VOL. 98

2003

NO. 2

ON INDECOMPOSABLE PROJECTIVE REPRESENTATIONS OF FINITE GROUPS OVER FIELDS OF CHARACTERISTIC p > 0

ΒY

LEONID F. BARANNYK and KAMILA SOBOLEWSKA (Słupsk)

Abstract. Let G be a finite group, F a field of characteristic p with $p \mid |G|$, and $F^{\lambda}G$ the twisted group algebra of the group G and the field F with a 2-cocycle $\lambda \in Z^2(G, F^*)$. We give necessary and sufficient conditions for $F^{\lambda}G$ to be of finite representation type. We also introduce the concept of projective F-representation type for the group G (finite, infinite, mixed) and we exhibit finite groups of each type.

Introduction. Let F be a field of characteristic p > 0, F^* the multiplicative group of the field F, $F^p = \{a^p : a \in F\}$, G a finite group of order |G|, where $p \mid |G|$, and G_p a Sylow p-subgroup of G. Let G' be the commutant of G, C_p a Sylow p-subgroup of G', $C_p \subset G_p$, G'_p the commutant of G_p , and $Z^2(G, F^*)$ the group of all F^* -valued normalized 2-cocycles of the group G, where we assume that G acts trivially on F^* (see [26, Chapter 1]). Denote by $F^{\lambda}G$ the twisted group algebra of the group G and the field F with a cocycle $\lambda \in Z^2(G, F^*)$ and by rad $F^{\lambda}G$ the radical of $F^{\lambda}G$. An F-basis $\{u_g : g \in G\}$ of $F^{\lambda}G$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a, b \in G$ is called *natural*. By an $F^{\lambda}G$ -module we mean a finitely generated left $F^{\lambda}G$ -module. If H is a subgroup of G, then the restriction of $\lambda \in Z^2(G, F^*)$ to $H \times H$ will also be denoted by λ . In this case, $F^{\lambda}H$ is a subalgebra of $F^{\lambda}G$.

Higman [21] proved that a group algebra FG is of finite representation type if and only if G_p is a cyclic group. In this case Kasch, Kneser and Kupisch [27] gave a sharper upper bound of the number of indecomposable FG-modules. They also obtained conditions on G under which the bound is attained. Later Janusz [22] gave a formula for the exact number of indecomposable FG-modules for the case when F is an algebraically closed field. In [23] he determined the structure of indecomposable modules in more detail. Indecomposable FG-modules with G_p being cyclic are also investigated in [5], [11], [24], [25], [28], [29] (see as well [16, Chapter VII]). The representation type of group rings SG, where S is an arbitrary commutative artinian ring or a local artinian ring whose quotient ring S/rad S is finitely generated over its center, is determined by Gustafson [20] and Dowbor and Simson [14].

²⁰⁰⁰ Mathematics Subject Classification: 20C20, 20C25, 16S35.

Generalizations to the case when S is an arbitrary finite-dimensional algebra over a field F and G is a finite group have been found by Meltzer and Skowroński [30], [31] and Skowroński [35], [36]. Representation-infinite group algebras SG of polynomial growth are classified in [36]. Gudivok [18] and Janusz [24], [25] showed that if F is an infinite field and G is an abelian p-group which is neither cyclic nor of order 4, then there exist infinitely many non-isomorphic indecomposable FG-modules of F-dimension n for every natural number n > 1. If G is the non-cyclic group of order 4, then the preceding result is valid for even natural numbers n.

Higman [21] proved, in fact, that the first Brauer-Thrall conjecture holds for group algebras of finite groups. Results by Gudivok [18] and Janusz [24], [25] give the solution of the second Brauer-Thrall conjecture for group algebras of finite groups. As is well known, the first Brauer-Thrall conjecture for finite-dimensional algebras over an arbitrary field was solved by Roĭter [34]. The second Brauer-Thrall conjecture was proved by Nazarova and Roĭter [32], Bautista [3], Bongartz [6], Bautista, Gabriel, Roĭter and Salmerón [4].

In [7], Conlon developed the theory of twisted group algebras $F^{\lambda}G$ by exploiting their analogy with group algebras FG assuming that F is large enough. In this case $F^{\lambda}G_{p}$ is a group algebra and therefore $F^{\lambda}G$ is of finite representation type if and only if G_p is cyclic. Moreover, in the same paper Conlon established that if G_p is a cyclic group then a rough upper bound for the number of indecomposable FG-modules which was found in [21] also holds for the number of indecomposable $F^{\lambda}G$ -modules. It should be noted that Reynolds [33] computed the number of non-isomorphic simple $K^{\mu}G$ modules where K is an arbitrary field, G is a finite group and $\mu \in Z^2(G, K^*)$. We also remark that if the characteristic of K does not divide the order of the group G, then $K^{\mu}G$ is a semisimple algebra for any $\mu \in Z^2(G, K^*)$, and hence is of finite representation type. Using Green's results [17], for the case when G is a finite abelian p-group and the radical of $F^{\lambda}G$ is not cyclic, Sobolewska [37] constructed increasing functions $f_{\lambda} : \mathbb{N} \to \mathbb{N}$ such that there exist infinitely many isomorphism classes of indecomposable $F^{\lambda}G$ -modules of F-dimension $f_{\lambda}(n)$ for every natural number n > 1.

In the present paper we shall characterize twisted group algebras $F^{\lambda}G$ of finite representation type. We shall also describe finite groups depending on a projective representation type over the field F.

Let us briefly present the main results of the paper. In Section 1, we prove that an algebra $F^{\lambda}G$ is of finite representation type if and only if $F^{\lambda}G_p$ is a uniserial algebra (Theorem 1.1; we use the terminology introduced in [15]). We also establish (Theorem 1.2) that if $p \neq 2$, then $F^{\lambda}G_p$ is a uniserial algebra if and only if C_p is cyclic and one of the following conditions holds: (1) the quotient algebra $F^{\lambda}G_{p}/F^{\lambda}G_{p}$ rad $F^{\lambda}C_{p}$ is a field;

(2) $C_p = \{e\}$ and there exists a decomposition $G_p = H \times N$ such that H is cyclic and $F^{\lambda}N$ is a field;

(3) $C_p \neq \{e\}$ and there exists a decomposition $G_p/C_p = \langle a_1 C_p \rangle \times \dots \times \langle a_s C_p \rangle$ such that $C_p \subset \langle a_1 \rangle$, $C_p \not\subset \langle a_j \rangle$ for every $j = 2, \dots, s$ and $F^{\lambda}D/F^{\lambda}D \cdot \operatorname{rad} F^{\lambda}C_p$ is a field, where D is the subgroup of G_p generated by C_p, a_2, \dots, a_s .

The proofs of these theorems are based on the characterization of local rings of finite representation type which was obtained in [12]–[14]. A special case of such rings was investigated in [19]. In Section 1 of this paper, we also obtain indecomposable $F^{\lambda}G$ -modules for the case when G_p is a normal subgroup of G and $F^{\lambda}G_p$ is a uniserial algebra (Theorems 1.3 and 1.4).

We say that a group G is of *finite* (resp. *infinite*) *PFR-type* (Projective *F*-Representation type) if the algebra $F^{\lambda}G$ is of finite (resp. infinite) representation type for every cocycle $\lambda \in Z^2(G, F^*)$. Otherwise, G is said to be of *mixed PFR-type*.

In Section 2, we classify finite groups depending on their PFR-type (Theorems 2.1 and 2.2, Proposition 2.1). We also state necessary and sufficient conditions for G and G_p to be of the same PFR-type (Propositions 2.2–2.3).

1. Twisted group algebras of finite representation type and their representations

LEMMA 1.1. Let $\lambda \in Z^2(G, F^*)$. Every $F^{\lambda}G$ -module is isomorphic to an $F^{\lambda}G$ -component of an induced $F^{\lambda}G$ -module $F^{\lambda}G \otimes_{F^{\lambda}G_p} V$, where V is some $F^{\lambda}G_p$ -module.

LEMMA 1.2. Let H be a subgroup of G and $\lambda \in Z^2(G, F^*)$. If $F^{\lambda}H$ is of infinite representation type, then $F^{\lambda}G$ is also of infinite representation type.

LEMMA 1.3. An algebra $F^{\lambda}G$ is of finite representation type if and only if $F^{\lambda}G_{p}$ is of finite representation type.

The proofs of Lemmas 1.1-1.3 are similar to those of the corresponding propositions about group algebras (see [8, §63]).

LEMMA 1.4 ([21]). A group algebra FG is of finite representation type if and only if G_p is a cyclic group.

LEMMA 1.5. Suppose $p \mid |G'|, C_p \subset G_p$ and $\lambda \in Z^2(G, F^*)$. Then:

(1) Up to cohomology

(1.1)
$$\lambda_{g,h} = \lambda_{h,g} = 1$$

for any $g \in G_p$ and any $h \in C_p$.

(2) Suppose λ satisfies condition (1.1), $\overline{G}_p = G_p/C_p$, $\overline{g} = gC_p$ for $g \in G_p$, and $\overline{\lambda}_{\overline{a},\overline{b}} = \lambda_{a,b}$ for any $a, b \in G_p$. Then $\overline{\lambda} \in Z^2(\overline{G}_p, F^*)$ and

$$F^{\overline{\lambda}}\overline{G}_p \cong F^{\lambda}G_p/F^{\lambda}G_p \cdot \operatorname{rad} F^{\lambda}C_p.$$

Proof. In view of [26, Proposition 5.17, p. 48] the restriction of every cocycle $\lambda \in Z^2(G, F^*)$ to $C_p \times C_p$ is a coboundary. Therefore, statements (1) and (2) follow from the properties of natural homomorphisms of twisted group algebras ([26, pp. 87–93]).

In what follows, we assume that every cocycle $\lambda \in Z^2(G, F^*)$ under consideration satisfies condition (1.1). In particular, $F^{\lambda}C_p$ will always be the group algebra FC_p .

The number $i_F = \sup \{0, m\}$ is important in describing twisted group algebras of abelian *p*-groups which are of finite representation type, where *m* is a natural number such that for some $\gamma_1, \ldots, \gamma_m \in F^*$ the algebra

$$F[x]/(x^p - \gamma_1) \otimes_F \ldots \otimes_F F[x]/(x^p - \gamma_m)$$

is a field. If F is a perfect field, then $i_F = 0$, otherwise $i_F \neq 0$.

PROPOSITION 1.1. Let K be a perfect field of characteristic p and $F = K(x_1, \ldots, x_n)$ the quotient field of the polynomial ring $K[x_1, \ldots, x_n]$. Then $i_F = n$.

Proof. By induction on i we prove that the algebra

$$A_i = F[y]/(y^p - x_1) \otimes_F \ldots \otimes_F F[y]/(y^p - x_i)$$

is a field for every $i \in \{1, \ldots, n\}$. From this it follows that $i_F \ge n$. Suppose that for some $\lambda_1, \ldots, \lambda_m \in F^*$ the algebra

$$B = F[y]/(y^p - \lambda_1) \otimes_F \ldots \otimes_F F[y]/(y^p - \lambda_m)$$

is a field. Let $C = B \otimes_F A_n$. The algebra A_n is isomorphic to the field $K(y_1, \ldots, y_n)$, where $y_j^p = x_j$ $(j = 1, \ldots, n)$. Every element of F is the *p*th power of some element of A_n . It follows that

$$C \cong A_n[y]/(y^p - 1) \otimes_{A_n} \dots \otimes_{A_n} A_n[y]/(y^p - 1) \quad (m \text{ factors}).$$

Consequently, $C/\operatorname{rad} C \cong A_n$. On the other hand, C can be viewed as a twisted group algebra of an elementary abelian p-group of order p^n over the field B. Therefore, $C/\operatorname{rad} C$ is isomorphic to a purely inseparable extension of the field B of degree p^s , where $s \leq n$. It follows that $p^n = p^s \cdot [B:F]$ or $p^n = p^s \cdot p^m$, whence $m \leq n$. Hence $i_F \leq n$, and the proof is complete.

PROPOSITION 1.2. Let K be a field of characteristic $p, X = \{x_i : i = 1, 2, ...\}$, and F the quotient field of the polynomial ring K[X]. Then $i_F = \infty$.

THEOREM 1.1. Let G be a finite group, $p \mid |G|$ and $\lambda \in Z^2(G, F^*)$. The algebra $F^{\lambda}G$ is of finite representation type if and only if $F^{\lambda}G_p$ is a uniserial algebra.

Proof. By Lemma 1.3, we may assume that G is a p-group. Let $\{u_g : g \in G\}$ be a natural F-basis of the algebra $F^{\lambda}G$ and e be the identity element of G. It is known (see [26, p. 74]) that $F^{\lambda}G/\operatorname{rad} F^{\lambda}G \cong K$, where K is a purely inseparable extension of the field F. Suppose $F^{\lambda}G$ is of finite representation type. Then by Lemmas 1.2, 1.4 and 1.5, G' is a cyclic group and $F^{\lambda}G'$ is a group algebra. Let $G' = \langle c \rangle$, $A = F^{\lambda}G$, $V = \operatorname{rad} A/(\operatorname{rad} A)^2$, $m = \dim_K V$ and $m' = \dim V_K$. We know (see [12]–[14]) that in the case under consideration we have $m \cdot m' \leq 3$.

Suppose m = 1. If $u_c - u_e \notin (\operatorname{rad} A)^2$, then $\{u_c - u_e + (\operatorname{rad} A)^2\}$ is a basis of the left vector space V over the field K. It follows that any element of V is of the form

$$\overline{x}(u_c - u_e + (\operatorname{rad} A)^2) = x(u_c - u_e) + (\operatorname{rad} A)^2,$$

where $x \in A$, $\overline{x} = x + \operatorname{rad} A$. Since for each $x \in A$ there exists $y \in A$ such that $x(u_c - u_e) = (u_c - u_e)y$, we have

$$\overline{x}(u_c - u_e + (\operatorname{rad} A)^2) = (u_c - u_e + (\operatorname{rad} A)^2)\overline{y}.$$

Hence, m' = 1. Suppose now that $u_c - u_e \in (\operatorname{rad} A)^2$. Since for arbitrary $x, y \in A$ there exists $z \in A$ such that $xy - yx = (u_c - u_e)z$, we obtain

$$\overline{x}(y + (\operatorname{rad} A)^2) = (y + (\operatorname{rad} A)^2)\overline{x}$$

for any $x, y \in A$. In this case m' = 1. By the same arguments we can establish that if m' = 1 then m = 1.

Therefore, if $F^{\lambda}G$ is of finite representation type, then $F^{\lambda}G$ is a uniserial algebra. Conversely, every uniserial algebra is of finite representation type ([15, p. 171]).

PROPOSITION 1.3. Let F be a field of characteristic p, G a finite abelian p-group and $\lambda \in Z^2(G, F^*)$. The algebra $F^{\lambda}G$ is of finite representation type if and only if $G = H \times N$, where H is a cyclic group and $F^{\lambda}N$ is a field.

Proof. Let $G = H \times N$, where H is cyclic and $F^{\lambda}N$ is a field. Then $F^{\lambda}G$ is a uniserial algebra, and hence it is of finite representation type. Now we suppose that there is no decomposition $G = H \times N$ such that H is a cyclic group and $F^{\lambda}N$ is a field. Let \overline{G} be the socle of G. Then $F^{\lambda}\overline{G} \cong F^{\mu}B$, where B is an elementary abelian p-group of order $|\overline{G}|$ and the following conditions are satisfied: $B = L \times M$, L is a non-cyclic group of order p^2 and $F^{\mu}L$ is the group algebra of the group L over the field F. By Lemmas 1.2 and 1.4, the algebra $F^{\mu}B$ is of infinite representation type. Applying again Lemma 1.2 to $F^{\lambda}\overline{G}$ and $F^{\lambda}G$, we conclude that the algebra $F^{\lambda}G$ is of infinite representation type. ■

COROLLARY 1. Let G be a finite abelian p-group and $\lambda \in Z^2(G, F^*)$. Assume that $G = H \times N$, where H is a cyclic group and $F^{\lambda}H$ is not a field. The algebra $F^{\lambda}G$ is of finite representation type if and only if $F^{\lambda}N$ is a field.

COROLLARY 2. Let G be a finite abelian p-group, \overline{G} the socle of G, and $\lambda \in Z^2(G, F^*)$. The algebra $F^{\lambda}G$ is of infinite representation type if and only if $F^{\lambda}\overline{G} \cong F^{\mu}H \otimes_F F^{\mu}N$, where $\overline{G} \cong H \times N$, H is a non-cyclic group of order p^2 and $F^{\mu}H$ is the group algebra.

COROLLARY 3. Let $G = \langle a_1 \rangle \times \ldots \times \langle a_s \rangle$ be an abelian p-group. If $s \geq i_F + 2$ then $F^{\lambda}G$ is of infinite representation type for every $\lambda \in Z^2(G, F^*)$. If $s \leq i_F + 1$ then there exists an algebra $F^{\lambda}G$ which is of finite representation type. If s = 1 then $F^{\lambda}G$ is of finite representation type for every $\lambda \in Z^2(G, F^*)$.

LEMMA 1.6. Let $p \neq 2$, G be a non-abelian p-group with $G' = \langle c \rangle$ of order p, and $\{u_q : g \in G\}$ be a natural F-basis of $F^{\lambda}G$. Then:

(1)
$$(u_a u_b)^p = u_a^p u_b^p$$
 for any $a, b \in G$.

(2) If $y \in F^{\lambda}G$, $g \in G$, then

(1.2)
$$u_g y = y u_g + (u_c - u_e) y' u_g,$$

(1.3)
$$(yu_a)^p = y^p u_a^p + (u_c - u_e)^2 z$$

for some $y', z \in F^{\lambda}G$. (3) If

$$x = \sum_{g \in G} \alpha_g u_g$$

is an element of $F^{\lambda}G$, then

$$x^p = \sum_{g \in G} \alpha_g^p u_g^p + (u_c - u_e)^2 z, \quad z \in F^{\lambda} G.$$

Proof. We remark that u_c belongs to the center of $F^{\lambda}G$ and if $ab = c^j ba$, then $u_a u_b = u_c^j u_b u_a$. From this we obtain (1) and formula (1.2). Then

$$(yu_g)^p = y[y + (u_c - u_e)y'][y + 2(u_c - u_e)y'] \dots$$
$$\dots [y + (p-1)(u_c - u_e)y']u_g^p + (u_c - u_e)^2 z'$$
$$= y^p u_g^p + (u_c - u_e)^2 z, \quad z \in F^{\lambda}G.$$

Hence, formula (1.3) holds.

It remains to prove (3). Suppose $\alpha_b \neq 0$. Applying (1.3) and induction on the number of non-zero summands of x, we obtain

$$\begin{split} x^{p} &= \left\{ \left[\alpha_{b} u_{e} + \sum_{g \neq b} \alpha_{g} (u_{g} u_{b}^{-1}) \right] u_{b} \right\}^{p} \\ &= \left[\alpha_{b} u_{e} + \sum_{g \neq b} \alpha_{g} (u_{g} u_{b}^{-1}) \right]^{p} u_{b}^{p} + (u_{c} - u_{e})^{2} z' \\ &= \left[\alpha_{b}^{p} u_{e} + \sum_{g \neq b} \alpha_{g}^{p} (u_{g} u_{b}^{-1})^{p} + (u_{c} - u_{e})^{2} z'' \right] u_{b}^{p} + (u_{c} - u_{e})^{2} z' \\ &= \sum_{g \in G} \alpha_{g}^{p} u_{g}^{p} + (u_{c} - u_{e})^{2} z. \quad \blacksquare \end{split}$$

LEMMA 1.7. Suppose $p \neq 2$, $i_F \neq 0$, $p \mid |G'|$, and $\lambda \in Z^2(G, F^*)$. Assume that C_p is cyclic, $G_p/C_p = \langle a_1C_p \rangle \times \ldots \times \langle a_mC_p \rangle$ and $C_p \not\subset \langle a_i \rangle$ for all $i \in \{1, \ldots, m\}$. The algebra $F^{\lambda}G$ is of finite representation type if and only if $F^{\lambda}G_p/F^{\lambda}G_p \cdot \operatorname{rad} FC_p$ is a field.

Proof. Necessity. I. First we examine the case when G_p is a group of exponent p. Taking into consideration Corollary 1 to Proposition 1.3 we may assume that G_p is non-abelian. Let $C_p = \langle c \rangle$ and suppose $F^{\lambda}G_p$ is of finite representation type. We prove that $V = F^{\lambda}G_p(u_c - u_e)$ is the radical of the algebra $F^{\lambda}G_p$.

Any element $g \in G_p$ can be uniquely represented in the form

$$g = a_1^{i_1} \dots a_m^{i_m} c^j,$$

where $0 \leq i_r$, j < p. Up to cocycle cohomology we may suppose

(1.4)
$$u_g = u_{a_1}^{i_1} \dots u_{a_m}^{i_m} u_c^j$$

where

$$u_{a_r}^p = \gamma_r u_e, \quad u_c^p = u_e \quad (\gamma_r \in F^*, 1 \le r \le m).$$

Let $\overline{F^{\lambda}G_p} = F^{\lambda}G_p/V$ and $\overline{x} = x+V$ for every $x \in F^{\lambda}G_p$. The algebra $\overline{F^{\lambda}G_p}$ is the commutative twisted group algebra $F^{\overline{\lambda}}\overline{G}_p$ of the group $\overline{G}_p = G_p/C_p$ and the field F with the cocycle $\overline{\lambda}$, where $\overline{\lambda}_{\overline{g}_1,\overline{g}_2} = \lambda_{g_1,g_2}$ for any $g_1, g_2 \in G_p$. Here $\overline{g} = gC_p$ for every $g \in G_p$. A natural F-basis of $F^{\overline{\lambda}}\overline{G}_p$ is formed by elements $\overline{u}_g \ (g \in G_p)$ which by (1.4) can be uniquely represented in the form

$$\overline{u}_g = \overline{u}_{a_1}^{i_1} \dots \overline{u}_{a_m}^{i_m},$$

where $\overline{u}_{a_r}^p = \gamma_r \overline{u}_e, \ 1 \le r \le m.$

Suppose that V is not the radical of the algebra $F^{\lambda}G_p$. From Proposition 1.3 we conclude that up to reindexing a_1, \ldots, a_m the algebra $F[\overline{u}_{a_1}, \ldots, \overline{u}_{a_{m-1}}]$ is a field and $F[\overline{u}_{a_1}, \ldots, \overline{u}_{a_{m-1}}, \overline{u}_{a_m}]$ is not. In this case

$$\gamma_m^{-1}\overline{u}_e = \overline{x}^p$$

for some

$$x = \sum_{i_1,\dots,i_{m-1}} \alpha_{i_1,\dots,i_{m-1}} u_{a_1}^{i_1} \dots u_{a_{m-1}}^{i_{m-1}},$$

where $\alpha_{i_1,\ldots,i_{m-1}} \in F$, $0 \le i_j < p$ for $j = 1,\ldots,m-1$. In view of Lemma 1.6,

$$x^{p} = \gamma_{m}^{-1} u_{e} + (u_{c} - u_{e})^{2} z', \quad z' \in F^{\lambda} G_{p},$$

and consequently

$$(xu_{a_m})^p = x^p u_{a_m}^p + (u_c - u_e)^2 z'' = u_e + (u_c - u_e)^2 z,$$

where $z'' \in F^{\lambda}G_p$, $z = \gamma_m z' + z''$. Let $w = xu_{a_m} - u_e$. Then $w^p = (u_c - u_e)^2 z$. We also have rad $\overline{F^{\lambda}G_p} = \overline{F^{\lambda}G_p} \cdot \overline{w}$.

By Theorem 1.1 the algebra $F^{\lambda}G_p$ is uniserial. Applying the Morita Theorem (see [10, p. 507]) and [10, Corollary 62.31, p. 510] we conclude that rad $F^{\lambda}G_p = F^{\lambda}G_p \cdot \theta = \theta \cdot F^{\lambda}G_p$, where $\theta^{p^2} = 0$ and $\theta^l \neq 0$ for every $l < p^2$. We also obtain rad $\overline{F^{\lambda}G_p} = \overline{F^{\lambda}G_p} \cdot \overline{\theta}$. It follows that $\overline{w} = \overline{\theta} \cdot \overline{y'}$, where y' is an invertible element of $F^{\lambda}G_p$. The equality $u_c - u_e = \theta^p y''$, $y'' \in F^{\lambda}G_p$, now shows that $w = \theta y = z\theta$, where y and z are invertible in $F^{\lambda}G_p$. This makes it possible to take $\theta = w$. However,

$$w^{p(p+1)/2} = (u_c - u_e)^{p+1} \widetilde{z} = 0$$
 and $\frac{p+1}{2} < p_e$

This contradiction shows that V is the radical of $F^{\lambda}G_{p}$.

II. Now we examine the general case. Let $C_p = \langle c \rangle$, $\tilde{G}_p = G_p / \langle c^p \rangle$, $\tilde{C}_p = C_p / \langle c^p \rangle$, $\tilde{g} = g \langle c^p \rangle$ for every $g \in G_p$, and $\tilde{\lambda}_{\tilde{a},\tilde{b}} = \lambda_{a,b}$ for any $a, b \in G_p$. Then $\tilde{\lambda} \in Z^2(\tilde{G}_p, F^*)$, $F^{\tilde{\lambda}} \tilde{C}_p$ is the group algebra, $F^{\tilde{\lambda}} \tilde{G}_p$ is a quotient algebra of $F^{\lambda}G_p$ and $F^{\tilde{\lambda}} \tilde{G}_p / F^{\tilde{\lambda}} \tilde{G}_p \cdot \operatorname{rad} F^{\tilde{\lambda}} C_p \cong F^{\lambda}G_p / F^{\lambda}G_p \cdot \operatorname{rad} F^{\lambda}C_p$. Suppose that $F^{\lambda}G_p$ is of finite representation type. Then so is $F^{\tilde{\lambda}} \tilde{G}_p$. We have $\tilde{G}'_p \subset \tilde{C}_p$ and \tilde{c} is a central element of order p. Let

$$\widetilde{b}_i = \widetilde{a}_i^{p^{r_i - 1}}$$

where p^{r_i} is the order of $a_i C_p$, $1 \leq i \leq m$. Denote by \widetilde{T} the subgroup of \widetilde{G}_p generated by $\widetilde{c}, \widetilde{b}_1, \ldots, \widetilde{b}_m$. The exponent of \widetilde{T} is p. From Lemma 1.2 and the result of case I, we conclude that $F^{\widetilde{\lambda}} \widetilde{T} / F^{\widetilde{\lambda}} \widetilde{T} \cdot \operatorname{rad} F^{\widetilde{\lambda}} \widetilde{C}_p$ is a field. Then so is $F^{\widetilde{\lambda}} \widetilde{G}_p / F^{\widetilde{\lambda}} \widetilde{G}_p \cdot \operatorname{rad} F^{\widetilde{\lambda}} \widetilde{C}_p$, and hence also $F^{\lambda} G_p / F^{\lambda} G_p \cdot \operatorname{rad} F^{\lambda} C_p$.

Sufficiency. If $F^{\lambda}G_p/F^{\lambda}G_p \cdot \operatorname{rad} F^{\lambda}C_p$ is a field, then $F^{\lambda}G_p$ is uniserial, and hence by Theorem 1.1 the algebra $F^{\lambda}G$ is of finite representation type.

REMARK 1.1. If p = 2, then the necessity in Lemma 1.7 does not hold. Indeed, let F be a field of characteristic 2 with $i_F \neq 0$, and $G_2 = \langle a, b \rangle$ the dihedral group of order 8. Assume that $F^{\lambda}G_2$ is given by the defining relations

$$u_a^4 = u_e, \quad u_b^2 = \gamma u_e, \quad u_b^{-1} u_a u_b = u_a^3,$$

where $\gamma \in F^*$ and $\gamma \notin F^2$. In this case, rad $F^{\lambda}G_2 = F^{\lambda}G_2(u_a - u_e)$. The algebra $F^{\lambda}G_2$ is uniserial, and hence of finite representation type. At the same time, $C_2 = G'_2 = \langle a^2 \rangle$, $G_2/C_2 = \langle abC_2 \rangle \times \langle bC_2 \rangle$, $C_2 \notin \langle ab \rangle$, $C_2 \notin \langle b \rangle$ and $F^{\lambda}G_2/F^{\lambda}G_2 \cdot \operatorname{rad} FC_2$ is not a field.

THEOREM 1.2. Let G be a finite group, $p \neq 2$, $\overline{G}_p = G_p/C_p$, $\overline{g} = gC_p$ for every $g \in G_p$, $\lambda \in Z^2(G, F^*)$ and $\overline{\lambda}_{\overline{a},\overline{b}} = \lambda_{a,b}$ for any $a, b \in G_p$. The algebra $F^{\lambda}G$ is of finite representation type if and only if C_p is cyclic and one of the following conditions is satisfied:

(1) $F^{\overline{\lambda}}\overline{G}_p$ is a field;

(2) there is a decomposition $\overline{G}_p = \langle \overline{a}_1 \rangle \times \overline{D}$ with $\overline{D} = \langle \overline{a}_2 \rangle \times \ldots \times \langle \overline{a}_s \rangle$ such that $F^{\overline{\lambda}}\overline{D}$ is a field, and if $C_p \neq \{e\}$ then $C_p \subset \langle a_1 \rangle$ and $C_p \not\subset \langle a_j \rangle$ for all $j \in \{2, \ldots, s\}$.

Proof. Suppose $F^{\lambda}G_p$ is of finite representation type. From Lemmas 1.2, 1.4 and 1.5 we deduce that C_p is a cyclic group. Let $C_p = \langle c \rangle$. Assume that G_p is not cyclic. In view of Proposition 1.3 we also suppose $c \neq e$. Suppose $\overline{G}_p = \langle \overline{a}_1 \rangle \times \ldots \times \langle \overline{a}_s \rangle$ is a group of type $(p^{m_1}, \ldots, p^{m_s})$. If

$$a_i^{p^{m_i}} = c^{pt_i}$$

for all $i \in \{1, \ldots, s\}$, then by Lemma 1.7, $F^{\overline{\lambda}}\overline{G}_p$ is a field. Suppose

$$a_1^{p^{m_1}} = c^{k_1}, \quad a_2^{p^{m_2}} = c^{k_2},$$

where $(k_1, p) = 1$, $(k_2, p) = 1$ and $m_1 \ge m_2$. There exists an integer l such that $lk_1 + k_2 \equiv 0 \pmod{p}$. Let $\tilde{G}_p = G_p / \langle c^p \rangle$ and $\tilde{g} = g \langle c^p \rangle$ for any $g \in G_p$. From the equality

$$\widetilde{a}_1^{lp^{m_1-m_2}} \cdot \widetilde{a}_2)^{p^{m_2}} = \widetilde{a}_1^{lp^{m_1}} \cdot \widetilde{a}_2^{p^{m_2}} = \widetilde{c}^{lk_1+k_2} = \widetilde{c}$$

it follows that

$$(a_1^{lp^{m_1-m_2}} \cdot a_2)^{p^{m_2}} = c^{pt},$$

so we may assume that

(1.5)
$$C_p = \langle a_1^{p^{m_1}} \rangle \quad \text{and} \quad a_j^{p^{m_j}} = c^{pt_j}$$

for all $j \in \{2, \ldots, s\}$. Let $\overline{D} = \langle \overline{a}_2 \rangle \times \ldots \times \langle \overline{a}_s \rangle$ and D be the subgroup of G_p generated by c, a_2, \ldots, a_s . By Lemma 1.2 the algebra $F^{\lambda}D$ is of finite representation type. In view of Lemma 1.7, $F^{\overline{\lambda}}\overline{D}$ is a field. This proves the necessity.

Let us prove the sufficiency. Keep the notation used in the proof of the necessity, and suppose that conditions (1.5) are satisfied. Assume also that

 $F^{\overline{\lambda}}\overline{D}$ is a field and $F^{\overline{\lambda}}\overline{G}_p$ is not. Let $\{u_g : g \in G_p\}$ be a natural *F*-basis of $F^{\lambda}G_p$ and

(1.6)
$$u_{a_1}^{p^{m_1}} = \gamma_1 u_c, \quad u_{a_j}^{p^{m_j}} = \gamma_j u_c^{pt_j}, \quad 2 \le j \le s,$$

where $\gamma_i \in F^*$, $1 \leq i \leq s$. Let $c \neq e$, $U = F^{\lambda}G_p(u_c - u_e)$, and $V = F^{\lambda}G_p(u_c^p - u_e)$. We have

(1.7)
$$u_c u_g \equiv u_g u_c \pmod{V}, \quad u_a^p u_g \equiv u_g u_a^p \pmod{V}$$

for all $a, g \in G_p$. We suppose that $F^{\overline{\lambda}}\overline{G}_p = F^{\lambda}G_p/U$ and a natural *F*-basis of $F^{\overline{\lambda}}\overline{G}_p$ is formed by elements $u_{\overline{g}}$, where $u_{\overline{g}} := u_g + U$. Let *K* be the *F*-subalgebra of $F^{\lambda}G_p/U$ generated by $u_{a_j}^p + U$, $2 \leq j \leq s$, and *L* the *F*-subalgebra of $F^{\lambda}G_p/V$ generated by $u_{a_j}^p + V$, $2 \leq j \leq s$. By (1.7), *L* is commutative. In view of (1.6) the correspondence

$$u_{a_j}^p + U \mapsto u_{a_j}^p + V, \quad 2 \le j \le s_j$$

extends to an F-homomorphism f of the field K onto L. Hence f is an isomorphism and L is a field.

Let p^d be the nilpotency index of the radical of the algebra $F^{\lambda}G_p/U$. Evidently $d \leq m_1$. There exists an element

$$x = \sum_{i_2, \dots, i_s} \alpha_{i_2, \dots, i_s} u_{a_2}^{i_2} \dots u_{a_s}^{i_s},$$

where $\alpha_{i_2,...,i_s} \in F$, $0 \le i_j < p^{m_j}$, such that

$$x^{p^d} \equiv \gamma_1^{-1} u_e \pmod{U}.$$

Applying the isomorphism f, we obtain

(1.8)
$$\sum_{i_2,\dots,i_s} \alpha_{i_2,\dots,i_s}^{p^d} u_{a_2}^{i_2 p^d} \dots u_{a_s}^{i_s p^d} \equiv \gamma_1^{-1} u_e \pmod{V}.$$

Let

$$w = x u_{a_1}^{p^{m_1-d}} - u_e$$

Then $(F^{\lambda}G_pw+U)/U$ is the radical of the algebra $F^{\lambda}G_p/U$. By Lemma 1.6,

(1.9)
$$w^{p} \equiv x^{p} u_{a_{1}}^{p^{m_{1}-d+1}} - u_{e} + (u_{c} - u_{e})^{2} z' \pmod{V},$$
$$x^{p} \equiv \sum_{i_{2},\dots,i_{s}} \alpha_{i_{2},\dots,i_{s}}^{p} u_{a_{2}}^{pi_{2}} \dots u_{a_{s}}^{pi_{s}} + (u_{c} - u_{e})^{2} z'' \pmod{V},$$

where $z', z'' \in F^{\lambda}G_p$. It follows from (1.6), (1.8) and (1.9) that

$$w^{p^d} \equiv u_c - u_e + (u_c - u_e)^{2p^{d-1}} z \pmod{V}, \quad z \in F^{\lambda} G_p,$$

and hence

$$w^{p^d} = (u_c - u_e)y,$$

where y is an invertible element of $F^{\lambda}G_p$. We proved that $F^{\lambda}G_pw$ is the radical of the algebra $F^{\lambda}G_p$. Therefore, $F^{\lambda}G_p$ is uniserial. By Theorem 1.1 the algebra $F^{\lambda}G$ is of finite representation type.

COROLLARY. Let G be a finite group. If the algebra $F^{\lambda}G$ is of finite representation type for some $\lambda \in Z^2(G, F^*)$, then C_p is a cyclic group and the number of invariants of the group G_p/C_p does not exceed $i_F + 1$.

REMARK 1.2. Theorem 1.2 is true for p = 2 as well if we suppose that $G'_2 \neq C_2$ in the case when G'_2 is not the identity subgroup and C_2 is a cyclic group.

THEOREM 1.3. Suppose $G = G_p \times B$, $\lambda \in Z^2(G, F^*)$, and $F^{\lambda}G_p$ is a uniserial algebra. Then every indecomposable $F^{\lambda}G$ -module can be uniquely represented, up to isomorphism, in the form V # W, where V is an indecomposable $F^{\lambda}G_p$ -module and W is a simple $F^{\lambda}B$ -module. Moreover, the outer tensor product of any indecomposable $F^{\lambda}G_p$ -module and any simple $F^{\lambda}B$ -module is an indecomposable $F^{\lambda}G$ -module.

The proof of Theorem 1.3 is analogous to the one of Theorem 3.1 in [1], where the case of G_p abelian is investigated.

LEMMA 1.8. Suppose $p \neq 2$, $p \mid |G'|$ and C_p is cyclic. Assume that G contains $G_p \rtimes B$, where $[G_p, B] \neq \{e\}$. Then $G_p = C_p \rtimes H$, where H is an abelian subgroup and $[B, H] = \{e\}$.

Proof. By hypothesis, $C_p = \langle c \rangle$, $|c| = p^n$ and $n \ge 1$. Let $T = G_p \rtimes B$. The subgroup C_p is normal in T. Let $b \in B$ and φ_b be the automorphism of C_p such that $\varphi_b(c) = bcb^{-1}$. The mapping $\varphi : b \mapsto \varphi_b$ is a homomorphism of the group B into $\operatorname{Aut} C_p$. Since $\operatorname{Aut} C_p$ is a cyclic group it follows that $\varphi(B)$ is cyclic. Let K be the kernel of φ . If $B/K = \langle gK \rangle$, then

$$(g^t k)c(g^t k)^{-1} = g^t c g^{-t}, \quad kxk^{-1} = x$$

for all $k \in K$ and $x \in G_p$.

Let $gcg^{-1} = c^i$. Then $i \not\equiv 1 \pmod{p}$. Let $h \in G_p$ and $ghg^{-1} = hc^l$. Then $g(hc^s)g^{-1} = hc^{l+si}$. We choose s in such a way that $l + si \equiv s \pmod{p^n}$. If $gc^jg^{-1} = c^j$, then $j \equiv 0 \pmod{p^n}$. From this and the equality $h = hc^sc^{-s}$ it follows that $G_p = C_p \rtimes H$, where $H = \{h \in G_p : ghg^{-1} = h\}$.

REMARK 1.3. Suppose p = 2, $G = G_2 \rtimes B$ and $[G, G_2]$ is a cyclic group. Then $G = G_2 \times B$.

THEOREM 1.4. Suppose $p \neq 2$, $G = G_p \rtimes B$, $[G, G_p] = \langle c \rangle$, $|c| = p^n$ (n > 0) and $[B, G_p] \neq \{e\}$. Then:

(1) $G_p = \langle c \rangle \rtimes H$, where H is abelian and $[B, H] = \{e\}$.

(2) Let $\lambda \in Z^2(G, F^*)$. The algebra $F^{\lambda}G$ is of finite representation type if and only if $F^{\lambda}H$ is a field.

(3) Suppose that $F^{\lambda}H$ is a field. Let e_1, \ldots, e_d be a complete system of primitive pairwise orthogonal idempotents of the semisimple algebra $F^{\lambda}B$, and $V_{ij} = F^{\lambda}G(u_c - u_e)^i e_j$, where $i \in \{0, 1, \ldots, p^n - 1\}$, $j \in \{1, \ldots, d\}$. Then every left ideal V_{ij} of the algebra $F^{\lambda}G$ is indecomposable as a left $F^{\lambda}G$ -module and any indecomposable $F^{\lambda}G$ -module is isomorphic to one of these ideals. The ideals $V_{i_{1j_1}}$ and $V_{i_{2j_2}}$ are isomorphic if and only if $i_1 = i_2$ and the ideals $F^{\lambda}Be_{j_1}$, $F^{\lambda}Be_{j_2}$ of the algebra $F^{\lambda}B$ are isomorphic as $F^{\lambda}B$ -modules.

Proof. The first statement is a particular case of Lemma 1.8. The second statement follows from Lemma 1.7.

Suppose $F^{\lambda}H$ is a field. Then rad $F^{\lambda}G = F^{\lambda}G(u_c - u_e)$. From the Morita Theorem (see [10, p. 507]) we conclude that $F^{\lambda}G$ is a serial algebra. In view of [2, Theorem 2], e_1, \ldots, e_d is a complete system of primitive pairwise orthogonal idempotents of the semisimple algebra $A = F^{\lambda}H \otimes_F F^{\lambda}B$. By the Deuring–Noether Theorem ([8, p. 200]), we also have

$$Ae_r \cong Ae_s \iff F^{\lambda}Be_r \cong F^{\lambda}Be_s.$$

In view of [9, Theorem 6.8, p. 124], e_1, \ldots, e_d is a complete system of primitive pairwise orthogonal idempotents of $F^{\lambda}G$. Furthermore, for $1 \leq r, s \leq d$ we have

$$F^{\lambda}Ge_r \cong F^{\lambda}Ge_s \iff Ae_r \cong Ae_s.$$

Applying Lemma 1.1 and [10, Lemma 62.28, p. 508], we finish the proof. ■

COROLLARY. Keep the notation of Theorem 1.4 and suppose that $F^{\lambda}H$ is a field. Then every simple $F^{\lambda}G$ -module is isomorphic to one of the ideals $V_{p^n-1,j}$; moreover, any ideal $V_{p^n-1,j}$, $1 \leq j \leq d$, is minimal.

2. Projective representation types of finite groups. A group G is said to be of *finite* (resp. *infinite*) *PFR-type* if the number of indecomposable projective *F*-representations of the group G with a cocycle λ is finite (resp. infinite) for any $\lambda \in Z^2(G, F^*)$. Other groups are said to be of *mixed PFR-type*.

Let Γ and Γ' be equivalent projective matrix F-representations of G with a cocycle λ . Then there exists an invertible matrix C over F and a mapping $\alpha : G \to F^*$ such that $C^{-1}\Gamma(g)C = \alpha_g \Gamma'(g)$ for all $g \in G$. In this case,

$$\lambda_{a,b} = \frac{\alpha_a \alpha_b}{\alpha_{ab}} \, \lambda_{a,b}$$

for all $a, b \in G$. Hence, α is a linear *F*-character of the group *G*. But the number of linear *F*-characters of *G* is finite. Therefore, the number of pairwise inequivalent indecomposable projective *F*-representations of *G* with a cocycle λ is finite if and only if the algebra $F^{\lambda}G$ is of finite representation type. This allows one to define the type of projective F-representations of G as in the Introduction.

Applying Lemma 1.3 we may establish some connection between PFR-type of a group G and PFR-type of a Sylow p-subgroup G_p of G. If G_p is of finite (resp. infinite) PFR-type, then so is G. Suppose G_p is of mixed PFR-type. In view of Corollary 3 to Proposition 1.3, G_p is not cyclic. By Lemma 1.4 the group algebra FG is of infinite representation type. It follows that G is not of finite PFR-type. If G is of finite PFR-type, then by Lemma 1.4, G_p is cyclic, and hence, in view of Corollary 3 to Proposition 1.3, G_p is not of finite PFR-type. If G is of infinite PFR-type, then G_p is not of finite PFR-type. If G is of infinite PFR-type, then G_p is not of finite PFR-type. If G is of infinite PFR-type, then FR-type. If G is of mixed PFR-type, then FR-type.

Let G be a finite group and p | |G'|. The group G/G' can be written as a direct product of its Sylow q-subgroups G_qG'/G' , where G_q is a Sylow q-subgroup of G and q is a prime divisor of |G:G'|. Denote by C_p a Sylow p-subgroup of G'. We shall assume that $C_p \subset G_p$ and $C_p \neq G_p$. Then $G'_p \subset C_p$, and hence $C_p \triangleleft G_p$. The group G_p/C_p is isomorphic to the Sylow p-subgroup G_pG'/G' of G/G'. Let $\varphi: G \to G/G'$ be the canonical homomorphism, $\psi: G/G' \to G_pG'/G'$ a projector and $\chi: G_pG'/G' \to$ G_p/C_p the isomorphism defined by $\chi(aG') = aC_p$ for any $a \in G_p$. Then

(2.1)
$$f = \chi \psi \varphi$$

is a homomorphism of G onto G_p/C_p . The restriction of f to G_p is the canonical homomorphism of G_p onto G_p/C_p .

LEMMA 2.1. Let $H = G_p/C_p$, $f : G \to H$ be the epimorphism (2.1), $\mu \in Z^2(H, F^*)$ and $\lambda_{a,b} = \mu_{f(a),f(b)}$ for any $a, b \in G$. Then $\lambda \in Z^2(G, F^*)$ and $\lambda_{x,y} = \lambda_{y,x} = 1$ for all $x \in G_p$, $y \in C_p$. If $V = F^{\lambda}G_p \cdot \operatorname{rad} FC_p$, then V is an ideal of the algebra $F^{\lambda}G_p$ and $F^{\lambda}G_p/V \cong F^{\mu}H$.

Proof. Direct calculation.

THEOREM 2.1. Suppose $i_F \neq 0$, G is a finite group, $p \mid |G'|$ and G_p/C_p is a direct product of s cyclic p-subgroups for $C_p \neq G_p$. Then:

(1) If C_p is not cyclic or $s \ge i_F + 2$, then G is of infinite PFR-type.

(2) If G_p is cyclic, then G is of finite PFR-type.

(3) If C_p is a cyclic group and G_p is not a cyclic group and $1 \le s \le i_F$, then G is of mixed PFR-type.

(4) Suppose $C_p = \langle c \rangle$, $G_p/C_p = \langle a_1C_p \rangle \times \ldots \times \langle a_sC_p \rangle$ and $s = i_F + 1$. If $c \in \langle a_r \rangle$ for some $r \in \{1, \ldots, s\}$, then G is of mixed PFR-type. If $c \notin \langle a_j \rangle$ for every $j \in \{1, \ldots, s\}$ and $C_2 \neq G'_2$ for p = 2 then G is of infinite PFR-type.

Proof. The assertion for $p \neq 2$ follows from Theorem 1.2 and Lemmas 1.5, 2.1. Now we turn to the case when p is an arbitrary prime. State-

ments (1)-(3) follow from Lemmas 1.2–1.5, 2.1 and Corollary 3 to Proposition 1.3.

We prove (4). Let

$$c = a_1^{p^{m_1}}, \quad H = G_p/C_p, \quad \overline{H} = G_p/\langle a_1 \rangle.$$

Then

$$\overline{H} \cong H/(\langle a_1 \rangle / C_p) \cong \langle a_2 C_p \rangle \times \ldots \times \langle a_s C_p \rangle$$

There is a cocycle $\overline{\mu} \in Z^2(\overline{H}, F^*)$ such that $F^{\overline{\mu}}\overline{H}$ is a field. Let $\varphi: G_p \to \overline{H}$ be the canonical homomorphism. Put $\mu_{x,y} = \overline{\mu}_{\varphi(x),\varphi(y)}$ for any $x, y \in G_p$. Then $\mu \in Z^2(G_p, F^*)$. Let $\{u_x : x \in G_p\}$ be a natural *F*-basis of the algebra $F^{\mu}G_p$. We have

$$u_{a_1}^{p^{m_1}} = u_c, \quad u_c^{|c|} = u_e,$$

rad $F^{\mu}G_p = F^{\mu}G_p(u_{a_1} - u_e)$ and $F^{\mu}G_p/\text{rad} F^{\mu}G_p \cong F^{\overline{\mu}}\overline{H}$. Let $\pi : G_p \to G_p/C_p$ be the canonical homomorphism. If $\pi(x) = \pi(x')$ then $\varphi(x) = \varphi(x')$. It follows that the formula $\nu_{\pi(x),\pi(y)} = \overline{\mu}_{\varphi(x),\varphi(y)}$, where $x, y \in G_p$, gives a cocycle $\nu \in Z^2(H, F^*)$. In view of Lemma 2.1 there is a cocycle $\lambda \in Z^2(G, F^*)$ such that $\lambda_{a,b} = \nu_{f(a),f(b)}$ for all $a, b \in G$, where f is the epimorphism (2.1). If $a, b \in G_p$ then $\lambda_{a,b} = \nu_{\pi(a),\pi(b)} = \mu_{a,b}$. It follows that $F^{\lambda}G_p \cong F^{\mu}G_p$, and hence $F^{\lambda}G_p$ is a uniserial algebra. Applying Theorem 1.1 we conclude that $F^{\lambda}G$ is of finite representation type. But G_p is not cyclic. Therefore, by Lemma 1.4 the group algebra FG is of infinite representation type. Thus, the group G is of mixed PFR-type.

Let $|a_i C_p| = p^{m_j}$ and

$$a_j^{p^{m_j}} = c^{pt_j}$$

for every $j \in \{1, \ldots, s\}$. If $p \neq 2$ then by Lemma 1.7, G is of infinite PFR-type. Suppose p = 2, $G'_2 \neq C_2$, $H = \langle c^2 \rangle$ and $\lambda \in Z^2(G, F^*)$. Then $G'_2 \subset H$ and $G_2/H = \langle cH \rangle \times \langle a_1H \rangle \times \ldots \times \langle a_sH \rangle$. In view of Lemma 1.5, $F^{\lambda}H$ is a group algebra and the set $V = F^{\lambda}G_2 \cdot \operatorname{rad} F^{\lambda}H$ is a two-sided ideal of the algebra $F^{\lambda}G_2$. The quotient algebra $F^{\lambda}G_2/V$ is a commutative twisted group algebra of the group G_2/H and the field F. From Corollary 3 to Proposition 1.3 we conclude that $F^{\lambda}G/V$ is of infinite representation type. From this and Lemma 1.3 it follows that G is of infinite PFR-type.

COROLLARY 1. Suppose $i_F = \infty$. If C_p is a non-cyclic group then G is of infinite PFR-type. If C_p is cyclic and G_p is not cyclic then G is of mixed PFR-type. If G_p is a cyclic group then G is of finite PFR-type.

COROLLARY 2. Suppose $i_F \neq 0$, $p \neq 2$, $G = G_p \rtimes B$, $[G, G_p] = \langle c \rangle$ and $[B, G_p] \neq \{e\}$. Suppose $G_p / \langle c \rangle$ is a direct product of s cyclic subgroups for $G_p \neq \langle c \rangle$. If $1 \leq s \leq i_F$ then G is of mixed PFR-type. If $s \geq i_F + 1$ then G is of infinite PFR-type. For $G_p = \langle c \rangle$ the group G is of finite PFR-type.

Proof. Apply Theorems 1.4 and 2.1. ■

THEOREM 2.2. Suppose $i_F \neq 0$, G is a finite group and p ||G'|. Assume that G_p is abelian and C_p is cyclic. Let s be the number of invariants of G_p . If s = 1 then G is of finite PFR-type. If $1 < s \leq i_F + 1$ then G is of mixed PFR-type. If $s \geq i_F + 2$ then G is of infinite PFR-type.

Proof. From Lemma 1.3 and Corollary 3 to Proposition 1.3 we conclude that if s = 1 then G is of finite *PFR*-type, and if $s \ge i_F + 2$ then G is of infinite *PFR*-type. Let $1 < s \le i_F + 1$ and $C_p = \langle c \rangle$. We have $G_p/C_p = \langle a_1C_p \rangle \times \ldots \times \langle a_tC_p \rangle$, $t \le s$. If $t \le i_F$ then by Lemmas 1.3 and 2.1, G is of mixed *PFR*-type. Suppose that $t = i_F + 1$. If $c \notin \langle a_i \rangle$ for all $i \in \{1, \ldots, t\}$ then $G_p/H = \langle cH \rangle \times \langle a_1H \rangle \times \ldots \times \langle a_tH \rangle$, where $H = \langle c^p \rangle$. This contradiction shows that $c \in \langle a_r \rangle$ for some $r \in \{1, \ldots, t\}$. In this case, G is also of mixed *PFR*-type, by Lemmas 1.3 and 2.1, Corollary 3 to Proposition 1.3 and Theorem 2.1. ■

PROPOSITION 2.1. Suppose $i_F = 0$. If G_p is not cyclic then G is of infinite PFR-type. If G_p is cyclic then G is of finite PFR-type.

Proof. The algebra $F^{\lambda}G_p$ is the group algebra FG_p for every $\lambda \in Z^2(G, F^*)$ (see [26, p. 43]). It remains to apply Lemmas 1.3 and 1.4.

We remark that Proposition 2.1 was, in fact, formulated in [7].

Two groups are said to be *PFR-isotypic* if they are of the same *PFR*-type. From the above results, we will derive necessary and sufficient conditions for G and G_p to be *PFR*-isotypic. In view of Lemmas 1.3, 1.5 and 2.1 groups G and G_p are *PFR*-isotypic if $C_p = G'_p$.

PROPOSITION 2.2. Let G be a finite group with p | |G'| and G_p an abelian group, and s the number of invariants of G_p . If C_p is cyclic then G and G_p are PFR-isotypic. If C_p is not cyclic then G and G_p are PFR-isotypic if and only if $s \ge i_F + 2$.

Proof. If C_p is cyclic we apply Theorem 2.2. If C_p is not cyclic we apply the Corollary of Theorem 1.2 and Theorem 2.2.

PROPOSITION 2.3. Suppose $i_F \neq 0$, G is a finite group, $p \mid \mid G' \mid$, and s is the number of invariants of G_p/G'_p . Assume that G_p is non-abelian and if G'_p is cyclic then $s \neq i_F+1$ for p = 2. The groups G and G_p are PFR-isotypic if and only if one of the following conditions holds:

(1) $s \ge i_F + 2$ or G'_p is non-cyclic;

(2) $s \leq i_F + 1$ and C_p is cyclic;

(3) $s = i_F + 1$, G'_p is cyclic, C_p is non-cyclic and $G_p/G'_p = \langle b_1 G'_p \rangle \times \ldots \times \langle b_s G'_p \rangle$, where $G'_p \not\subset \langle b_j \rangle$ for every $j \in \{1, \ldots, s\}$.

Proof. Apply Theorem 2.1. If condition (1) holds, then G_p is of infinite *PFR*-type. If condition (2) holds and $G'_p \neq C_p$, then by the same arguments as in the proof of Theorem 2.2 we can establish that G is of mixed *PFR*-type. Suppose that conditions (1) and (2) do not hold. Then $s \leq i_F + 1$, G'_p is cyclic and C_p is non-cyclic. In this case, G is of infinite *PFR*-type. The subgroup G_p is of infinite *PFR*-type if and only if $s = i_F + 1$ and $G_p/G'_p = \langle b_1G'_p \rangle \times \ldots \times \langle b_sG'_p \rangle$, where $G'_p \not\subset \langle b_j \rangle$ for every $j \in \{1, \ldots, s\}$.

COROLLARY. Suppose $i_F = \infty$, G is a finite group and p | |G'|. The groups G and G_p are PFR-isotypic if and only if C_p is cyclic or G'_p is not cyclic.

REFERENCES

- [1] L. F. Barannyk, Modular projective representations of direct products of finite groups, Publ. Math. Debrecen 64 (2004) (in press).
- [2] L. F. Barannyk and K. Sobolewska, On modular projective representations of finite nilpotent groups, Colloq. Math. 87 (2001), 181–193.
- R. Bautista, On algebras of strongly unbounded representation type, Comment. Math. Helv. 60 (1985), 392–399.
- [4] R. Bautista, P. Gabriel, A.V. Roïter and L. Salmerón, Representation-finite algebras and multiplicative bases, Invent. Math. 81 (1985), 217–285.
- [5] S. D. Berman, Representations of finite groups over an arbitrary field and over rings of integers, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 69–132 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 64 (1967), 147–215.
- [6] K. Bongartz, Indecomposables are standard, Comment. Math. Helv. 60 (1985), 400–410.
- [7] S. B. Conlon, Twisted group algebras and their representations, J. Austral. Math. Soc. 4 (1964), 152–173.
- C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962 (2nd ed., 1966).
- [9] —, —, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 1, Wiley, New York, 1981.
- [10] —, —, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 2, Wiley, New York, 1987.
- [11] E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. 84 (1966), 20–48.
- [12] V. Dlab and C. M. Ringel, Decomposition of modules over right uniserial rings, Math. Z. 129 (1972), 207–230.
- [13] —, —, On algebras of finite representation type, J. Algebra 33 (1975), 306–394.
- [14] P. Dowbor and D. Simson, Quasi-Artin species and rings of finite representation type, J. Algebra 63 (1980), 435–443.
- [15] Yu. A. Drozd and V. V. Kirichenko, *Finite Dimensional Algebras*, Springer, Berlin, 1994.
- [16] W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
- [17] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430–445.
- [18] P. M. Gudivok, On modular representations of finite groups, Dokl. Uzhgorod. Univ. Ser. Fiz.-Mat. 4 (1961), 86–87 (in Russian).

- [19] P. M. Gudivok, On boundedness of degrees of indecomposable modular representations of finite groups over principal ideal rings, Dopovīdī Akad. Nauk USSR Ser. A 1971, 683–685 (in Ukrainian).
- [20] W. H. Gustafson, Group rings of finite representation type, Math. Scand. 34 (1974), 58–60.
- [21] D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J. 21 (1954), 377–381.
- [22] G. J. Janusz, Indecomposable representations of groups with a cyclic Sylow subgroup, Trans. Amer. Math. Soc. 125 (1966), 288–295.
- [23] —, Indecomposable modules for finite groups, Ann. of Math. (2) 89 (1969), 209–241.
- [24] —, Faithful representations of p-groups at characteristic p, I, J. Algebra 15 (1970), 335–351.
- [25] —, Faithful representations of p-groups at characteristic p, II, ibid. 22 (1972), 137– 160.
- [26] G. Karpilovsky, Group Representations, Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
- [27] F. Kasch, M. Kneser und H. Kupisch, Unzerlegbare modulare Darstellungen endlicher Gruppen mit zyklischer p-Sylow-Gruppe, Arch. Math. (Basel) 8 (1957), 320– 321.
- H. Kupisch, Projektive Moduln endlicher Gruppen mit zyklischer p-Sylow-Gruppe, J. Algebra 10 (1968), 1–7.
- [29] —, Unzerlegbare Moduln endlicher Gruppen mit zyklischer p-Sylow-Gruppe, Math. Z. 108 (1969), 77–104.
- [30] H. Meltzer and A. Skowroński, Group algebras of finite representation type, Math. Z. 182 (1983), 129–148.
- [31] —, —, Correction to "Group algebras of finite representation type", ibid. 187 (1984), 563–569.
- [32] L. A. Nazarova und A. V. Roĭter, Kategorielle Matrizen-Probleme und die Brauer-Thrall-Vermutung, Mitt. Math. Sem. Giessen 115 (1975), 1–153.
- [33] W. F. Reynolds, Twisted group algebras over arbitrary fields, Illinois J. Math. 15 (1971), 91–103.
- [34] A. V. Roĭter, Unboundedness of the dimensions of the indecomposable representations of an algebra which has infinitely many indecomposable representations, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1275–1282 (in Russian).
- [35] A. Skowroński, *The representation type of group algebras*, in: CISM Courses and Lectures 287, Springer, Wien, 1984, 517–531.
- [36] —, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499–516.
- [37] K. Sobolewska, On the number of indecomposable representations with a given degree of a twisted group algebra over a field of characteristic p, Słupskie Prace Mat.-Fiz. 2 (2002), 81–89.

Institute of Mathematics Pedagogical Academy Arciszewskiego 22b 76-200 Słupsk, Poland E-mail: barannykleo@poczta.onet.pl kamiles@poczta.onet.pl

Received 30 September 2003