ON INDECOMPOSABLE PROJECTIVE REPRESENTATIONS OF FINITE GROUPS OVER FIELDS OF CHARACTERISTIC \(p > 0 \)

BY

LEONID F. BARANNYK and KAMILA SOBOLEWSKA (Słupsk)

Abstract. Let \(G \) be a finite group, \(F \) a field of characteristic \(p \) with \(p \mid |G| \), and \(F^\lambda G \) the twisted group algebra of the group \(G \) and the field \(F \) with a 2-cocycle \(\lambda \in Z^2(G, F^*) \). We give necessary and sufficient conditions for \(F^\lambda G \) to be of finite representation type. We also introduce the concept of projective \(F \)-representation type for the group \(G \) (finite, infinite, mixed) and we exhibit finite groups of each type.

Introduction. Let \(F \) be a field of characteristic \(p > 0 \), \(F^* \) the multiplicative group of the field \(F \), \(F^p = \{ a^p : a \in F \} \), \(G \) a finite group of order \(|G| \), where \(p \mid |G| \), and \(G_p \) a Sylow \(p \)-subgroup of \(G \). Let \(G' \) be the commutant of \(G \), \(C_p \) a Sylow \(p \)-subgroup of \(G' \), \(C_p \subset G_p \), \(G_p \) the commutant of \(G_p \), and \(Z^2(G, F^*) \) the group of all \(F^* \)-valued normalized 2-cocycles of the group \(G \), where we assume that \(G \) acts trivially on \(F^* \) (see [26, Chapter 1]). Denote by \(F^\lambda G \) the twisted group algebra of the group \(G \) and the field \(F \) with a cocycle \(\lambda \in Z^2(G, F^*) \) and by \(\text{rad} F^\lambda G \) the radical of \(F^\lambda G \). An \(F \)-basis \(\{ u_g : g \in G \} \) of \(F^\lambda G \) satisfying \(u_a u_b = \lambda_{a,b} u_{ab} \) for all \(a, b \in G \) is called natural. By an \(F^\lambda G \)-module we mean a finitely generated left \(F^\lambda G \)-module. If \(H \) is a subgroup of \(G \), then the restriction of \(\lambda \in Z^2(G, F^*) \) to \(H \times H \) will also be denoted by \(\lambda \). In this case, \(F^\lambda H \) is a subalgebra of \(F^\lambda G \).

Higman [21] proved that a group algebra \(FG \) is of finite representation type if and only if \(G_p \) is a cyclic group. In this case Kasch, Kneser and Kupisch [27] gave a sharper upper bound of the number of indecomposable \(FG \)-modules. They also obtained conditions on \(G \) under which the bound is attained. Later Janusz [22] gave a formula for the exact number of indecomposable \(FG \)-modules for the case when \(F \) is an algebraically closed field. In [23] he determined the structure of indecomposable modules in more detail. Indecomposable \(FG \)-modules with \(G_p \) being cyclic are also investigated in [5], [11], [24], [25], [28], [29] (see as well [16, Chapter VII]). The representation type of group rings \(SG \), where \(S \) is an arbitrary commutative artinian ring or a local artinian ring whose quotient ring \(S/\text{rad} S \) is finitely generated over its center, is determined by Gustafson [20] and Dowbor and Simson [14].

2000 Mathematics Subject Classification: 20C20, 20C25, 16S35.
Generalizations to the case when S is an arbitrary finite-dimensional algebra over a field F and G is a finite group have been found by Meltzer and Skowroński [30], [31] and Skowroński [35], [36]. Representation-infinite group algebras SG of polynomial growth are classified in [36]. Gudivok [18] and Janusz [24], [25] showed that if F is an infinite field and G is an abelian p-group which is neither cyclic nor of order 4, then there exist infinitely many non-isomorphic indecomposable FG-modules of F-dimension n for every natural number $n > 1$. If G is the non-cyclic group of order 4, then the preceding result is valid for even natural numbers n.

Higman [21] proved, in fact, that the first Brauer–Thrall conjecture holds for group algebras of finite groups. Results by Gudivok [18] and Janusz [24], [25] give the solution of the second Brauer–Thrall conjecture for group algebras of finite groups. As is well known, the first Brauer–Thrall conjecture for finite-dimensional algebras over an arbitrary field was solved by Roiter [34]. The second Brauer–Thrall conjecture was proved by Nazarov and Roiter [32], Bautista [3], Bongartz [6], Bautista, Gabriel, Roiter and Salmerón [4].

In [7], Conlon developed the theory of twisted group algebras $F^\lambda G$ by exploiting their analogy with group algebras FG assuming that F is large enough. In this case $F^\lambda G_p$ is a group algebra and therefore $F^\lambda G$ is of finite representation type if and only if G_p is cyclic. Moreover, in the same paper Conlon established that if G_p is a cyclic group then a rough upper bound for the number of indecomposable FG-modules which was found in [21] also holds for the number of indecomposable $F^\lambda G$-modules. It should be noted that Reynolds [33] computed the number of non-isomorphic simple $K^\mu G$-modules where K is an arbitrary field, G is a finite group and $\mu \in Z^2(G, K^*)$. We also remark that if the characteristic of K does not divide the order of the group G, then $K^\mu G$ is a semisimple algebra for any $\mu \in Z^2(G, K^*)$, and hence is of finite representation type. Using Green’s results [17], for the case when G is a finite abelian p-group and the radical of $F^\lambda G$ is not cyclic, Sobolewska [37] constructed increasing functions $f_\lambda : \mathbb{N} \to \mathbb{N}$ such that there exist infinitely many isomorphism classes of indecomposable $F^\lambda G$-modules of F-dimension $f_\lambda(n)$ for every natural number $n > 1$.

In the present paper we shall characterize twisted group algebras $F^\lambda G$ of finite representation type. We shall also describe finite groups depending on a projective representation type over the field F.

Let us briefly present the main results of the paper. In Section 1, we prove that an algebra $F^\lambda G$ is of finite representation type if and only if $F^\lambda G_p$ is a uniserial algebra (Theorem 1.1; we use the terminology introduced in [15]). We also establish (Theorem 1.2) that if $p \neq 2$, then $F^\lambda G_p$ is a uniserial algebra if and only if C_p is cyclic and one of the following conditions holds:
(1) the quotient algebra $F^\lambda G_p/F^\lambda G_p\cdot \text{rad} F^\lambda C_p$ is a field;
(2) $C_p = \{e\}$ and there exists a decomposition $G_p = H \times N$ such that H is cyclic and $F^\lambda N$ is a field;
(3) $C_p \neq \{e\}$ and there exists a decomposition $G_p/C_p = \langle a_1C_p \rangle \times \ldots \times \langle a_sC_p \rangle$ such that $C_p \subseteq \langle a_1 \rangle$, $C_p \nsubseteq \langle a_j \rangle$ for every $j = 2, \ldots, s$ and $F^\lambda D/F^\lambda D \cdot \text{rad} F^\lambda C_p$ is a field, where D is the subgroup of G_p generated by C_p, a_2, \ldots, a_s.

The proofs of these theorems are based on the characterization of local rings of finite representation type which was obtained in [12]–[14]. A special case of such rings was investigated in [19]. In Section 1 of this paper, we also obtain indecomposable $F^\lambda G$-modules for the case when G_p is a normal subgroup of G and $F^\lambda G_p$ is a uniserial algebra (Theorems 1.3 and 1.4).

We say that a group G is of finite (resp. infinite) PFR-type (Projective F-Representation type) if the algebra $F^\lambda G$ is of finite (resp. infinite) representation type for every cocycle $\lambda \in Z^2(G, F^*)$. Otherwise, G is said to be of mixed PFR-type.

In Section 2, we classify finite groups depending on their PFR-type (Theorems 2.1 and 2.2, Proposition 2.1). We also state necessary and sufficient conditions for G and G_p to be of the same PFR-type (Propositions 2.2–2.3).

1. Twisted group algebras of finite representation type and their representations

Lemma 1.1. Let $\lambda \in Z^2(G, F^*)$. Every $F^\lambda G$-module is isomorphic to an $F^\lambda G$-component of an induced $F^\lambda G$-module $F^\lambda G \otimes_{F^\lambda G_p} V$, where V is some $F^\lambda G_p$-module.

Lemma 1.2. Let H be a subgroup of G and $\lambda \in Z^2(G, F^*)$. If $F^\lambda H$ is of infinite representation type, then $F^\lambda G$ is also of infinite representation type.

Lemma 1.3. An algebra $F^\lambda G$ is of finite representation type if and only if $F^\lambda G_p$ is of finite representation type.

The proofs of Lemmas 1.1–1.3 are similar to those of the corresponding propositions about group algebras (see [8, §63]).

Lemma 1.4 ([21]). A group algebra FG is of finite representation type if and only if G_p is a cyclic group.

Lemma 1.5. Suppose $p ||G'||$, $C_p \subset G_p$ and $\lambda \in Z^2(G, F^*)$. Then:

(1) Up to cohomology
\begin{equation}
\lambda_{g,h} = \lambda_{h,g} = 1
\end{equation}
for any $g \in G_p$ and any $h \in C_p$.

(2) Suppose λ satisfies condition (1.1), $\overline{G}_p = G_p/C_p$, $\overline{g} = gC_p$ for $g \in G_p$, and $\overline{\lambda}_{a,b} = \lambda_{a,b}$ for any $a, b \in G_p$. Then $\overline{\lambda} \in Z^2(\overline{G}_p, F^*)$ and

$$F^\lambda \overline{G}_p \cong F^\lambda G_p/F^\lambda G_p \cdot \text{rad} F^\lambda C_p.$$

Proof. In view of [26, Proposition 5.17, p. 48] the restriction of every cocycle $\lambda \in Z^2(G, F^*)$ to $C_p \times C_p$ is a coboundary. Therefore, statements (1) and (2) follow from the properties of natural homomorphisms of twisted group algebras ([26, pp. 87–93]).

In what follows, we assume that every cocycle $\lambda \in Z^2(G, F^*)$ under consideration satisfies condition (1.1). In particular, $F^\lambda C_p$ will always be the group algebra FC_p.

The number $i_F = \sup \{0, m\}$ is important in describing twisted group algebras of abelian p-groups which are of finite representation type, where m is a natural number such that for some $\gamma_1, \ldots, \gamma_m \in F^*$ the algebra

$$F[x]/(x^p - \gamma_1) \otimes_F \cdots \otimes_F F[x]/(x^p - \gamma_m)$$

is a field. If F is a perfect field, then $i_F = 0$, otherwise $i_F \neq 0$.

Proposition 1.1. Let K be a perfect field of characteristic p and $F = K(x_1, \ldots, x_n)$ the quotient field of the polynomial ring $K[x_1, \ldots, x_n]$. Then $i_F = n$.

Proof. By induction on i we prove that the algebra

$$A_i = F[y]/(y^p - x_1) \otimes_F \cdots \otimes_F F[y]/(y^p - x_i)$$

is a field for every $i \in \{1, \ldots, n\}$. From this it follows that $i_F \geq n$. Suppose that for some $\lambda_1, \ldots, \lambda_m \in F^*$ the algebra

$$B = F[y]/(y^p - \lambda_1) \otimes_F \cdots \otimes_F F[y]/(y^p - \lambda_m)$$

is a field. Let $C = B \otimes_F A_n$. The algebra A_n is isomorphic to the field $K(y_1, \ldots, y_n)$, where $y_j^p = x_j$ ($j = 1, \ldots, n$). Every element of F is the pth power of some element of A_n. It follows that $C \cong A_n[y]/(y^p - 1) \otimes_{A_n} \cdots \otimes_{A_n} A_n[y]/(y^p - 1)$ (m factors).

Consequently, $C/\text{rad} C \cong A_n$. On the other hand, C can be viewed as a twisted group algebra of an elementary abelian p-group of order p^n over the field B. Therefore, $C/\text{rad} C$ is isomorphic to a purely inseparable extension of the field B of degree p^s, where $s \leq n$. It follows that $p^n = p^s \cdot [B : F]$ or $p^n = p^s \cdot p^m$, whence $m \leq n$. Hence $i_F \leq n$, and the proof is complete.

Proposition 1.2. Let K be a field of characteristic p, $X = \{x_i : i = 1, 2, \ldots\}$, and F the quotient field of the polynomial ring $K[X]$. Then $i_F = \infty$.

Theorem 1.1. Let G be a finite group, $p || G$ and $\lambda \in Z^2(G, F^*)$. The algebra $F^\lambda G$ is of finite representation type if and only if $F^\lambda G_p$ is a uniserial algebra.

Proof. By Lemma 1.3, we may assume that G is a p-group. Let $\{u_g : g \in G\}$ be a natural F-basis of the algebra $F^\lambda G$ and e be the identity element of G. It is known (see [26, p. 74]) that $F^\lambda G / \text{rad} F^\lambda G \cong K$, where K is a purely inseparable extension of the field F. Suppose $F^\lambda G$ is of finite representation type. Then by Lemmas 1.2, 1.4 and 1.5, G' is a cyclic group and $F^\lambda G'$ is a group algebra. Let $G' = \langle c \rangle$, $A = F^\lambda G$, $V = \text{rad} A / (\text{rad} A)^2$, $m = \dim_K V$ and $m' = \dim V_K$. We know (see [12]–[14]) that in the case under consideration we have $m \cdot m' \leq 3$.

Suppose $m = 1$. If $u_c - u_e \notin (\text{rad} A)^2$, then $\{u_c - u_e + (\text{rad} A)^2\}$ is a basis of the left vector space V over the field K. It follows that any element of V is of the form
\[\overline{x}(u_c - u_e + (\text{rad} A)^2) = x(u_c - u_e) + (\text{rad} A)^2, \]
where $x \in A$, $\overline{x} = x + \text{rad} A$. Since for each $x \in A$ there exists $y \in A$ such that $x(u_c - u_e) = (u_c - u_e)y$, we have
\[\overline{x}(u_c - u_e + (\text{rad} A)^2) = (u_c - u_e + (\text{rad} A)^2)y. \]
Hence, $m' = 1$. Suppose now that $u_c - u_e \in (\text{rad} A)^2$. Since for arbitrary $x, y \in A$ there exists $z \in A$ such that $xy - yx = (u_c - u_e)z$, we obtain
\[\overline{x}(y + (\text{rad} A)^2) = (y + (\text{rad} A)^2)\overline{x} \]
for any $x, y \in A$. In this case $m' = 1$. By the same arguments we can establish that if $m' = 1$ then $m = 1$.

Therefore, if $F^\lambda G$ is of finite representation type, then $F^\lambda G$ is a uniserial algebra. Conversely, every uniserial algebra is of finite representation type ([15, p. 171]).

Proposition 1.3. Let F be a field of characteristic p, G a finite abelian p-group and $\lambda \in Z^2(G, F^*)$. The algebra $F^\lambda G$ is of finite representation type if and only if $G = H \times N$, where H is a cyclic group and $F^\lambda N$ is a field.

Proof. Let $G = H \times N$, where H is cyclic and $F^\lambda N$ is a field. Then $F^\lambda G$ is a uniserial algebra, and hence it is of finite representation type. Now we suppose that there is no decomposition $G = H \times N$ such that H is a cyclic group and $F^\lambda N$ is a field. Let \overline{G} be the socle of G. Then $F^\lambda \overline{G} \cong F^\mu B$, where B is an elementary abelian p-group of order $|\overline{G}|$ and the following conditions are satisfied: $B = L \times M$, L is a non-cyclic group of order p^2 and $F^\mu L$ is the group algebra of the group L over the field F. By Lemmas 1.2 and 1.4, the algebra $F^\mu B$ is of infinite representation type. Applying again Lemma 1.2 to $F^\lambda \overline{G}$ and $F^\lambda G$, we conclude that the algebra $F^\lambda G$ is of infinite representation type.
Corollary 1. Let G be a finite abelian p-group and $\lambda \in Z^2(G, F^*)$. Assume that $G = H \times N$, where H is a cyclic group and $F^\lambda H$ is not a field. The algebra $F^\lambda G$ is of finite representation type if and only if $F^\lambda N$ is a field.

Corollary 2. Let G be a finite abelian p-group, \bar{G} the socle of G, and $\lambda \in Z^2(G, F^*)$. The algebra $F^\lambda G$ is of infinite representation type if and only if \bar{G} is a non-cyclic group of order p^2 and $F^\mu H$ is the group algebra.

Corollary 3. Let $G = \langle a_1 \rangle \times \ldots \times \langle a_s \rangle$ be an abelian p-group. If $s \geq i_F + 2$ then $F^\lambda G$ is of infinite representation type for every $\lambda \in Z^2(G, F^*)$. If $s \leq i_F + 1$ then there exists an algebra $F^\lambda G$ which is of finite representation type. If $s = 1$ then $F^\lambda G$ is of finite representation type for every $\lambda \in Z^2(G, F^*)$.

Lemma 1.6. Let $p \neq 2$, G be a non-abelian p-group with $G' = \langle c \rangle$ of order p, and $\{u_g : g \in G\}$ be a natural F-basis of $F^\lambda G$. Then:

1. $(u_a u_b)^p = u_a^p u_b^p$ for any $a, b \in G$.
2. If $y \in F^\lambda G$, $g \in G$, then

 $\begin{align*}(u_g y)^p &= y u_g + (u_c - u_e) y' u_g, \\
 (y u_g)^p &= y^p u_g^p + (u_c - u_e)^2 z \end{align*}$

for some $y', z \in F^\lambda G$.

3. If

 $x = \sum_{g \in G} \alpha_g u_g$

is an element of $F^\lambda G$, then

 $x^p = \sum_{g \in G} \alpha_g^p u_g^p + (u_c - u_e)^2 z$, \quad z \in F^\lambda G.$

Proof. We remark that u_c belongs to the center of $F^\lambda G$ and if $ab = c^j ba$, then $u_a u_b = u_c^j u_b u_a$. From this we obtain (1) and formula (1.2). Then

$\begin{align*}(y u_g)^p &= y[y + (u_c - u_e) y'] [y + 2(u_c - u_e)y'] \ldots \\
 & \ldots [y + (p - 1)(u_c - u_e)y'] u_g^p + (u_c - u_e)^2 z' \\
 &= y^p u_g^p + (u_c - u_e)^2 z', \quad z \in F^\lambda G.$

Hence, formula (1.3) holds.

It remains to prove (3). Suppose $\alpha_b \neq 0$. Applying (1.3) and induction on the number of non-zero summands of x, we obtain
\[x^p = \left\{ \alpha_b u_e + \sum_{g \neq b} \alpha_g (u_g u^{-1}_b) \right\}^p u_b \]
\[= \left[\alpha_b u_e + \sum_{g \neq b} \alpha_g (u_g u^{-1}_b) \right]^p u_b^p + (u_c - u_e)^2 z' \]
\[= \left[\alpha_b^p u_e + \sum_{g \neq b} \alpha_g^p (u_g u^{-1}_b)^p + (u_c - u_e)^2 z'' \right] u_b^p + (u_c - u_e)^2 z' \]
\[= \sum_{g \in G} \alpha_g^p u_g^p + (u_c - u_e)^2 z. \]

Lemma 1.7. Suppose \(p \neq 2, i_F \neq 0, p | |G^\prime|, \) and \(\lambda \in \mathbb{Z}^2(G, F^*) \). Assume that \(C_p \) is cyclic, \(G_p/C_p = \langle a_1 C_p \rangle \times \cdots \times \langle a_m C_p \rangle \) and \(C_p \not\subset \langle a_i \rangle \) for all \(i \in \{1, \ldots, m\} \). The algebra \(F^\lambda G \) is of finite representation type if and only if \(F^\lambda G_p/F^\lambda G_p \cdot \text{rad} \cdot F C_p \) is a field.

Proof. Necessity. I. First we examine the case when \(G_p \) is a group of exponent \(p \). Taking into consideration Corollary 1 to Proposition 1.3 we may assume that \(G_p \) is non-abelian. Let \(C_p = \langle \xi \rangle \) and suppose \(F^\lambda G_p \) is of finite representation type. We prove that \(V = F^\lambda G_p (u_e - u_c) \) is the radical of the algebra \(F^\lambda G_p \).

Any element \(g \in G_p \) can be uniquely represented in the form
\[g = a_1^{i_1} \cdots a_m^{i_m} c^j, \]
where \(0 \leq i_r, j < p \). Up to cocycle cohomology we may suppose
\[u_g = u_1^{i_1} \cdots u_m^{i_m} u_c^j, \]
where
\[u_{a_r}^p = \gamma_r u_e, \quad u_c^p = u_c \quad (\gamma_r \in F^*, 1 \leq r \leq m). \]
Let \(F^\lambda G_p = F^\lambda G_p/V \) and \(\bar{x} = x + V \) for every \(x \in F^\lambda G_p \). The algebra \(F^\lambda G_p \) is the commutative twisted group algebra \(F^\lambda G_p \) of the group \(\bar{G}_p = G_p/C_p \) and the field \(F \) with the cocycle \(\bar{\lambda} \), where \(\bar{\lambda}_{g_1, g_2} = \lambda_{g_1, g_2} \) for any \(g_1, g_2 \in G_p \).

Here \(\bar{g} = g C_p \) for every \(g \in G_p \). A natural \(F \)-basis of \(F^\lambda G_p \) is formed by elements \(\bar{u}_g \) \((g \in G_p)\) which by (1.4) can be uniquely represented in the form
\[\bar{u}_g = \bar{u}_1^{i_1} \cdots \bar{u}_m^{i_m}, \]
where \(\bar{u}_{a_r} = \gamma_r \bar{u}_e, 1 \leq r \leq m \).

Suppose that \(V \) is not the radical of the algebra \(F^\lambda G_p \). From Proposition 1.3 we conclude that up to reindexing \(a_1, \ldots, a_m \) the algebra \(F[\bar{u}_{a_1}, \ldots, \bar{u}_{a_{m-1}}] \) is a field and \(F[\bar{u}_{a_1}, \ldots, \bar{u}_{a_{m-1}}, \bar{u}_a] \) is not. In this case
\[\gamma_m^{-1} \bar{u}_e = \bar{x}^p \]
for some
\[x = \sum_{i_1, \ldots, i_{m-1}} \alpha_{i_1, \ldots, i_{m-1}} u_{a_{i_1}}^{i_1} \cdots u_{a_{i_{m-1}}}^{i_{m-1}}, \]
where \(\alpha_{i_1, \ldots, i_{m-1}} \in F, 0 \leq i_j < p \) for \(j = 1, \ldots, m-1 \). In view of Lemma 1.6,
\[x^p = \gamma_m^{-1} u_e + (u_c - u_e)^2 z', \quad z' \in F^\lambda G_p, \]
and consequently
\[(x u_m)^p = x^p u_m^p + (u_c - u_e)^2 z'' = u_e + (u_c - u_e)^2 z, \]
where \(z'' \in F^\lambda G_p, z = \gamma_m z' + z''. \) Let \(w = x u_m - u_e \). Then \(w^p = (u_c - u_e)^2 z. \) We also have \(\text{rad } F^\lambda G_p = \text{rad } F^\lambda G_p \cdot \bar{w}. \)

By Theorem 1.1 the algebra \(F^\lambda G_p \) is uniserial. Applying the Morita Theorem (see [10, p. 507]) and [10, Corollary 62.31, p. 510] we conclude that \(\text{rad } F^\lambda G_p = F^\lambda G_p \cdot \theta = \theta \cdot F^\lambda G_p \), where \(\theta^p = 0 \) and \(\theta^l \neq 0 \) for every \(l < p^2 \). We also obtain \(\text{rad } F^\lambda G_p = F^\lambda G_p \cdot \bar{\theta} \). It follows that \(\bar{w} = \bar{\theta} \cdot y' \), where \(y' \) is an invertible element of \(F^\lambda G_p \). The equality \(u_c - u_e = \theta^p y'' \), \(y'' \in F^\lambda G_p \), now shows that \(w = \theta y = z \theta \), where \(y \) and \(z \) are invertible in \(F^\lambda G_p \). This makes it possible to take \(\theta = w \). However,
\[w^{p(p+1)/2} = (u_c - u_e)^{p+1} \bar{z} = 0 \quad \text{and} \quad p + 1 < 2. \]

This contradiction shows that \(V \) is the radical of \(F^\lambda G_p \).

II. Now we examine the general case. Let \(C_p = \langle c \rangle, \tilde{G}_p = G_p / \langle c^p \rangle, \tilde{C}_p = C_p / \langle c^p \rangle, \tilde{g} = g \langle c^p \rangle \) for every \(g \in G_p \), and \(\lambda_{a, b} = \lambda_{a, b} \) for any \(a, b \in G_p \). Then \(\tilde{\lambda} \in Z^2(\tilde{G}_p, F^*) \), \(F^\lambda \tilde{C}_p \) is the group algebra, \(F^\lambda \tilde{G}_p \) is a quotient algebra of \(F^\lambda G_p \) and \(F^\lambda \tilde{G}_p / F^\lambda \tilde{C}_p \cdot \text{rad } F^\lambda C_p \cong F^\lambda G_p / F^\lambda G_p \cdot \text{rad } F^\lambda C_p \). Suppose that \(F^\lambda G_p \) is of finite representation type. Then so is \(F^\lambda \tilde{G}_p \). We have \(\tilde{G}_p \subset \tilde{C}_p \) and \(\tilde{c} \) is a central element of order \(p \). Let
\[\tilde{b}_i = \tilde{a}_i^{p^{r_i} - 1}, \]
where \(p^{r_i} \) is the order of \(a_i C_p \), \(1 \leq i \leq m \). Denote by \(\tilde{T} \) the subgroup of \(\tilde{G}_p \) generated by \(\tilde{c}, \tilde{b}_1, \ldots, \tilde{b}_m \). The exponent of \(\tilde{T} \) is \(p \). From Lemma 1.2 and the result of case I, we conclude that \(F^\lambda \tilde{T} / F^\lambda \tilde{T} \cdot \text{rad } F^\lambda \tilde{C}_p \) is a field. Then so is \(F^\lambda \tilde{G}_p / F^\lambda \tilde{G}_p \cdot \text{rad } F^\lambda \tilde{C}_p \), and hence also \(F^\lambda G_p / F^\lambda G_p \cdot \text{rad } F^\lambda C_p \).

Sufficiency. If \(F^\lambda G_p / F^\lambda G_p \cdot \text{rad } F^\lambda C_p \) is a field, then \(F^\lambda G_p \) is uniserial, and hence by Theorem 1.1 the algebra \(F^\lambda G \) is of finite representation type. ■

Remark 1.1. If \(p = 2 \), then the necessity in Lemma 1.7 does not hold. Indeed, let \(F \) be a field of characteristic 2 with \(i_F \neq 0 \), and \(G_2 = \langle a, b \rangle \) the dihedral group of order 8. Assume that \(F^\lambda G_2 \) is given by the defining
relations
\[u_a^4 = u_c, \quad u_b^2 = \gamma u_e, \quad u_b^{-1} u_a u_b = u_a^3, \]
where \(\gamma \in F^* \) and \(\gamma \notin F^2 \). In this case, \(\text{rad} \, F^G_2 = F^G_2 (u_a - u_e) \). The algebra \(F^G_2 \) is uniserial, and hence of finite representation type. At the same time, \(C_1 = G_2' = \langle a^2 \rangle \), \(G_2/C_2 = \langle abC_2 \rangle \times \langle bcC_2 \rangle \), \(C_2 \subset \langle ab \rangle \) and \(F^G_2/F^G_2 \cdot \text{rad} \, FC_2 \) is not a field.

\textbf{Theorem 1.2.} Let \(G \) be a finite group, \(p \neq 2 \), \(\overline{G}_p = G_p/C_p \), \(\overline{g} = gC_p \) for every \(g \in G_p \), \(\lambda \in Z^2 (G, F^*) \) and \(\overline{\lambda}_{a,b} = \lambda_{a,b} \) for any \(a,b \in G_p \). The algebra \(F^G \) is of finite representation type if and only if \(C_p \) is cyclic and one of the following conditions is satisfied:

(1) \(F^G_0 \) is a field;
(2) there is a decomposition \(\overline{G}_p = \langle \overline{a}_1 \rangle \times \overline{D} \) with \(\overline{D} = \langle \overline{a}_2 \rangle \times \cdots \times \langle \overline{a}_s \rangle \) such that \(F^\lambda \overline{D} \) is a field, and if \(C_p \neq \{ e \} \) then \(C_p \subset \langle a_1 \rangle \) and \(C_p \nsubseteq \langle a_j \rangle \) for all \(j \in \{ 2, \ldots, s \} \).

\textbf{Proof.} Suppose \(F^G_0 \) is of finite representation type. From Lemmas 1.2, 1.4 and 1.5 we deduce that \(C_p \) is a cyclic group. Let \(C_p = \langle c \rangle \). Assume that \(G_p \) is not cyclic. In view of Proposition 1.3 we also suppose \(c \neq e \). Suppose \(\overline{G}_p = \langle \overline{a}_1 \rangle \times \cdots \times \langle \overline{a}_s \rangle \) is a group of type \((p^{m_1}, \ldots, p^{m_s}) \). If
\[
a_i^{p^{m_i}} = c^{pt},
\]
for all \(i \in \{ 1, \ldots, s \} \), then by Lemma 1.7, \(F^G_0 \) is a field. Suppose
\[
a_1^{p^{m_1}} = c^{k_1}, \quad a_2^{p^{m_2}} = c^{k_2},
\]
where \((k_1, p) = 1 \), \((k_2, p) = 1 \) and \(m_1 \geq m_2 \). There exists an integer \(l \) such that \(lk_1 + k_2 \equiv 0 \) (mod \(p \)). Let \(\overline{G}_p = G_p/\langle c^p \rangle \) and \(\overline{g} = g/\langle c^p \rangle \) for any \(g \in G_p \). From the equality
\[
\left(a_1^{l p^{m_1-m_2}} \cdot \overline{a}_2 \right)^{p^{m_2}} = \overline{a}_1^{l p^{m_1}} \cdot \overline{a}_2^{p^{m_2}} = c^{lk_1+k_2} = \overline{c}.
\]
it follows that
\[
(a_1^{l p^{m_1-m_2}} \cdot a_2)^{p^{m_2}} = c^{pt},
\]
so we may assume that
\[
(1.5) \quad C_p = \langle a_1^{p^{m_1}} \rangle \quad \text{and} \quad a_j^{p^{m_j}} = c^{pt_j}
\]
for all \(j \in \{ 2, \ldots, s \} \). Let \(\overline{D} = \langle \overline{a}_2 \rangle \times \cdots \times \langle \overline{a}_s \rangle \) and \(D \) be the subgroup of \(G_p \) generated by \(c, a_2, \ldots, a_s \). By Lemma 1.2 the algebra \(F^G D \) is of finite representation type. In view of Lemma 1.7, \(F^G \overline{D} \) is a field. This proves the necessity.

Let us prove the sufficiency. Keep the notation used in the proof of the necessity, and suppose that conditions (1.5) are satisfied. Assume also that
$F^\lambda D$ is a field and $F^\lambda G_p$ is not. Let $\{u_g : g \in G_p\}$ be a natural F-basis of $F^\lambda G_p$ and
\begin{equation}
 (1.6) \quad u_{a_1}^{m_1} = \gamma_1 u_e, \quad u_{a_j}^{m_j} = \gamma_j u_{p_j}, \quad 2 \leq j \leq s,
 \end{equation}
where $\gamma_i \in F^*$, $1 \leq i \leq s$. Let $c \neq e$, $U = F^\lambda G_p(\bar{u}_c - u_e)$, and $V = F^\lambda G_p(\bar{u}_c - u_e)$. We have
\begin{equation}
 (1.7) \quad u_c u_g \equiv u_g u_c \pmod{V}, \quad u_{a_j}^p u_g \equiv u_g u_{a_j}^p \pmod{V}
 \end{equation}
for all $a, g \in G_p$. We suppose that $F^\lambda G_p = F^\lambda G_p/U$ and a natural F-basis of $F^\lambda G_p$ is formed by elements u_g, where $u_g := u_g + U$. Let K be the F-subalgebra of $F^\lambda G_p/U$ generated by $u_{a_j}^p + U$, $2 \leq j \leq s$, and L the F-subalgebra of $F^\lambda G_p/V$ generated by $u_{a_j} + V$, $2 \leq j \leq s$. By (1.7), L is commutative. In view of (1.6) the correspondence
\[u_{a_j}^p + U \mapsto u_{a_j}^p + V, \quad 2 \leq j \leq s, \]
extends to an F-homomorphism f of the field K onto L. Hence f is an isomorphism and L is a field.

Let p^d be the nilpotency index of the radical of the algebra $F^\lambda G_p/U$. Evidently $d \leq m_1$. There exists an element
\[x = \sum_{i_2, \ldots, i_s} \alpha_{i_2, \ldots, i_s} u_{a_2}^{i_2} \cdots u_{a_s}^{i_s}, \]
where $\alpha_{i_2, \ldots, i_s} \in F$, $0 \leq i_j < p^{m_j}$, such that
\[x^{p^d} = g_1^{-1} u_e \pmod{U}. \]
Applying the isomorphism f, we obtain
\begin{equation}
 (1.8) \quad \sum_{i_2, \ldots, i_s} \alpha_{i_2, \ldots, i_s} u_{a_2}^{i_2 p^d} \cdots u_{a_s}^{i_s p^d} \equiv g_1^{-1} u_e \pmod{V}. \]
Let
\[w = x u_{a_1}^{p^{m_1-d}} - u_e. \]
Then $(F^\lambda G_p w + U)/U$ is the radical of the algebra $F^\lambda G_p/U$. By Lemma 1.6,
\begin{equation}
 (1.9) \quad w^p \equiv x^p u_{a_1}^{p^{m_1-d+1}} - u_e + (u_c - u_e)^2 z' \pmod{V},
 \quad x^p \equiv \sum_{i_2, \ldots, i_s} \alpha_{i_2, \ldots, i_s} u_{a_2}^{p i_2} \cdots u_{a_s}^{p i_s} + (u_c - u_e)^2 z'' \pmod{V},
 \end{equation}
where $z', z'' \in F^\lambda G_p$. It follows from (1.6), (1.8) and (1.9) that
\[w^{p^d} \equiv u_c - u_e + (u_c - u_e)^2 p^{d-1} z \pmod{V}, \quad z \in F^\lambda G_p, \]
and hence
\[w^{p^d} = (u_c - u_e)^d. \]
where y is an invertible element of $F^\lambda G_p$. We proved that $F^\lambda G_p w$ is the radical of the algebra $F^\lambda G_p$. Therefore, $F^\lambda G_p$ is uniserial. By Theorem 1.1 the algebra $F^\lambda G$ is of finite representation type. ■

Corollary. Let G be a finite group. If the algebra $F^\lambda G$ is of finite representation type for some $\lambda \in Z^2(G, F^*)$, then C_p is a cyclic group and the number of invariants of the group G_p / C_p does not exceed $i_F + 1$.

Remark 1.2. Theorem 1.2 is true for $p = 2$ as well if we suppose that $G'_2 \neq C_2$ in the case when G'_2 is not the identity subgroup and C_2 is a cyclic group.

Theorem 1.3. Suppose $G = G_p \times B$, $\lambda \in Z^2(G, F^*)$, and $F^\lambda G_p$ is a uniserial algebra. Then every indecomposable $F^\lambda G$-module can be uniquely represented, up to isomorphism, in the form $V \# W$, where V is an indecomposable $F^\lambda G_p$-module and W is a simple $F^\lambda B$-module. Moreover, the outer tensor product of any indecomposable $F^\lambda G_p$-module and any simple $F^\lambda B$-module is an indecomposable $F^\lambda G$-module.

The proof of Theorem 1.3 is analogous to the one of Theorem 3.1 in [1], where the case of G_p abelian is investigated.

Lemma 1.8. Suppose $p \neq 2$, $p | |G'|$ and C_p is cyclic. Assume that G contains $G_p \times B$, where $[G_p, B] \neq \{e\}$. Then $G_p = C_p \times H$, where H is an abelian subgroup and $[B, H] = \{e\}$.

Proof. By hypothesis, $C_p = \langle c \rangle$, $|c| = p^n$ and $n \geq 1$. Let $T = G_p \times B$. The subgroup C_p is normal in T. Let $b \in B$ and φ_b be the automorphism of C_p such that $\varphi_b(c) = bcb^{-1}$. The mapping $\varphi : b \mapsto \varphi_b$ is a homomorphism of the group B into $\text{Aut} C_p$. Since $\text{Aut} C_p$ is a cyclic group it follows that $\varphi(B)$ is cyclic. Let K be the kernel of φ. If $B/K = \langle gK \rangle$, then

$$(g^i k) c (g^i k)^{-1} = g^i c g^{-i}, \quad k x k^{-1} = x$$

for all $k \in K$ and $x \in G_p$.

Let $gcg^{-1} = c^i$. Then $i \neq 1 \pmod{p}$. Let $h \in G_p$ and $ghg^{-1} = hc^i$. Then $g (hc^s)g^{-1} = hc^{l+si}$. We choose s in such a way that $l + si \equiv s \pmod{p^n}$. If $gc^j g^{-1} = c^j$, then $j \equiv 0 \pmod{p^n}$. From this and the equality $h = hc^s c^{-s}$ it follows that $G_p = C_p \times H$, where $H = \{h \in G_p : ghg^{-1} = h\}$. ■

Remark 1.3. Suppose $p = 2$, $G = G_2 \times B$ and $[G, G_2]$ is a cyclic group. Then $G = G_2 \times B$.

Theorem 1.4. Suppose $p \neq 2$, $G = G_p \times B$, $[G, G_p] = \langle c \rangle$, $|c| = p^n$ ($n > 0$) and $[B, G_p] \neq \{e\}$. Then:

1. $G_p = \langle c \rangle \times H$, where H is abelian and $[B, H] = \{e\}$.
2. Let $\lambda \in Z^2(G, F^*)$. The algebra $F^\lambda G$ is of finite representation type if and only if $F^\lambda H$ is a field.
Suppose that $F^\lambda H$ is a field. Let e_1, \ldots, e_d be a complete system of primitive pairwise orthogonal idempotents of the semisimple algebra $F^\lambda B$, and $V_{ij} = F^\lambda G(u_c - u_e)^i e_j$, where $i \in \{0, 1, \ldots, p^n - 1\}$, $j \in \{1, \ldots, d\}$. Then every left ideal V_{ij} of the algebra $F^\lambda G$ is indecomposable as a left $F^\lambda G$-module and any indecomposable $F^\lambda G$-module is isomorphic to one of these ideals. The ideals $V_{i_1j_1}$ and $V_{i_2j_2}$ are isomorphic if and only if $i_1 = i_2$ and the ideals $F^\lambda Be_{j_1}$, $F^\lambda Be_{j_2}$ of the algebra $F^\lambda B$ are isomorphic as $F^\lambda B$-modules.

Proof. The first statement is a particular case of Lemma 1.8. The second statement follows from Lemma 1.7.

Suppose $F^\lambda H$ is a field. Then $\text{rad } F^\lambda G = F^\lambda G(u_c - u_e)$. From the Morita Theorem (see [10, p. 507]) we conclude that $F^\lambda G$ is a serial algebra. In view of [2, Theorem 2], e_1, \ldots, e_d is a complete system of primitive pairwise orthogonal idempotents of the semisimple algebra $A = F^\lambda H \otimes_F F^\lambda B$. By the Deuring–Noether Theorem ([8, p. 200]), we also have

$$Ae_r \cong Ae_s \Leftrightarrow F^\lambda Be_r \cong F^\lambda Be_s.$$

In view of [9, Theorem 6.8, p. 124], e_1, \ldots, e_d is a complete system of primitive pairwise orthogonal idempotents of $F^\lambda G$. Furthermore, for $1 \leq r, s \leq d$ we have

$$F^\lambda Ge_r \cong F^\lambda Ge_s \Leftrightarrow Ae_r \cong Ae_s.$$

Applying Lemma 1.1 and [10, Lemma 62.28, p. 508], we finish the proof.

Corollary. Keep the notation of Theorem 1.4 and suppose that $F^\lambda H$ is a field. Then every simple $F^\lambda G$-module is isomorphic to one of the ideals $V_{p^n-1,j}$; moreover, any ideal $V_{p^n-1,j}$, $1 \leq j \leq d$, is minimal.

2. Projective representation types of finite groups. A group G is said to be of finite (resp. infinite) PFR-type if the number of indecomposable projective F-representations of the group G with a cocycle λ is finite (resp. infinite) for any $\lambda \in Z^2(G, F^*)$. Other groups are said to be of mixed PFR-type.

Let Γ and Γ' be equivalent projective matrix F-representations of G with a cocycle λ. Then there exists an invertible matrix C over F and a mapping $\alpha : G \to F^*$ such that $C^{-1} \Gamma(g)C = \alpha_g \Gamma'(g)$ for all $g \in G$. In this case,

$$\lambda_{a,b} = \frac{\alpha_a \alpha_b}{\alpha_{ab}} \lambda_{a,b}$$

for all $a, b \in G$. Hence, α is a linear F-character of the group G. But the number of linear F-characters of G is finite. Therefore, the number of pairwise inequivalent indecomposable projective F-representations of G with a cocycle λ is finite if and only if the algebra $F^\lambda G$ is of finite representation.
type. This allows one to define the type of projective F-representations of G as in the Introduction.

Applying Lemma 1.3 we may establish some connection between PFR-type of a group G and PFR-type of a Sylow p-subgroup G_p of G. If G_p is of finite (resp. infinite) PFR-type, then so is G. Suppose G_p is of mixed PFR-type. In view of Corollary 3 to Proposition 1.3, G_p is not cyclic. By Lemma 1.4 the group algebra FG is of infinite representation type. It follows that G is not of finite PFR-type. If G is of finite PFR-type, then by Lemma 1.4, G_p is cyclic, and hence, in view of Corollary 3 to Proposition 1.3, G_p is of finite PFR-type. If G is of infinite PFR-type, then G_p is not of finite PFR-type. If G is of mixed PFR-type, then G_p is also of mixed PFR-type.

Let G be a finite group and $p | |G^*|$. The group G/G^* can be written as a direct product of its Sylow q-subgroups $G_q G'/G'$, where G_q is a Sylow q-subgroup of G and q is a prime divisor of $|G : G'|$. Denote by C_p a Sylow p-subgroup of G'. We shall assume that $C_p \subseteq G_p$ and $C_p \neq G_p$. Then $G'_p \subseteq C_p$, and hence $C_p \lhd G_p$. The group G_p/C_p is isomorphic to the Sylow p-subgroup $G_p G'/G'$ of G/G'. Let $\varphi : G \to G/G'$ be the canonical homomorphism, $\psi : G/G' \to G_p G'/G'$ a projector and $\chi : G_p G'/G' \to G_p/C_p$ the isomorphism defined by $\chi(aG') = aC_p$ for any $a \in G_p$. Then

$$ (2.1) \quad f = \chi \psi \varphi $$

is a homomorphism of G onto G_p/C_p. The restriction of f to G_p is the canonical homomorphism of G_p onto G_p/C_p.

Lemma 2.1. Let $H = G_p/C_p$, $f : G \to H$ be the epimorphism (2.1), $\mu \in Z^2(H, F^*)$ and $\lambda_{a,b} = \mu_{f(a),f(b)}$ for any $a,b \in G$. Then $\lambda \in Z^2(G, F^*)$ and $\lambda_{x,y} = \lambda_{y,x} = 1$ for all $x \in G_p$, $y \in C_p$. If $V = F^\lambda G_p \cdot \text{rad} F C_p$, then V is an ideal of the algebra $F^\lambda G_p$ and $F^\lambda G_p/V \cong F^\mu H$.

Proof. Direct calculation. ■

Theorem 2.1. Suppose $i_F \neq 0$, G is a finite group, $p | |G'|$ and G_p/C_p is a direct product of s cyclic p-subgroups for $C_p \neq G_p$. Then:

1. If C_p is not cyclic or $s \geq i_F + 2$, then G is of infinite PFR-type.
2. If G_p is cyclic, then G is of finite PFR-type.
3. If C_p is a cyclic group and G_p is not a cyclic group and $1 \leq s \leq i_F$, then G is of mixed PFR-type.
4. Suppose $C_p = \langle c \rangle$, $G_p/C_p = \langle a_1 C_p \rangle \times \ldots \times \langle a_s C_p \rangle$ and $s = i_F + 1$. If $c \in \langle a_r \rangle$ for some $r \in \{1, \ldots, s\}$, then G is of mixed PFR-type. If $c \not\in \langle a_j \rangle$ for every $j \in \{1, \ldots, s\}$ and $C_2 \neq C_2'$ for $p = 2$ then G is of infinite PFR-type.

Proof. The assertion for $p \neq 2$ follows from Theorem 1.2 and Lemmas 1.5, 2.1. Now we turn to the case when p is an arbitrary prime.
ments (1)–(3) follow from Lemmas 1.2–1.5, 2.1 and Corollary 3 to Proposition 1.3.

We prove (4). Let
\[c = a_1^{m_1}, \quad H = G_p/C_p, \quad \overline{H} = G_p/\langle a_1 \rangle. \]
Then
\[\overline{H} \cong H/(\langle a_1 \rangle/C_p) \cong \langle a_2 C_p \rangle \times \ldots \times \langle a_s C_p \rangle. \]
There is a cocycle \(\mu \in Z^2(H, F^*) \) such that \(F^\mu \overline{H} \) is a field. Let \(\varphi : G_p \to \overline{H} \) be the canonical homomorphism. Put \(\mu_{x,y} = \overline{\varphi(x), \varphi(y)} \) for any \(x, y \in G_p \). Then \(\mu \in Z^2(G_p, F^*) \). Let \(\{ u_x : x \in G_p \} \) be a natural \(F \)-basis of the algebra \(F^\mu G_p \). We have
\[u_{a_1} = u_c, \quad u_{c^j} = u_e, \]
\[\text{rad} F^\mu G_p = F^\mu G_p(u_{a_1} - u_c) \quad \text{and} \quad F^\mu G_p/\text{rad} F^\mu G_p \cong F^\mu \overline{H}. \]
Let \(\pi : G_p \to G_p/C_p \) be the canonical homomorphism. If \(\pi(x) = \pi(x') \) then \(\varphi(x) = \varphi(x') \).
It follows that the formula \(\nu_{\pi(x), \pi(y)} = \overline{\varphi(x), \varphi(y)} \), where \(x, y \in G_p \), gives a cocycle \(\nu \in Z^2(H, F^*) \). In view of Lemma 2.1 there is a cocycle \(\lambda \in Z^2(G, F^*) \) such that \(\lambda_{a,b} = \nu_{f(a), f(b)} \) for all \(a, b \in G \), where \(f \) is the epimorphism (2.1).
If \(a, b \in G_p \) then \(\lambda_{a,b} = \nu_{a,b} = \mu_{a,b} \). It follows that \(F^\lambda G_p \cong F^\mu G_p \), and hence \(F^\lambda G_p \) is a uniserial algebra. Applying Theorem 1.1 we conclude that \(F^\lambda G \) is of finite representation type. But \(G_p \) is not cyclic. Therefore, by Lemma 1.4 the group algebra \(FG \) is of infinite representation type. Thus, the group \(G \) is of mixed PFR-type.

Let \(|a_j C_p| = p^{m_j} \) and
\[a_j^{p^{m_j}} = c^{p^{m_j}} \]
for every \(j \in \{1, \ldots, s\} \). If \(p \neq 2 \) then by Lemma 1.7, \(G \) is of infinite PFR-type. Suppose \(p = 2 \), \(G_2' \neq C_2 \), \(H = \langle c^2 \rangle \) and \(\lambda \in Z^2(G, F^*) \). Then \(G_2' \subset H \) and \(G_2/H = \langle c \rangle \times \langle a_1 H \rangle \times \ldots \times \langle a_s H \rangle \). In view of Lemma 1.5, \(F^\lambda H \) is a group algebra and the set \(V = F^\lambda G_2 \cdot \text{rad} F^\lambda H \) is a two-sided ideal of the algebra \(F^\lambda G_2 \). The quotient algebra \(F^\lambda G_2/V \) is a commutative twisted group algebra of the group \(G_2/H \) and the field \(F \). From Corollary 3 to Proposition 1.3 we conclude that \(F^\lambda G/V \) is of infinite representation type. From this and Lemma 1.3 it follows that \(G \) is of infinite PFR-type.

Corollary 1. Suppose \(i_F = \infty \). If \(C_p \) is a non-cyclic group then \(G \) is of infinite PFR-type. If \(C_p \) is cyclic and \(G_p \) is not cyclic then \(G \) is of mixed PFR-type. If \(G_p \) is a cyclic group then \(G \) is of finite PFR-type.

Corollary 2. Suppose \(i_F \neq 0, p \neq 2, G = G_p \times B, [G,G_p] = \langle c \rangle \) and \([B,G_p] \neq \{c\} \). Suppose \(G_p/\langle c \rangle \) is a direct product of \(s \) cyclic subgroups for \(G_p \neq \langle c \rangle \). If \(1 \leq s < i_F \) then \(G \) is of mixed PFR-type. If \(s \geq i_F + 1 \) then \(G \) is of infinite PFR-type. For \(G_p = \langle c \rangle \) the group \(G \) is of finite PFR-type.
Proof. Apply Theorems 1.4 and 2.1.

Theorem 2.2. Suppose \(i_F \neq 0 \), \(G \) is a finite group and \(p \mid |G'| \). Assume that \(G_p \) is abelian and \(C_p \) is cyclic. Let \(s \) be the number of invariants of \(G_p \). If \(s = 1 \) then \(G \) is of finite PFR-type. If \(1 < s \leq i_F + 1 \) then \(G \) is of mixed PFR-type. If \(s \geq i_F + 2 \) then \(G \) is of infinite PFR-type.

Proof. From Lemma 1.3 and Corollary 3 to Proposition 1.3 we conclude that if \(s = 1 \) then \(G \) is of finite PFR-type, and if \(s \geq i_F + 2 \) then \(G \) is of infinite PFR-type. Let \(1 < s \leq i_F + 1 \) and \(C_p = \langle c \rangle \). We have \(G_p/C_p = \langle a_1C_p \rangle \times \ldots \times \langle a_tC_p \rangle \), \(t \leq s \). If \(t \leq i_F \) then by Lemmas 1.3 and 2.1, \(G \) is of mixed PFR-type. Suppose that \(t = i_F + 1 \). If \(c \notin \langle a_i \rangle \) for all \(i \in \{1, \ldots, t\} \) then \(G_p/H = \langle cH \rangle \times \langle a_1H \rangle \times \ldots \times \langle a_tH \rangle \), where \(H = \langle c^p \rangle \). This contradiction shows that \(c \in \langle a_r \rangle \) for some \(r \in \{1, \ldots, t\} \). In this case, \(G \) is also of mixed PFR-type, by Lemmas 1.3 and 2.1, Corollary 3 to Proposition 1.3 and Theorem 2.1.

Proposition 2.1. Suppose \(i_F = 0 \). If \(G_p \) is not cyclic then \(G \) is of infinite PFR-type. If \(G_p \) is cyclic then \(G \) is of finite PFR-type.

Proof. The algebra \(F^\lambda G_p \) is the group algebra \(FG_p \) for every \(\lambda \in Z^2(G, F^*) \) (see [26, p. 43]). It remains to apply Lemmas 1.3 and 1.4.

We remark that Proposition 2.1 was, in fact, formulated in [7].

Two groups are said to be PFR-isotypic if they are of the same PFR-type. From the above results, we will derive necessary and sufficient conditions for \(G \) and \(G_p \) to be PFR-isotypic. In view of Lemmas 1.3, 1.5 and 2.1 groups \(G \) and \(G_p \) are PFR-isotypic if \(C_p = G'_p \).

Proposition 2.2. Let \(G \) be a finite group with \(p \mid |G'| \) and \(G_p \) an abelian group, and \(s \) the number of invariants of \(G_p \). If \(C_p \) is cyclic then \(G \) and \(G_p \) are PFR-isotypic. If \(C_p \) is not cyclic then \(G \) and \(G_p \) are PFR-isotypic if and only if \(s \geq i_F + 2 \).

Proof. If \(C_p \) is cyclic we apply Theorem 2.2. If \(C_p \) is not cyclic we apply the Corollary of Theorem 1.2 and Theorem 2.2.

Proposition 2.3. Suppose \(i_F \neq 0 \), \(G \) is a finite group, \(p \mid |G'| \), and \(s \) is the number of invariants of \(G_p/G'_p \). Assume that \(G_p \) is non-abelian and if \(G'_p \) is cyclic then \(s \neq i_F + 1 \) for \(p = 2 \). The groups \(G \) and \(G_p \) are PFR-isotypic if and only if one of the following conditions holds:

1. \(s \geq i_F + 2 \) or \(G'_p \) is non-cyclic;
2. \(s \leq i_F + 1 \) and \(C_p \) is cyclic;
3. \(s = i_F + 1 \), \(G'_p \) is cyclic, \(C_p \) is non-cyclic and \(G_p/G'_p = \langle b_1G'_p \rangle \times \ldots \times \langle b_sG'_p \rangle \), where \(G_p \not\subset \langle b_j \rangle \) for every \(j \in \{1, \ldots, s\} \).
Proof. Apply Theorem 2.1. If condition (1) holds, then G_p is of infinite PFR-type. If condition (2) holds and $G'_p \neq C_p$, then by the same arguments as in the proof of Theorem 2.2 we can establish that G is of mixed PFR-type. Suppose that conditions (1) and (2) do not hold. Then $s \leq i_F + 1$, G'_p is cyclic and C_p is non-cyclic. In this case, G is of infinite PFR-type. The subgroup G_p is of infinite PFR-type if and only if $s = i_F + 1$ and $G_p / G'_p = \langle b_1 G'_p \rangle \times \ldots \times \langle b_s G'_p \rangle$, where $G'_p \not\subset \langle b_j \rangle$ for every $j \in \{1, \ldots, s\}$. ■

Corollary. Suppose $i_F = \infty$, G is a finite group and $p \mid |G'|$. The groups G and G_p are PFR-isotypic if and only if C_p is cyclic or G'_p is not cyclic.

REFERENCES

[37] K. Sobolewska, On the number of indecomposable representations with a given degree of a twisted group algebra over a field of characteristic p, Slupskie Prace Mat.-Fiz. 2 (2002), 81–89.

Institute of Mathematics
Pedagogical Academy
Arciszewskiego 22b
76-200 Slupsk, Poland
E-mail: barannykleo@poczta.onet.pl
kamiles@poczta.onet.pl

Received 30 September 2003