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A PINCHING THEOREM ON COMPLETE SUBMANIFOLDS
WITH PARALLEL MEAN CURVATURE VECTORS

BY

ZIQI SUN (Wichita, KS)

Abstract. Let M be an n-dimensional complete immersed submanifold with parallel
mean curvature vectors in an (n + p)-dimensional Riemannian manifold N of constant
curvature ¢ > 0. Denote the square of length and the length of the trace of the second
fundamental tensor of M by S and H, respectively. We prove that if

1
S<——H*+2c, n>4,
n—1

or

1 2 . 3p—3
< = =
S < 2H + min (2, 2p73)c, n =3,

then M is umbilical. This result generalizes the Okumura—Hasanis pinching theorem to
the case of higher codimensions.

1. Introduction. Let M be an n-dimensional complete immersed sub-
manifold with parallel mean curvature vector in an (n + p)-dimensional
Riemannian manifold IV of constant curvature ¢ > 0, and let h denote the
second fundamental tensor of M. We denote the square of the length of h
by S and the length of the trace of h by H. It is well known that M is a
totally umbilical submanifold of N if and only if S = H?/n.

When p = 1, i.e., when M is a complete hypersurface of N, a classical
pinching theorem has been obtained by Okumura and Hasanis. They proved
[O], H]: If n > 3 and

1
S < —— H? 4 2¢,
n—1
then M is umbilical.
The purpose of this paper is to generalize the above result to the case of

higher codimensions. We first prove that, when n > 4, Okumura—Hasanis’s
pinching theorem also holds in the case of high codimension.

THEOREM 1. Let M be an n-dimensional complete immersed submani-
fold with parallel mean curvature vector in an (n+p)-dimensional Riemann-
ian manifold N of constant curvature ¢ > 0. If n >4, p > 2, and
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1
S < ——H?+ 2,
n—1
then M s totally umbilical.

In the case of n = 3 and p > 2, we have the following pinching theorem,
which is slightly weaker than Okumura—Hasanis’s result in the case of n = 3
and p = 1.

THEOREM 2. Let M be an 3-dimensional complete immersed submani-
fold with parallel mean curvature vector in a (3+p)-dimensional Riemannian
manifold N of constant curvature ¢ > 0. If p > 2 and

1 3p—3
S < §H2—|—min <2, 2§_3>c,

then M s totally umbilical.

We refer the reader to [CN] for other related results in the case of sub-
manifolds in Euclidean spheres. In Section 2 we prepare some fundamental
formulas, and in Section 3 we prove two lemmas. The proof of Theorems 1
and 2 is given in Section 4.

2. Fundamental formulas. We shall use the following convention on
the ranges of indices:

1< A B,C,...<n+p,
1<4,5,k,... <n,
n+1<uvy,...<n+p.

Let M be an n-dimensional complete immersed submanifold with parallel
mean curvature vector in an (n + p)-dimensional Riemannian manifold N.

We choose a local orthonormal frame field eq, ..., e,,ep41 ..., €n4pin N such
that, when restricted to M, eq,...,e, are tangent to M, and consequently,
€n+1,-- - Entp Will be the normal frame on M. Let w1, ...,wyp be the dual
frame. Then the structure equations of N are given by
(2.1) dwr =) wapAwp, wap+wpa=0,

B

1

(2.2) dwap = ZC:WAC Awep — 5 czz:) Kapocpwe Awp,

where K opcp is the Riemannian curvature of N. If we restrict these forms
to M, then w, = 0. Thus,

0 =dw, = Zw“j A wj.
J



PINCHING THEOREM 191

By Cartan’s lemma we can write

(2.3) wui = Y hiwj, bl = bl
J

From these formulas we obtain

dw; = E wij N\ Wj, wij + wji = 0,
J

1
dwij = wik Nwij — 3 > Rijrawr A wi,
k

k,l
(2.4) Riji = Kijr + Z(h?kh?z — hithi),
u
1
(25) dwuv = Zwuy A Wyy — § Z Ruvklwk N w,
y k,l
%

where R;ji; is the Riemannian curvature of M. The symmetric 2-form

h = E hijwlw]eu
i?j?“

and the vector
R

are the second fundamental form and the mean curvature vector of M,
respectively. If ¢ is parallel in the normal bundle of M, then M is called
a submanifold with parallel mean curvature vector. The length of q is defined

by
1=l = (Y (3 h;;.)2)1/2.

Define the covariant derivative Dh of h (with components kg, ) by
(2.8) > higwr = dhl + > hiwm Y hitwmi + Y hiw.
k m m v
Taking the exterior derivative of (2.3) and using the structure equations
in (2.1) to (2.6), one can show [Y1]
(2.9) ik — ik = Kuijk-

Next, we take the exterior derivative of (2.8) and define hj%;, by

k l l l v
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Then we can show [Y1]
u w u ) u ) v
(210) h gkl — h’z]lk Z hszm]kl + Z hmJlekl + Z hURvukl
m m v

From now on, we assume that NV is a Riemannian manifold of constant
curvature c. Then we have

(2.11) Kapep = (6acdpp — 6apdpc)c.
In this case we deduce from (2.9) that
(2.12) b= B

We further assume that M is a submanifold with parallel mean curvature
vector. A direct computation shows that H = const under this assumption.

We choose en4+1 = ¢q/||q|| with ¢ defined in (2.7) in our local orthonormal
frame, and denote the n x n matrix (h};) by Hy. Then clearly tr H, = 0 if

v # n + 1. Therefore,
H=>Y hi.

Since ey is parallel in the normal bundle of M, we have
(2.13) W10 =0.
Taking the exterior derivative of (2.13) and using (2.2) yields

E Wnt1,i N\ Wy = 0,
i

which, together with (2.5), implies

(2.14) Ryt = 0.
From (2.6) and (2.14) we have

(215) Hn+1Hu = Han+1.
Define

D=, = Y,

Z7j
Q=S-D= > twH = > (h))*
'U7én+1 i,j,’l]?én+1
We now compute the Laplacian of D and Q:

AD = ZDm‘, AQ = ZQZ’L
From (2.10)—(2.12) and (2.15), one can show [Y1]
(2.16)  AhY = h =Y hly Rk + Y bl Rokgr + Y hi Ruujie
k k,m k,m k,v

Choosing u =n+ 1 in (2.16) and using (2.14) yields
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A = S R+ S R

k,m
Therefore,
1
(217) S AD= Z WETLAREEE 4y (R
0,5,k
> Z W R+ Y R R R
t,5,k,m 1,5,k,m

For a given point p € M, we choose the frame field ey, ..., e, so that the
matrix (h?jﬂ) is diagonal at p. Thus we may assume that at p,

Wt = Lidij.
In this frame field, the inequality in (2.17) can be simplified at p:

(2.18) AD > (Li — L;)*Ryzi;.
i’j
Let 1
f?=D - —H>
n

Substituting (2.4) and (2.11) into (2.17) and using Okumura’s computa-
tion [O], we can get the following estimate:

(2.19) %ADZ]&(cn—F%HQ_ni_Q’H‘f_]&)

vn(n —1)
- Z [tr(Hn+1Hv)]2

v#n+1
Choosing u =v # n+ 1 in (2.16), one can show

o AR, = > w(HuH, - HyH)? — Y [er(HH)?

1,7,v#n~+1 u,v#ENn+1 u,v#ENn+1
+neQ+ > Htr(HlHni1)— Y [tr(HyHyp)).
v#n+1 v#En+1

Using the techniques of [CDK], one can prove

1
> tHuHy = HHL) = ) [ir(Hu ) 2 (2 } —1>@2,
u,v#EN+1 ww#En+1 p—
and, when combined with (2.16), this estimate implies
1 v v v
(2.20) 3 AQ = Z hY, AR Z (hijk)2

7.7 U¢n+1 ,j,kﬂ);én-i-l

> —(2 - ﬁ)cﬁ +neQ+ Y Htr(HlHnpi1)— Y [tr(HyHni)).

v#En+1 v#En+1
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3. Lemmas

LEMMA 1. Under the assumptions of Theorems 1 and 2, if , in addition,
M is umbilical with respect to en41, then M must be totally umbilical.

Proof. Since M is umbilical with respect to e,t1, we have
(3.1) hitt = Loy

for some constant L, and tr H, = 0 for v # n + 1. A direct computation
shows that in this case,

H2
(3.2) > Htr(HiHn1)— Y [tr(HyHps1)]” = —Q
v#En+1 v#En+1

So, by substituting (3.1) into (2.20) and using (3.2) we get
1 1 H?

(3.3) —AQ>Q| - (2——— |Q+nc+ —|.
2 p—1 n

This is our main estimate. We shall come back to it later.
By assumption, we have

(3.4) Sgn_1H2+2c, n >4,
and
1 —
(3.5) S§§H2+min<2,§§_§>c, n = 3.
Also, from (3.1) we have
1
: D=—-H*
(36) -

(3.4)—(3.6) imply

1

3.7 < H? 42 >4
(3.7) Q_n(n—l) +2¢, n>4,
and

1 3p—3
(3.8) Q§6H2+min<2,2£_3>c, n = 3.
Since
(3.9) p-1 1 hen n > 3 and p > 2
) en n an

p—3 n—1 = p==

and

-1
(3.10) M>2 when n > 3 and p > 2,

2p —3
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(3.7)—(3.10) imply that for n > 3,

p—1 o nlp—1) H? n
Q< H” + c= + c,
n(2p —3) 2p—3 n(2—p%1) 2—1%
i.e.
1 H?
(3.11) A:—<2——>Q+nc~l——>0.
p—1 n

We now come back to (3.3), and deduce from (3.11) that
1
(3.12) 5AQ=4Q, A>o.

Now since S is bounded, so are () and the Ricci curvature of M. We apply
Yau’s generalized maximal principle [Y2] to conclude that there exists a
sequence {ps} of points of M such that

(3.13) lim Q(ps) =supQ,
S—0Q M
(3.14) lim AQ(ps) < 0.

From (3.12)—(3.14), we have
0> Asup Q.
M

This implies that sup,; @ = 0, i.e., Q@ = 0. Hence M is umbilical with respect
to ey, and consequently, M is totally umbilical. =

LEMMA 2. Let ai,...,an, b be n+ 1 (n > 1) real numbers satisfying
n 2 n
(Zai) Z(n—l)Za?ij.
i=1 i=1

Then for 1 <i# j <n,
20/7;0/]‘ = m
Proof. See [C, p. 55]. =

4. Proof of the theorems. According to Lemma 1, we need only prove
that M is umbilical with respect to e,+1. In other words, we need to show
D = H?/n. Suppose D # H?/n. Then

1
supD > —H?.
M n
According to Yau’s generalized maximal principle [Y2], there exists a se-

quence {ps} C M such that
lim D(ps) =sup D,
M

§—00

lim AD(ps) <0.

§—00
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For each s, we choose a local orthonormal frame el*, ..., eh"

borhood of ps;. We denote the components of A in this frame by hj; ., and

hZerl = L; p,0;;. Moreover, we denote the Riemannian curvature tensor

by Rijkip,, the n-matrix (hf]p ) by Hyp, with v # n + 1, and the n-matrix
(Lips0ij) by Hpt1,p,. Since S is bounded, so are the sequences {(hf; , )}sez+
and {(L;p,0i;)}sez+. Therefore, by choosing subsequences if necessary, we

can assume they are convergent, and we can write

in a neigh-

(41) sll{go h;)j Ps hf]?

(42) lim LLPS = Ei,
§—00

(4.3) lim Rijpip, = Rijh-

Since H = const, we have

If we define

then, in addition to (4.1)-(4.3), we have
lim S(ps) =S, lim f(ps) = f,
lim tr(Hyp, Hpt1,p,) = tr(H,

S—00

From (2.18) and (2.19), we have

2
D(ps) > E ips = Ljps) Rijijp,-

m
m
T

Therefore
1 1 n—2
~ AD(ps) > f*(ps) (Cn +-H - ————
2 n n(n—1)
- Z [tr(Hn+lvpsHvaps)]2'
v#ENn+1

H|f(ps) — f2<p8>>
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Letting s — oo, we have
(4.4) > (Li = Lj)*Rijiy <0,
i’j
n—2
Vvn(n—1)
We now divide the rest of the proof into two cases.
CASE 1: @ > 0. Since

- 1
(4.5) f2(6n+—H2—
n v#ENn+1

1
s) < —— H?+2
Sps) < — H™ +2¢,

we have
S < Lo + 2¢,
n—1
and consequently,
H*> (n—1)S —2(n —1)c,

(4.6) (ZL‘) > (n—1) ZL2 (n—1) 3 (hY)? - 2(n — 1)e.
7 ,J

Applying Lemma 2 to (4.6) yields
(n—1) Ek,l,v;«én+1(ﬁzl)2 —2(n—1)c

or
- 1 _
(4.7) Lilj+c> 5 > ()
kv#En+1

Hence, for i # j,
(4.8) Ry =LiLj+c+ > (hhhY — (RY)?)

i,J,v#n+1
1 — 1
25 X B g(-2 X (e Y Rihy)
k,l,v#n+1 v#En+1 v#En+1
1 - 1 - -
> 5 > (Rf0)* + 5 (R +155)° = 0.

v#En+1; k#1,5 or l#£4,j
From the above inequality and (4.4) we obtain

(4.9) > (Li = L;j)*Rijij = 0.

'7]'

|H\f—f2> Y [ Hon )P <

We claim that for ¢ < j there is at most one Rzm equal to zero, and the

others are positive. If not, we may assume RZ]U =0 and qupq = 0 for two
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pairs (4,7) and (p,q) with i # p, i < j and p < ¢. Then from (4.7) we have
(4.10) hji+h% =0, hi{y;=0, k#ijorl#ij v#n+]l,
and
E;p+ﬁzq20, i_LZq:O, k#pqorl#pq, v#En+1.
From (4.9) and (4.10) we can deduce that
hY, =0, 1<klI<n, v#n+l1,

and consequently, Q = 0, contrary to the assumption of Case 1. Hence
the claim is proven. We now assume without loss of generality that only
R;ji; = 0. Then from (4.8) we have

Li=Ly=...=L,, Li=L3=...=1L,.

Hence Ly = Ly = ... = Ly, i.e., D = H?/n. However, this contradicts the
assumption sup,; D > %H 2. This completes the proof in Case 1.

CASE 2: Q = 0. From @Q = 0 it is easy to see that

> [tr(HnyaHy)? =0,

v#En+1

Hence from (4.5) we get
_ 1 —2 -

(4.11) f2<cn+—H2—n7|H\f—f2> <0.

n n(n—1)
Butf:E—%H2>0, SO

1 n—2 - -
4.12 en+— H? — H|f-f*<0
(1.12) S )T ]

Solving the equality (4.11) we get

(4.13)

2\/_7 1\/—H2—|—4nc

On the other hand, from the fact D < %IH + 2¢ we get

- 1
<|——=H?+2c.
U= \/n(n -1) e
Combining (4.12) and (4.13) gives

1 2—n
——— H?+4+2¢> \/—H2+4nc.
n(n —1) 2¢/n(n —1) n(n—l
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The above inequality implies
(n—2)%?%<0.

Therefore n = 2. However, this contradicts our hypothesis, and this com-
pletes the proof of Case 2.
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