hence by Theorem 1.1 the algebra F λG is of finite representation type.

Remark 1.1. If p = 2, then the necessity in Lemma 1.7 does not hold.
Indeed, let F be a field of characteristic 2 with iF 6= 0, and G2 = 〈a, b〉
the dihedral group of order 8. Assume that F λG2 is given by the defining
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relations
u4
a = ue, u2

b = γue, u−1
b uaub = u3

a,

where γ ∈ F ∗ and γ 6∈ F 2. In this case, radF λG2 = FλG2(ua − ue). The
algebra FλG2 is uniserial, and hence of finite representation type. At the
same time, C2 = G′2 = 〈a2〉, G2/C2 = 〈abC2〉 × 〈bC2〉, C2 6⊂ 〈ab〉, C2 6⊂ 〈b〉
and FλG2/F

λG2 · radFC2 is not a field.

Theorem 1.2. Let G be a finite group, p 6= 2, Gp = Gp/Cp, g = gCp
for every g ∈ Gp, λ ∈ Z2(G,F ∗) and λa,b = λa,b for any a, b ∈ Gp. The
algebra FλG is of finite representation type if and only if Cp is cyclic and
one of the following conditions is satisfied :

(1) FλGp is a field ;
(2) there is a decomposition Gp = 〈a1〉 ×D with D = 〈a2〉 × . . . × 〈as〉

such that FλD is a field , and if Cp 6= {e} then Cp ⊂ 〈a1〉 and Cp 6⊂ 〈aj〉
for all j ∈ {2, . . . , s}.

Proof. Suppose F λGp is of finite representation type. From Lemmas 1.2,
1.4 and 1.5 we deduce that Cp is a cyclic group. Let Cp = 〈c〉. Assume that
Gp is not cyclic. In view of Proposition 1.3 we also suppose c 6= e. Suppose
Gp = 〈a1〉 × . . .× 〈as〉 is a group of type (pm1 , . . . , pms). If

ap
mi

i = cpti

for all i ∈ {1, . . . , s}, then by Lemma 1.7, F λGp is a field. Suppose

ap
m1

1 = ck1 , ap
m2

2 = ck2 ,

where (k1, p) = 1, (k2, p) = 1 and m1 ≥ m2. There exists an integer l such
that lk1 + k2 ≡ 0 (mod p). Let G̃p = Gp/〈cp〉 and g̃ = g〈cp〉 for any g ∈ Gp.
From the equality

(ãlp
m1−m2

1 · ã2)p
m2 = ãlp

m1

1 · ãp
m2

2 = c̃lk1+k2 = ẽ

it follows that
(alp

m1−m2

1 · a2)p
m2 = cpt,

so we may assume that

(1.5) Cp = 〈ap
m1

1 〉 and ap
mj

j = cptj

for all j ∈ {2, . . . , s}. Let D = 〈a2〉 × . . . × 〈as〉 and D be the subgroup of
Gp generated by c, a2, . . . , as. By Lemma 1.2 the algebra F λD is of finite
representation type. In view of Lemma 1.7, F λD is a field. This proves the
necessity.

Let us prove the sufficiency. Keep the notation used in the proof of the
necessity, and suppose that conditions (1.5) are satisfied. Assume also that
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FλD is a field and F λGp is not. Let {ug : g ∈ Gp} be a natural F -basis of
FλGp and

(1.6) up
m1

a1
= γ1uc, up

mj

aj = γju
ptj
c , 2 ≤ j ≤ s,

where γi ∈ F ∗, 1 ≤ i ≤ s. Let c 6= e, U = F λGp(uc − ue), and V =
FλGp(upc − ue). We have

(1.7) ucug ≡ uguc (modV ), upaug ≡ ugupa (modV )

for all a, g ∈ Gp. We suppose that F λGp = FλGp/U and a natural F -basis
of F λGp is formed by elements ug, where ug := ug + U . Let K be the
F -subalgebra of F λGp/U generated by upaj + U , 2 ≤ j ≤ s, and L the
F -subalgebra of F λGp/V generated by upaj + V , 2 ≤ j ≤ s. By (1.7), L is
commutative. In view of (1.6) the correspondence

upaj + U 7→ upaj + V, 2 ≤ j ≤ s,
extends to an F -homomorphism f of the field K onto L. Hence f is an
isomorphism and L is a field.

Let pd be the nilpotency index of the radical of the algebra F λGp/U .
Evidently d ≤ m1. There exists an element

x =
∑

i2,...,is

αi2,...,isu
i2
a2
. . . uisas ,

where αi2,...,is ∈ F , 0 ≤ ij < pmj , such that

xp
d ≡ γ−1

1 ue (modU).

Applying the isomorphism f , we obtain

(1.8)
∑

i2,...,is

αp
d

i2,...,is
ui2p

d

a2
. . . uisp

d

as ≡ γ−1
1 ue (modV ).

Let
w = xup

m1−d
a1

− ue.
Then (FλGpw+U)/U is the radical of the algebra F λGp/U . By Lemma 1.6,

wp ≡ xpupm1−d+1

a1
− ue + (uc − ue)2z′ (modV ),(1.9)

xp ≡
∑

i2,...,is

αpi2,...,isu
pi2
a2

. . . upisas + (uc − ue)2z′′ (modV ),

where z′, z′′ ∈ FλGp. It follows from (1.6), (1.8) and (1.9) that

wp
d ≡ uc − ue + (uc − ue)2pd−1

z (modV ), z ∈ F λGp,
and hence

wp
d

= (uc − ue)y,
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where y is an invertible element of F λGp. We proved that F λGpw is the
radical of the algebra F λGp. Therefore, F λGp is uniserial. By Theorem 1.1
the algebra F λG is of finite representation type.

Corollary. Let G be a finite group. If the algebra F λG is of finite
representation type for some λ ∈ Z2(G,F ∗), then Cp is a cyclic group and
the number of invariants of the group Gp/Cp does not exceed iF + 1.

Remark 1.2. Theorem 1.2 is true for p = 2 as well if we suppose that
G′2 6= C2 in the case when G′2 is not the identity subgroup and C2 is a cyclic
group.

Theorem 1.3. Suppose G = Gp × B, λ ∈ Z2(G,F ∗), and FλGp is a
uniserial algebra. Then every indecomposable F λG-module can be uniquely
represented , up to isomorphism, in the form V#W , where V is an inde-
composable FλGp-module and W is a simple F λB-module. Moreover , the
outer tensor product of any indecomposable F λGp-module and any simple
FλB-module is an indecomposable F λG-module.

The proof of Theorem 1.3 is analogous to the one of Theorem 3.1 in [1],
where the case of Gp abelian is investigated.

Lemma 1.8. Suppose p 6= 2, p | |G′| and Cp is cyclic. Assume that G
contains Gp o B, where [Gp, B] 6= {e}. Then Gp = Cp oH, where H is an
abelian subgroup and [B,H] = {e}.

Proof. By hypothesis, Cp = 〈c〉, |c| = pn and n ≥ 1. Let T = Gp o B.
The subgroup Cp is normal in T . Let b ∈ B and ϕb be the automorphism of
Cp such that ϕb(c) = bcb−1. The mapping ϕ : b 7→ ϕb is a homomorphism
of the group B into AutCp. Since AutCp is a cyclic group it follows that
ϕ(B) is cyclic. Let K be the kernel of ϕ. If B/K = 〈gK〉, then

(gtk)c(gtk)−1 = gtcg−t, kxk−1 = x

for all k ∈ K and x ∈ Gp.
Let gcg−1 = ci. Then i 6≡ 1 (mod p). Let h ∈ Gp and ghg−1 = hcl. Then

g(hcs)g−1 = hcl+si. We choose s in such a way that l + si ≡ s (mod pn). If
gcjg−1 = cj , then j ≡ 0 (mod pn). From this and the equality h = hcsc−s it
follows that Gp = Cp oH, where H = {h ∈ Gp : ghg−1 = h}.

Remark 1.3. Suppose p = 2, G = G2oB and [G,G2] is a cyclic group.
Then G = G2 ×B.

Theorem 1.4. Suppose p 6= 2, G = Gp o B, [G,Gp] = 〈c〉, |c| = pn

(n > 0) and [B,Gp] 6= {e}. Then:

(1) Gp = 〈c〉oH, where H is abelian and [B,H] = {e}.
(2) Let λ ∈ Z2(G,F ∗). The algebra FλG is of finite representation type

if and only if FλH is a field.
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(3) Suppose that F λH is a field. Let e1, . . . , ed be a complete system of
primitive pairwise orthogonal idempotents of the semisimple algebra F λB,
and Vij = FλG(uc − ue)iej , where i ∈ {0, 1, . . . , pn − 1}, j ∈ {1, . . . , d}.
Then every left ideal Vij of the algebra FλG is indecomposable as a left
FλG-module and any indecomposable F λG-module is isomorphic to one of
these ideals. The ideals Vi1j1 and Vi2j2 are isomorphic if and only if i1 = i2
and the ideals FλBej1 , FλBej2 of the algebra FλB are isomorphic as F λB-
modules.

Proof. The first statement is a particular case of Lemma 1.8. The second
statement follows from Lemma 1.7.

Suppose FλH is a field. Then radF λG = FλG(uc−ue). From the Morita
Theorem (see [10, p. 507]) we conclude that F λG is a serial algebra. In
view of [2, Theorem 2], e1, . . . , ed is a complete system of primitive pairwise
orthogonal idempotents of the semisimple algebra A = F λH ⊗F FλB. By
the Deuring–Noether Theorem ([8, p. 200]), we also have

Aer ∼= Aes ⇔ FλBer ∼= FλBes.

In view of [9, Theorem 6.8, p. 124], e1, . . . , ed is a complete system of primi-
tive pairwise orthogonal idempotents of F λG. Furthermore, for 1 ≤ r, s ≤ d
we have

FλGer ∼= FλGes ⇔ Aer ∼= Aes.

Applying Lemma 1.1 and [10, Lemma 62.28, p. 508], we finish the proof.

Corollary. Keep the notation of Theorem 1.4 and suppose that F λH
is a field. Then every simple FλG-module is isomorphic to one of the ideals
Vpn−1,j ; moreover , any ideal Vpn−1,j , 1 ≤ j ≤ d, is minimal.

2. Projective representation types of finite groups. A group G is
said to be of finite (resp. infinite) PFR-type if the number of indecomposable
projective F -representations of the group G with a cocycle λ is finite (resp.
infinite) for any λ ∈ Z2(G,F ∗). Other groups are said to be of mixed PFR-
type.

Let Γ and Γ ′ be equivalent projective matrix F -representations of G
with a cocycle λ. Then there exists an invertible matrix C over F and a
mapping α : G→ F ∗ such that C−1Γ (g)C = αgΓ

′(g) for all g ∈ G. In this
case,

λa,b =
αaαb
αab

λa,b

for all a, b ∈ G. Hence, α is a linear F -character of the group G. But the
number of linear F -characters of G is finite. Therefore, the number of pair-
wise inequivalent indecomposable projective F -representations of G with a
cocycle λ is finite if and only if the algebra F λG is of finite representation
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type. This allows one to define the type of projective F -representations of
G as in the Introduction.

Applying Lemma 1.3 we may establish some connection between PFR-
type of a group G and PFR-type of a Sylow p-subgroup Gp of G. If Gp
is of finite (resp. infinite) PFR-type, then so is G. Suppose Gp is of mixed
PFR-type. In view of Corollary 3 to Proposition 1.3, Gp is not cyclic. By
Lemma 1.4 the group algebra FG is of infinite representation type. It follows
that G is not of finite PFR-type. If G is of finite PFR-type, then by Lemma
1.4, Gp is cyclic, and hence, in view of Corollary 3 to Proposition 1.3, Gp
is of finite PFR-type. If G is of infinite PFR-type, then Gp is not of finite
PFR-type. If G is of mixed PFR-type, then Gp is also of mixed PFR-type.

Let G be a finite group and p | |G′|. The group G/G′ can be written as
a direct product of its Sylow q-subgroups GqG′/G′, where Gq is a Sylow
q-subgroup of G and q is a prime divisor of |G : G′|. Denote by Cp a Sylow
p-subgroup of G′. We shall assume that Cp ⊂ Gp and Cp 6= Gp. Then
G′p ⊂ Cp, and hence Cp C Gp. The group Gp/Cp is isomorphic to the
Sylow p-subgroup GpG

′/G′ of G/G′. Let ϕ : G → G/G′ be the canonical
homomorphism, ψ : G/G′ → GpG

′/G′ a projector and χ : GpG′/G′ →
Gp/Cp the isomorphism defined by χ(aG′) = aCp for any a ∈ Gp. Then

(2.1) f = χψϕ

is a homomorphism of G onto Gp/Cp. The restriction of f to Gp is the
canonical homomorphism of Gp onto Gp/Cp.

Lemma 2.1. Let H = Gp/Cp, f : G → H be the epimorphism (2.1),
µ ∈ Z2(H,F ∗) and λa,b = µf(a),f(b) for any a, b ∈ G. Then λ ∈ Z2(G,F ∗)
and λx,y = λy,x = 1 for all x ∈ Gp, y ∈ Cp. If V = FλGp · radFCp, then
V is an ideal of the algebra F λGp and FλGp/V ∼= FµH.

Proof. Direct calculation.

Theorem 2.1. Suppose iF 6= 0, G is a finite group, p | |G′| and Gp/Cp
is a direct product of s cyclic p-subgroups for Cp 6= Gp. Then:

(1) If Cp is not cyclic or s ≥ iF + 2, then G is of infinite PFR-type.
(2) If Gp is cyclic, then G is of finite PFR-type.
(3) If Cp is a cyclic group and Gp is not a cyclic group and 1 ≤ s ≤ iF ,

then G is of mixed PFR-type.
(4) Suppose Cp = 〈c〉, Gp/Cp = 〈a1Cp〉 × . . .× 〈asCp〉 and s = iF + 1. If

c ∈ 〈ar〉 for some r ∈ {1, . . . , s}, then G is of mixed PFR-type. If c 6∈ 〈aj〉 for
every j ∈ {1, . . . , s} and C2 6= G′2 for p = 2 then G is of infinite PFR-type.

Proof. The assertion for p 6= 2 follows from Theorem 1.2 and Lem-
mas 1.5, 2.1. Now we turn to the case when p is an arbitrary prime. State-
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ments (1)–(3) follow from Lemmas 1.2–1.5, 2.1 and Corollary 3 to Proposi-
tion 1.3.

We prove (4). Let

c = ap
m1

1 , H = Gp/Cp, H = Gp/〈a1〉.
Then

H ∼= H/(〈a1〉/Cp) ∼= 〈a2Cp〉 × . . .× 〈asCp〉.
There is a cocycle µ ∈ Z2(H,F ∗) such that F µ̄H is a field. Let ϕ : Gp → H
be the canonical homomorphism. Put µx,y = µϕ(x),ϕ(y) for any x, y ∈ Gp.
Then µ ∈ Z2(Gp, F ∗). Let {ux : x ∈ Gp} be a natural F -basis of the algebra
FµGp. We have

u
pm1

a1
= uc, u|c|c = ue,

radFµGp = FµGp(ua1 − ue) and FµGp/radFµGp ∼= FµH. Let π : Gp →
Gp/Cp be the canonical homomorphism. If π(x) = π(x′) then ϕ(x) = ϕ(x′).
It follows that the formula νπ(x),π(y) = µϕ(x),ϕ(y), where x, y ∈ Gp, gives a co-
cycle ν ∈ Z2(H,F ∗). In view of Lemma 2.1 there is a cocycle λ ∈ Z2(G,F ∗)
such that λa,b = νf(a),f(b) for all a, b ∈ G, where f is the epimorphism (2.1).
If a, b ∈ Gp then λa,b = νπ(a),π(b) = µa,b. It follows that F λGp ∼= FµGp,
and hence F λGp is a uniserial algebra. Applying Theorem 1.1 we conclude
that FλG is of finite representation type. But Gp is not cyclic. Therefore, by
Lemma 1.4 the group algebra FG is of infinite representation type. Thus,
the group G is of mixed PFR-type.

Let |ajCp| = pmj and

ap
mj

j = cptj

for every j ∈ {1, . . . , s}. If p 6= 2 then by Lemma 1.7, G is of infinite PFR-
type. Suppose p = 2, G′2 6= C2, H = 〈c2〉 and λ ∈ Z2(G,F ∗). Then G′2 ⊂ H
and G2/H = 〈cH〉 × 〈a1H〉 × . . . × 〈asH〉. In view of Lemma 1.5, F λH is
a group algebra and the set V = F λG2 · radFλH is a two-sided ideal of
the algebra F λG2. The quotient algebra F λG2/V is a commutative twisted
group algebra of the group G2/H and the field F . From Corollary 3 to
Proposition 1.3 we conclude that F λG/V is of infinite representation type.
From this and Lemma 1.3 it follows that G is of infinite PFR-type.

Corollary 1. Suppose iF = ∞. If Cp is a non-cyclic group then G is
of infinite PFR-type. If Cp is cyclic and Gp is not cyclic then G is of mixed
PFR-type. If Gp is a cyclic group then G is of finite PFR-type.

Corollary 2. Suppose iF 6= 0, p 6= 2, G = Gp o B, [G,Gp] = 〈c〉 and
[B,Gp] 6= {e}. Suppose Gp/〈c〉 is a direct product of s cyclic subgroups for
Gp 6= 〈c〉. If 1 ≤ s ≤ iF then G is of mixed PFR-type. If s ≥ iF + 1 then G
is of infinite PFR-type. For Gp = 〈c〉 the group G is of finite PFR-type.
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Proof. Apply Theorems 1.4 and 2.1.

Theorem 2.2. Suppose iF 6= 0, G is a finite group and p | |G′|. Assume
that Gp is abelian and Cp is cyclic. Let s be the number of invariants of Gp.
If s = 1 then G is of finite PFR-type. If 1 < s ≤ iF + 1 then G is of mixed
PFR-type. If s ≥ iF + 2 then G is of infinite PFR-type.

Proof. From Lemma 1.3 and Corollary 3 to Proposition 1.3 we conclude
that if s = 1 then G is of finite PFR-type, and if s ≥ iF + 2 then G is of
infinite PFR-type. Let 1 < s ≤ iF + 1 and Cp = 〈c〉. We have Gp/Cp =
〈a1Cp〉 × . . .× 〈atCp〉, t ≤ s. If t ≤ iF then by Lemmas 1.3 and 2.1, G is of
mixed PFR-type. Suppose that t = iF + 1. If c 6∈ 〈ai〉 for all i ∈ {1, . . . , t}
thenGp/H = 〈cH〉×〈a1H〉×. . .×〈atH〉, whereH = 〈cp〉. This contradiction
shows that c ∈ 〈ar〉 for some r ∈ {1, . . . , t}. In this case, G is also of
mixed PFR-type, by Lemmas 1.3 and 2.1, Corollary 3 to Proposition 1.3
and Theorem 2.1.

Proposition 2.1. Suppose iF = 0. If Gp is not cyclic then G is of
infinite PFR-type. If Gp is cyclic then G is of finite PFR-type.

Proof. The algebra F λGp is the group algebra FGp for every λ ∈
Z2(G,F ∗) (see [26, p. 43]). It remains to apply Lemmas 1.3 and 1.4.

We remark that Proposition 2.1 was, in fact, formulated in [7].

Two groups are said to be PFR-isotypic if they are of the same PFR-type.
From the above results, we will derive necessary and sufficient conditions for
G and Gp to be PFR-isotypic. In view of Lemmas 1.3, 1.5 and 2.1 groups G
and Gp are PFR-isotypic if Cp = G′p.

Proposition 2.2. Let G be a finite group with p | |G′| and Gp an abelian
group, and s the number of invariants of Gp. If Cp is cyclic then G and
Gp are PFR-isotypic. If Cp is not cyclic then G and Gp are PFR-isotypic
if and only if s ≥ iF + 2.

Proof. If Cp is cyclic we apply Theorem 2.2. If Cp is not cyclic we apply
the Corollary of Theorem 1.2 and Theorem 2.2.

Proposition 2.3. Suppose iF 6= 0, G is a finite group, p | |G′|, and s is
the number of invariants of Gp/G′p. Assume that Gp is non-abelian and if
G′p is cyclic then s 6= iF+1 for p = 2. The groups G and Gp are PFR-isotypic
if and only if one of the following conditions holds:

(1) s ≥ iF + 2 or G′p is non-cyclic;
(2) s ≤ iF + 1and Cp is cyclic;
(3) s = iF + 1, G′p is cyclic, Cp is non-cyclic and Gp/G

′
p = 〈b1G′p〉 ×

. . .× 〈bsG′p〉, where G′p 6⊂ 〈bj〉 for every j ∈ {1, . . . , s}.
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Proof. Apply Theorem 2.1. If condition (1) holds, then Gp is of infinite
PFR-type. If condition (2) holds and G′p 6= Cp, then by the same arguments
as in the proof of Theorem 2.2 we can establish that G is of mixed PFR-
type. Suppose that conditions (1) and (2) do not hold. Then s ≤ iF + 1,
G′p is cyclic and Cp is non-cyclic. In this case, G is of infinite PFR-type.
The subgroup Gp is of infinite PFR-type if and only if s = iF + 1 and
Gp/G

′
p = 〈b1G′p〉 × . . .× 〈bsG′p〉, where G′p 6⊂ 〈bj〉 for every j ∈ {1, . . . , s}.

Corollary. Suppose iF =∞, G is a finite group and p | |G′|. The groups
G and Gp are PFR-isotypic if and only if Cp is cyclic or G′p is not cyclic.
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