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A PINCHING THEOREM ON COMPLETE SUBMANIFOLDS
WITH PARALLEL MEAN CURVATURE VECTORS

BY

ZIQI SUN (Wichita, KS)

Abstract. Let M be an n-dimensional complete immersed submanifold with parallel
mean curvature vectors in an (n + p)-dimensional Riemannian manifold N of constant
curvature c > 0. Denote the square of length and the length of the trace of the second
fundamental tensor of M by S and H, respectively. We prove that if

S ≤ 1

n− 1
H2 + 2c, n ≥ 4,

or

S ≤ 1

2
H2 + min

(
2,

3p− 3

2p− 3

)
c, n = 3,

then M is umbilical. This result generalizes the Okumura–Hasanis pinching theorem to
the case of higher codimensions.

1. Introduction. Let M be an n-dimensional complete immersed sub-
manifold with parallel mean curvature vector in an (n + p)-dimensional
Riemannian manifold N of constant curvature c > 0, and let h denote the
second fundamental tensor of M . We denote the square of the length of h
by S and the length of the trace of h by H. It is well known that M is a
totally umbilical submanifold of N if and only if S = H2/n.

When p = 1, i.e., when M is a complete hypersurface of N , a classical
pinching theorem has been obtained by Okumura and Hasanis. They proved
[O], [H]: If n ≥ 3 and

S ≤ 1

n− 1
H2 + 2c,

then M is umbilical.
The purpose of this paper is to generalize the above result to the case of

higher codimensions. We first prove that, when n ≥ 4, Okumura–Hasanis’s
pinching theorem also holds in the case of high codimension.

Theorem 1. Let M be an n-dimensional complete immersed submani-
fold with parallel mean curvature vector in an (n+p)-dimensional Riemann-
ian manifold N of constant curvature c > 0. If n ≥ 4, p ≥ 2, and
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S ≤ 1

n− 1
H2 + 2c,

then M is totally umbilical.

In the case of n = 3 and p ≥ 2, we have the following pinching theorem,
which is slightly weaker than Okumura–Hasanis’s result in the case of n = 3
and p = 1.

Theorem 2. Let M be an 3-dimensional complete immersed submani-
fold with parallel mean curvature vector in a (3+p)-dimensional Riemannian
manifold N of constant curvature c > 0. If p ≥ 2 and

S ≤ 1

2
H2 + min

(
2,

3p− 3

2p− 3

)
c,

then M is totally umbilical.

We refer the reader to [CN] for other related results in the case of sub-
manifolds in Euclidean spheres. In Section 2 we prepare some fundamental
formulas, and in Section 3 we prove two lemmas. The proof of Theorems 1
and 2 is given in Section 4.

2. Fundamental formulas. We shall use the following convention on
the ranges of indices:

1 ≤ A,B,C, . . . ≤ n+ p,

1 ≤ i, j, k, . . . ≤ n,
n+ 1 ≤ u, v, y, . . . ≤ n+ p.

LetM be an n-dimensional complete immersed submanifold with parallel
mean curvature vector in an (n + p)-dimensional Riemannian manifold N .
We choose a local orthonormal frame field e1, . . . , en, en+1 . . . , en+p inN such
that, when restricted to M , e1, . . . , en are tangent to M , and consequently,
en+1, . . . , en+p will be the normal frame on M . Let ω1, . . . , ωn+p be the dual
frame. Then the structure equations of N are given by

(2.1) dωA =
∑

B

ωAB ∧ ωB , ωAB + ωBA = 0,

(2.2) dωAB =
∑

C

ωAC ∧ ωCB −
1

2

∑

C,D

KABCDωC ∧ ωD,

where KABCD is the Riemannian curvature of N . If we restrict these forms
to M , then ωu = 0. Thus,

0 = dωu =
∑

j

ωuj ∧ ωj .
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By Cartan’s lemma we can write

(2.3) ωui =
∑

j

huijωj , huij = huji.

From these formulas we obtain

dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0,

dωij =
∑

k

ωik ∧ ωkj −
1

2

∑

k,l

Rijklωk ∧ ωl,

Rijkl = Kijkl +
∑

u

(huikh
u
jl − huilhujk),(2.4)

dωuv =
∑

y

ωuy ∧ ωyv −
1

2

∑

k,l

Ruvklωk ∧ ωl,(2.5)

Ruvkl = Kuvkl +
∑

i

(huikh
v
il − huilhvik),(2.6)

where Rijkl is the Riemannian curvature of M . The symmetric 2-form

h =
∑

i,j,u

huijωiωjeu

and the vector

(2.7) q =
∑

i,u

huiieu

are the second fundamental form and the mean curvature vector of M ,
respectively. If q is parallel in the normal bundle of M , then M is called
a submanifold with parallel mean curvature vector . The length of q is defined
by

H = ‖trh‖ =
(∑

u

(∑

i

huii

)2)1/2
.

Define the covariant derivative Dh of h (with components huijk) by

(2.8)
∑

k

huijkωk = dhuij +
∑

m

huimωmj +
∑

m

humjωmi +
∑

v

hvijωvu.

Taking the exterior derivative of (2.3) and using the structure equations
in (2.1) to (2.6), one can show [Y1]

(2.9) huijk − huikj = Kuijk.

Next, we take the exterior derivative of (2.8) and define huijkl by
∑

k

huijklωl = dhuijk +
∑

l

huljkωli +
∑

l

huilkωlj +
∑

l

huijlωlk +
∑

v

hvijkωvu.
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Then we can show [Y1]

(2.10) huijkl − huijlk =
∑

m

huimRmjkl +
∑

m

humjRmikl +
∑

v

hvijRvukl.

From now on, we assume that N is a Riemannian manifold of constant
curvature c. Then we have

(2.11) KABCD = (δACδBD − δADδBC)c.

In this case we deduce from (2.9) that

(2.12) huijk = huikj .

We further assume that M is a submanifold with parallel mean curvature
vector. A direct computation shows that H = const under this assumption.

We choose en+1 = q/‖q‖ with q defined in (2.7) in our local orthonormal
frame, and denote the n × n matrix (huij) by Hu. Then clearly trHv = 0 if
v 6= n+ 1. Therefore,

H =
∑

i

hn+1
ii .

Since en+1 is parallel in the normal bundle of M , we have

(2.13) ωn+1,v = 0.

Taking the exterior derivative of (2.13) and using (2.2) yields
∑

i

ωn+1,i ∧ ωvi = 0,

which, together with (2.5), implies

(2.14) Rn+1,vkl = 0.

From (2.6) and (2.14) we have

(2.15) Hn+1Hu = HuHn+1.

Define
D = trH2

n+1 =
∑

i,j

(hn+1
ij )2,

Q = S −D =
∑

v 6=n+1

trH2
v =

∑

i,j,v 6=n+1

(hvij)
2.

We now compute the Laplacian of D and Q:

∆D =
∑

i

Dii, ∆Q =
∑

i

Qii.

From (2.10)–(2.12) and (2.15), one can show [Y1]

(2.16) ∆huij =
∑

k

huijkk =
∑

k,m

humkRmijk +
∑

k,m

huimRmkjk +
∑

k,v

hvikRvujk.

Choosing u = n+ 1 in (2.16) and using (2.14) yields
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∆hn+1
ij =

∑

k,m

hn+1
mk Rmijk +

∑

k,m

hn+1
im Rmkjk.

Therefore,

1

2
∆D =

∑

i,j

hn+1
ij ∆hn+1

ij +
∑

i,j,k

(hn+1
ijk )2(2.17)

≥
∑

i,j,k,m

hn+1
ij hn+1

mk Rmijk +
∑

i,j,k,m

hn+1
ij hn+1

im Rmkjk.

For a given point p ∈M , we choose the frame field e1, . . . , en so that the
matrix (hn+1

ij ) is diagonal at p. Thus we may assume that at p,

hn+1
ij = Liδij .

In this frame field, the inequality in (2.17) can be simplified at p:

(2.18) ∆D ≥
∑

i,j

(Li − Lj)2Rijij .

Let
f2 = D − 1

n
H2.

Substituting (2.4) and (2.11) into (2.17) and using Okumura’s computa-
tion [O], we can get the following estimate:

1

2
∆D ≥ f2

(
cn+

1

n
H2 − n− 2√

n(n− 1)
|H|f − f2

)
(2.19)

−
∑

v 6=n+1

[tr(Hn+1Hv)]
2

Choosing u = v 6= n+ 1 in (2.16), one can show
∑

i,j,v 6=n+1

hvij∆h
v
ij =

∑

u,v 6=n+1

tr(HuHv −HvHu)2 −
∑

u,v 6=n+1

[tr(HuHv)]
2

+ ncQ+
∑

v 6=n+1

H tr(H2
vHn+1)−

∑

v 6=n+1

[tr(HvHn+1)]2.

Using the techniques of [CDK], one can prove
∑

u,v 6=n+1

tr(HuHv −HvHu)2 −
∑

u,v 6=n+1

[tr(HuHv)]
2 ≥ −

(
2− 1

p− 1

)
Q2,

and, when combined with (2.16), this estimate implies

(2.20)
1

2
∆Q =

∑

i,j,v 6=n+1

hvij∆h
v
ij +

∑

i,j,k,v 6=n+1

(hvijk)
2

≥ −
(

2− 1

p− 1

)
Q2 + ncQ+

∑

v 6=n+1

H tr(H2
vHn+1)−

∑

v 6=n+1

[tr(HvHn+1)]2.
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3. Lemmas

Lemma 1. Under the assumptions of Theorems 1 and 2, if , in addition,
M is umbilical with respect to en+1, then M must be totally umbilical.

Proof. Since M is umbilical with respect to en+1, we have

(3.1) hn+1
ij = Lδij

for some constant L, and trHv = 0 for v 6= n + 1. A direct computation
shows that in this case,

(3.2)
∑

v 6=n+1

H tr(H2
vHn+1)−

∑

v 6=n+1

[tr(HvHn+1)]2 =
H2

n
Q.

So, by substituting (3.1) into (2.20) and using (3.2) we get

(3.3)
1

2
∆Q ≥ Q

[
−
(

2− 1

p− 1

)
Q+ nc+

H2

n

]
.

This is our main estimate. We shall come back to it later.
By assumption, we have

(3.4) S ≤ 1

n− 1
H2 + 2c, n ≥ 4,

and

(3.5) S ≤ 1

2
H2 + min

(
2,

3p− 3

2p− 3

)
c, n = 3.

Also, from (3.1) we have

(3.6) D =
1

n
H2.

(3.4)–(3.6) imply

(3.7) Q ≤ 1

n(n− 1)
H2 + 2c, n ≥ 4,

and

(3.8) Q ≤ 1

6
H2 + min

(
2,

3p− 3

2p− 3

)
c, n = 3.

Since

(3.9)
p− 1

2p− 3
>

1

n− 1
when n ≥ 3 and p ≥ 2,

and

(3.10)
n(p− 1)

2p− 3
> 2 when n ≥ 3 and p ≥ 2,
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(3.7)–(3.10) imply that for n ≥ 3,

Q <
p− 1

n(2p− 3)
H2 +

n(p− 1)

2p− 3
c =

H2

n(2− 1
p−1)

+
n

2− 1
p−1

c,

i.e.

(3.11) A = −
(

2− 1

p− 1

)
Q+ nc+

H2

n
> 0.

We now come back to (3.3), and deduce from (3.11) that

(3.12)
1

2
∆Q ≥ AQ, A > 0.

Now since S is bounded, so are Q and the Ricci curvature of M . We apply
Yau’s generalized maximal principle [Y2] to conclude that there exists a
sequence {ps} of points of M such that

(3.13) lim
s→∞

Q(ps) = sup
M

Q,

(3.14) lim
s→∞

∆Q(ps) ≤ 0.

From (3.12)–(3.14), we have

0 ≥ A sup
M

Q.

This implies that supM Q = 0, i.e.,Q ≡ 0. Hence M is umbilical with respect
to eu, and consequently, M is totally umbilical.

Lemma 2. Let a1, . . . , an, b be n+ 1 (n > 1) real numbers satisfying

( n∑

i=1

ai

)2
≥ (n− 1)

n∑

i=1

a2
i + b.

Then for 1 ≤ i 6= j ≤ n,

2aiaj ≥
b

n− 1
.

Proof. See [C, p. 55].

4. Proof of the theorems. According to Lemma 1, we need only prove
that M is umbilical with respect to en+1. In other words, we need to show
D = H2/n. Suppose D 6= H2/n. Then

sup
M

D >
1

n
H2.

According to Yau’s generalized maximal principle [Y2], there exists a se-
quence {ps} ⊂M such that

lim
s→∞

D(ps) = sup
M

D,

lim
s→∞

∆D(ps) ≤ 0.
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For each s, we choose a local orthonormal frame eps1 , . . . , e
pn
n in a neigh-

borhood of ps. We denote the components of h in this frame by hvij,ps , and

hn+1
ij, ps

= Li, psδij . Moreover, we denote the Riemannian curvature tensor

by Rijkl,ps , the n-matrix (hvij,ps) by Hv,ps with v 6= n+ 1, and the n-matrix

(Li,psδij) by Hn+1,ps . Since S is bounded, so are the sequences {(hvij,ps)}s∈Z+

and {(Li,psδij)}s∈Z+ . Therefore, by choosing subsequences if necessary, we
can assume they are convergent, and we can write

lim
s→∞

hvij,ps = hvij ,(4.1)

lim
s→∞

Li,ps = Li,(4.2)

lim
s→∞

Rijkl,ps = Rijkl.(4.3)

Since H = const, we have ∑

i

Li = H.

If we define

Q =
∑

i,j,v 6=n+1

(hvij)
2, D =

∑

i

(Li)
2,

S = Q+D, f = D − 1

n
H2,

Hv = (hvij), Hn+1 = (Liδij),

Rijkl = LiLj +
∑

v 6=n+1

(hviih
v
jj − (hvij)

2) + c,

then, in addition to (4.1)–(4.3), we have

lim
s→∞

Q(ps) = Q, lim
s→∞

D(ps) = D,

lim
s→∞

S(ps) = S, lim
s→∞

f(ps) = f,

lim
s→∞

tr(Hv,psHn+1,ps) = tr(HvHn+1).

From (2.18) and (2.19), we have

∆D(ps) ≥
∑

i,j

(Li,ps − Lj,ps)2Rijij,ps .

Therefore

1

2
∆D(ps) ≥ f2(ps)

(
cn+

1

n
H2 − n− 2√

n(n− 1)
|H|f(ps)− f2(ps)

)

−
∑

v 6=n+1

[tr(Hn+1,psHv,ps)]
2.
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Letting s→∞, we have

(4.4)
∑

i,j

(Li − Lj)2Rijij ≤ 0,

(4.5) f 2

(
cn+

1

n
H2− n− 2√

n(n− 1)
|H|f −f 2

)
−
∑

v 6=n+1

[tr(Hn+1Hv)]
2 ≤ 0.

We now divide the rest of the proof into two cases.

Case 1: Q > 0. Since

S(ps) ≤
1

n− 1
H2 + 2c,

we have

S ≤ 1

n− 1
H2 + 2c,

and consequently,
H2 ≥ (n− 1)S − 2(n− 1)c,

i.e.,

(4.6)
(∑

i

Li

)2
≥ (n− 1)

∑

i

L2
i + (n− 1)

∑

i,j

(hvij)
2 − 2(n− 1)c.

Applying Lemma 2 to (4.6) yields

2LiLj ≥
(n− 1)

∑
k,l,v 6=n+1(hvkl)

2 − 2(n− 1)c

n− 1
,

or

(4.7) LiLj + c ≥ 1

2

∑

k,l,v 6=n+1

(hvkl)
2.

Hence, for i 6= j,

Rijij = LiLj + c+
∑

i,j,v 6=n+1

(hviih
v
jj − (hvij)

2)(4.8)

≥ 1

2

∑

k,l,v 6=n+1

(hvkl)
2 +

1

2

(
−2

∑

v 6=n+1

(hvij)
2 + 2

∑

v 6=n+1

hviih
v
jj

)

≥ 1

2

∑

v 6=n+1; k 6=i,j or l 6=i,j
(hvkl)

2 +
1

2
(hvii + hvjj)

2 ≥ 0.

From the above inequality and (4.4) we obtain

(4.9)
∑

i,j

(Li − Lj)2Rijij = 0.

We claim that for i < j there is at most one Rijij equal to zero, and the

others are positive. If not, we may assume Rijij = 0 and Rpqpq = 0 for two
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pairs (i, j) and (p, q) with i 6= p, i < j and p < q. Then from (4.7) we have

(4.10) hvii + hvjj = 0, hvkl = 0, k 6= i, j or l 6= i, j, v 6= n+ 1,

and

hvpp + hvqq = 0, hvpq = 0, k 6= p, q or l 6= p, q, v 6= n+ 1.

From (4.9) and (4.10) we can deduce that

hvkl = 0, 1 ≤ k, l ≤ n, v 6= n+ 1,

and consequently, Q = 0, contrary to the assumption of Case 1. Hence
the claim is proven. We now assume without loss of generality that only
Rijij = 0. Then from (4.8) we have

L1 = L3 = . . . = Ln, L2 = L3 = . . . = Ln.

Hence L2 = L2 = . . . = Ln, i.e., D = H2/n. However, this contradicts the
assumption supM D > 1

nH
2. This completes the proof in Case 1.

Case 2: Q = 0. From Q = 0 it is easy to see that
∑

v 6=n+1

[tr(Hn+1Hv)]
2 = 0.

Hence from (4.5) we get

(4.11) f 2

(
cn+

1

n
H2 − n− 2√

n(n− 1)
|H|f − f 2

)
≤ 0.

But f = D − 1
nH

2 > 0, so

(4.12) cn+
1

n
H2 − n− 2√

n(n− 1)
|H|f − f 2 ≤ 0.

Solving the equality (4.11) we get

(4.13) f ≥ 2− n
2
√
n(n− 1)

|H|+ 1

2

√
n

n− 1
H2 + 4nc.

On the other hand, from the fact D ≤ 1
n−1H

2 + 2c we get

f ≤
√

1

n(n− 1)
H2 + 2c.

Combining (4.12) and (4.13) gives
√

1

n(n− 1)
H2 + 2c ≥ 2− n

2
√
n(n− 1)

|H|+ 1

2

√
n

n− 1
H2 + 4nc.
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The above inequality implies

(n− 2)2c2 ≤ 0.

Therefore n = 2. However, this contradicts our hypothesis, and this com-
pletes the proof of Case 2.
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