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ON THE STRUCTURE OF SEQUENCES WITH
FORBIDDEN ZERO-SUM SUBSEQUENCES

BY

W. D. GAO (Beijing) and R. THANGADURAI (Allahabad)

Abstract. We study the structure of longest sequences in Zdn which have no zero-sum
subsequence of length n (or less). We prove, among other results, that for n = 2a and d
arbitrary, or n = 3a and d = 3, every sequence of c(n, d)(n− 1) elements in Zdn which has
no zero-sum subsequence of length n consists of c(n, d) distinct elements each appearing
n− 1 times, where c(2a, d) = 2d and c(3a, 3) = 9.

1. Introduction. Many authors have studied the structure of sequences
which have no zero-sum subsequences of prescribed lengths. The motivation
for this study stems from problems in non-unique factorization theory. See,
for example, [9], [13], [14].

Let H be a finite abelian group (written additively). Then H = Zn1 ⊕
Zn2 ⊕ . . . ⊕ Znd with 1 < n1 |n2 | . . . |nd, where nd = exp(H) =: n is the
exponent of H and where d is the rank of H. When n1 = n2 = . . . = nd = n,
we denote H by Zdn.

By a sequence S = {gi} in H of length l, we mean a multi-set S whose
elements are from H and the cardinality of S with multiplicity is l. We also
denote l by |S|. For convenience, we write any sequence S in H of length
l as S =

∏l
i=1 gi. Also, vg(S) denotes the number of times g appears in S.

Let σ(S) =
∑l

i=1 gi.

We say that the sequence S =
∏l
i=1 gi in H is a

• zero-sum sequence if σ(S) = 0 in H,
• short zero-sum sequence if σ(S) = 0 and 1 ≤ |S| ≤ exp(H) = n.

Definition 1.1. A pair (n, d) of positive integers is said to have Prop-
erty D if (n−1) | (s(Zdn)−1) and every sequence S in Zdn of length s(Zdn)−1
having no zero-sum subsequence of length n is of the form

∏c
i=1 a

n−1
i , where

c = (s(Zdn) − 1)/(n − 1) and s(Zdn) denotes the smallest positive integer t
such that every sequence T in Zdn with |T | = t has a zero-sum subsequence
of length n.
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The constant s(Zdn) was first introduced by Harborth [16] in 1973. Using
the pigeonhole principle, he proved that

2d(n− 1) + 1 ≤ s(Zdn) ≤ nd(n− 1) + 1

and

s(Zdmn) ≤ min{s(Zdn) + n(s(Zdm)− 1), s(Zdm) +m(s(Zdn)− 1)}.(1)

It follows that

s(Zd2l) = 2d(2l − 1) + 1(2)

for every integer l ≥ 1. But it is known that s(Z3
3) = 19 = 9(3− 1) + 1 (see

[16]), which is greater than the above lower bound. Recently, C. Elsholtz [4]
proved that for every odd integer n ≥ 3, we have

s(Zdn) ≥ (1.125)bd/3c2d(n− 1) + 1.(3)

In particular, s(Z3
n) ≥ 9(n − 1) + 1 for every odd integer n ≥ 3. In 1995,

Alon and Dubiner [1] proved that

s(Zdn) ≤ (c(d)d log2 d)dn,

where c(d) is an absolute constant.
For every integer n ≥ 2, the pair (n, 1) has Property D; this follows

from the theorems of Erdős, Ginzburg and Ziv [5] (which says that s(Zn) =
2n − 1) and Peterson and Yuster [19] (and also Bialostocki and Dierker [3]
independently) (which says that any sequence T of Zn of length 2n − 2
having no zero-sum subsequences of length n is of the form an−1bn−1 for
some a, b ∈ Zn).

The following two conjectures imply that for any integer n ≥ 2, the pair
(n, 2) has Property D.

Conjecture 1.1 (Kemnitz, 1983, [17]). For every integer n ≥ 2, we
have s(Z2

n) = 4n− 3.

Conjecture 1.2 (W. D. Gao, 2000, [8]). Let S be a sequence in Z2
n of

length 4n − 4. If S does not have a zero-sum subsequence of length n, then
S is of the form an−1bn−1un−1vn−1 for some distinct a, b, u, v ∈ Z2

n.

Conjecture 1.1 has been proved for prime n ≤ 7. It is also known that
it is “multiplicative”. The best known result on Conjecture 1.1 is due to
W. D. Gao [11]: For every prime p and every integer k ≥ 1, we have s(Z2

pk
) ≤

4pk−2. There are many further partial results (see, for example, [2], [6], [7],
[17], [20], [21]–[23]).
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Gao [8] proved that Conjecture 1.2 is “multiplicative”. Also, he verified
Conjecture 1.2 for n = 2, 3 and 5. Recently, Sury and Thangadurai [21]
verified it for n = 7.

Thus, for any integer n of the form n = 2a3b5u7v where a, b, u, v ≥ 0, we
know that, unconditionally, the pair (n, 2) has Property D.

Definition 1.1 is just a generalization of the definition given in [15] for
the group Z2

n; so is the following definition:

Definition 1.2. A pair (n, d) of positive integers is said to have Prop-
erty C if (n−1) | (%(Zdn)−1) and every sequence S in Zdn of length %(Zdn)−1
having no short zero-sum subsequences is of the form

∏b
i=1 a

n−1
i , where

b = (%(Zdn) − 1)/(n − 1) and %(Zdn) denotes the smallest positive integer
t such that every sequence T in Zdn with |T | = t has a non-empty short
zero-sum subsequence.

It is trivial that %(Zn) = n. Also, if S is a sequence in Zn of length n− 1
with no proper zero-sum subsequence, then S = an−1 for some a ∈ Zn. Thus,
for any integer n ≥ 2, the pair (n, 1) has Property C. The constant %(H) was
first studied by Olson [18] and van Emde Boas [25] for H = Z2

n; they proved
(independently) that %(Z2

n) = 3n − 2 and van Emde Boas conjectured the
following.

Conjecture 1.3 (van Emde Boas, 1969, [25]). Let S be a sequence in
Zdn of length 3n− 3. Suppose S does not have a short zero-sum subsequence.
Then S = an−1un−1vn−1 for some a, u, v ∈ Z2

n.

This conjecture has been verified by van Emde Boas [25] for any prime
n ≤ 7. Moreover, Gao [8] proved that Conjecture 1.3 is “multiplicative”.
Thus, it is true for all integers n of the form 2a3u5v7w.

Clearly, from the above discussion the pairs (n, 1) and (2a3u5v7w, 2) have
Property C.

Similarly to the definition of s(Zdn) and %(Zdn) we can analogously define
s(H) and %(H) for any finite abelian group H. Also, one can easily prove
that %(H) ≤ s(H)− n+ 1. When H = Zn, we know from the above results
that %(H) = s(H)−n+ 1. By Conjecture 1.1 and by the value of %(Z2

n), we
see that this equality also holds for H = Z2

n. Gao suggested the following
conjecture.

Conjecture 1.4 (W. D. Gao, 2002, [12]). If H is a finite abelian group
of exponent n, then s(H) = %(H) + n− 1.

Gao [12] verified Conjecture 1.4 for all groups H with exponent n ≤ 4.
More precisely, he proved the following: Let S be a sequence in H of length
%(H) + n− 1. Suppose there exists g ∈ H such that vg(S) ≥ n− [n/2]− 1.
Then S has a zero-sum subsequence of length n.
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Open Problem 1. Does every pair (n, d) of positive integers have Prop-
erty C and Property D?

The main result of this paper gives a partial answer to this problem
and we study the relationship between the two properties. We prove the
following theorems.

Theorem 1. Suppose that the pair (n, d) of positive integers has Prop-
erty D. If s(Zdnr) = c(nr−1)+1 for every r (where c is a constant depending
only on n and d), then the pair (nr, d) has Property D for every positive in-
teger r.

Corollary 1.1. The pairs (2a, d), (3a, 3) and (3, d) have Property D for
any positive integers a and d.

Corollary 1.2. If a pair (n, d) has Property D, then (i) s(Zdn) = %(Zdn)
+n−1 and (ii) (n, d) has Property C and hence the pairs (2a, d), (3a, 3) and
(3, d) have Property C.

Theorem 2. Suppose there exists a sequence S in Zdn of length s(Zdn)−1
such that vg(S) > [(n− 3)/2] for some g ∈ Zdn and S does not have a
zero-sum subsequence of length n. If the pair (n, d) has Property C, then
(i) s(Zdn) = %(Zdn) + n − 1 and (ii) S =

∏c
i=1 a

n−1
i , where c = (s(Zdn) −

1)/(n− 1).

2. Proofs of Theorems

Proof of Theorem 1. We proceed by induction on r. The case r = 1 is
just the hypothesis of the theorem.

Suppose that the assertion is true for r − 1. We want to prove that it is
also true for r. Set m = nr−1. Let S =

∏c(nm−1)
i=1 ai be a sequence of length

c(nm− 1) in Zdnm such that S contains no zero-sum subsequence of length
nm. We have to prove that S =

∏c
i=1 a

nm−1
i (say).

Let
φ : Zdnm → Zdn

be the natural homomorphism with kerφ = Zdm. Since s(Zdn) = c(n − 1)
+ 1 by assumption and c(nm − 1) = (c(m − 1))n + c(n − 1), one can find
c(m − 1) disjoint zero-sum subsequences S1, . . . , Sc(m−1) such that |S1| =
. . . = |Sc(m−1)| = n and σ(φ(S1)) = . . . = σ(φ(Sc(m−1))) = 0. Therefore,
σ(Si) ∈ kerφ = Zdm for i = 1, . . . , c(m − 1). Since S contains no zero-
sum subsequence of length nm and s(Zdnm) = c(nm − 1) + 1, the sequence
φ(S(S1 . . . Sc(m−1))−1) contains no zero-sum subsequence of length n. As
the pair (n, d) has Property D, we have φ(S(S1 . . . Sc(m−1))−1) =

∏c
i=1 b

n−1
i ,

where bi’s are pairwise distinct. Therefore, φ(S) contains at least c distinct
elements.
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Claim 1. φ(S) contains exactly c distinct elements.

Assume that, on the contrary, φ(S) contains k > c distinct elements.
Suppose φ(S) =

∏k
i=1 h

ti
i with t1, . . . , tk ≥ 1 and t1 + . . .+ tk = c(nm− 1).

Let Ti =
∏
φ(aj)=hi aj . Then S = T1 . . . Tk. Now we distinguish two cases.

Case 1: n | ti for some 1 ≤ i ≤ k. Without loss of generality we assume
that i = 1. We divide T1 into k1/n disjoint subsequences W1, . . . ,Wk1/n

each having length n. By applying s(Zdn) = c(n− 1) + 1 repeatedly, one can
find c(m − 1) − k1/n disjoint subsequences of ST−1

1 , namely, Wk1/n+1, . . . ,

Wc(m−1) each having length n and each having sum in Zdm. As above, one
can derive that φ(S(W1 . . .Wc(m−1))−1) =

∏c
i=1 b

n−1
i , where bi’s are pairwise

distinct. Set W = S(W1 . . .Wc(m−1))−1. Then φ(W1W ) = bn
∏c
i=1 b

n−1
i .

Let U1 be a zero-sum subsequence of bn−1∏c
i=1 b

n−1
i of length n. Then

(bn−1∏c
i=1 b

n−1
i )U−1

1 contains exactly c + 1 distinct elements. Therefore,
(bn
∏c
i=1 b

n−1
i )U−1

1 contains a zero-sum subsequence U2 of length n. Let Vi
be the subsequence of S such that φ(Vi) = Ui for i = 1, 2. Now, we get
c(m − 1) + 1 disjoint subsequences V1, V2, W2, . . . , Wc(m−1) each having
length n and having sum in Zdm. Since s(Zdm) = c(m− 1) + 1, we can obtain
a zero-sum subsequence of S of length nm, a contradiction.

Case 2: n - ti for every i = 1, . . . , k. Write ti = nqi + ri with 1 ≤ ri ≤
n− 1. Then

φ(S) =
k∏

i=1

htii =
k∏

i=1

(hni )qi
k∏

i=1

hrii ,

where k > c. Also since t1 + . . . + tk = c(nm − 1) = c(m − 1)n + c(n − 1)
and 1 ≤ r1, . . . , rk ≤ n− 1, we see that r1 + . . .+ rk = c(n− 1) + ln for some
integer l ≥ 0. If we can prove that

∏k
i=1 h

ri
i contains l+ 1 disjoint zero-sum

subsequences each having length n, then as above, one can derive that S
contains a zero-sum subsequence of length nm and we are done.

Subclaim 1. If k > c, 1 ≤ r1, . . . , rk ≤ n − 1 and r1 + . . . + rk =
c(n − 1) + ln for some integer l ≥ 0, then a sequence of the form

∏k
i=1 h

ri
i

in Zdn contains l + 1 disjoint zero-sum subsequences each having length n.

To prove the subclaim, we proceed by induction on l. If l = 0, then r1 +
. . .+ rk = c(n−1). Since (n, d) has Property D and k > c, by definition, the
sequence

∏k
i=1 h

ri
i contains a zero-sum subsequence of length n. Assuming

the subclaim is true for l − 1, we want to prove it for l. Without loss of
generality, we may assume that n− 1 ≥ r1 ≥ . . . ≥ rk ≥ 1. Then there is an
integer u ≥ 0 such that r1 = . . . = ru = n− 1 and n − 1 > ru+1 ≥ . . . ≥ rk
≥ 1. Since (n, d) has Property D, the sequence

∏k
i=1 h

ri
i contains a zero-sum

subsequence T of length n. Since the subsequence hn−1
i is not a subsequence
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of T for any i = 1, . . . , u, and hi | (
∏k
i=1 h

ri
i )T−1 for every i = 1, . . . , u, we

see that the sequence (
∏k
i=1 h

ri
i )T−1 contains at least

u+
ru+1 + ru+2 + . . .+ rk − n

n− 2
= u+

c(n− 1) + ln− u(n− 1)− n
n− 2

≥ u+
(c− u)(n− 1)

n− 2
> c

distinct elements and by the induction hypothesis, it contains l − 1 + 1
disjoint zero-sum subsequences each having length n. Thus, including T, we
have l + 1 disjoint zero-sum subsequences of length n; hence Subclaim 1,
and therefore Claim 1, follows.

Now we have φ(S) =
∏c
i=1 h

ti
i with t1, . . . , tc ≥ 1 and t1 + . . . + tc =

c(nm − 1). Let Ti =
∏
φ(aj)=hi aj . Then S = T1 . . . Tc. Write ti = nqi + ri

with 0 ≤ ri ≤ n − 1 for i = 1, . . . , c. Then r1 + . . . + rc ≥ c(n − 1). Hence,
r1 = . . . = rc = n − 1. Choosing qi disjoint zero-sum subsequences of Ti
each having length n, we get altogether q1 + . . . + qc = c(m − 1) disjoint
subsequences W1, . . . ,Wc(m−1) of S each having length n and having sum
in Zdm. Since (m,d) has Property D, we have σ(W1)σ(W2) . . . σ(Wc(m−1)) =
gm−1

1 gm−1
2 . . . gm−1

c(m−1), where g1, . . . , gc(m−1) are pairwise distinct.

Claim 2. If qi ≥ 1, then Ti = xti for some x ∈ Zdnm.
Note that ti = qin + n − 1. Without loss of generality we may assume

that W1, . . . ,Wqi are subsequences of Ti. Also, for every x |Ti(W1 . . .Wqi)
−1

and every y |W1, set W ′1 = W1y
−1x. Since (m,d) has Property D,

σ(W ′1)σ(W2) . . . σ(Wc(m−1)) = (g′1)m−1(g′2)m−1 . . . (g′c(m−1))
m−1.

Therefore, σ(W ′1) = σ(W1) and x = y follows. Hence, W1 = xn. Similarly
one can prove that W2 = W3 = . . . = Wqi = xn, and thus T = xti .

Since S contains no zero-sum subsequence of length nm, it follows from
Claim 2 that ti ≤ nm− 1. But t1 + . . .+ tc = c(nm− 1), and we infer that
t1 = . . . = tc = nm − 1. Again by Claim 2, we have Ti = xnm−1

i for every
i = 1, . . . , c. Now the proof is complete.

Proposition 1.1. Let H be a finite abelian group of exponent n, and
let S be a sequence in H of length s(H) − 1. Suppose that S contains no
zero-sum subsequence of length n. Then vg(S) 6= n− 2 for every g ∈ H.

Proof. Suppose that vg(S) = n − 2 for some g ∈ H. Without loss of
generality, we assume that g = 0. Consider the sequence S ′ = S(gn−2)−1.
Clearly, |S′| = |S| − n+ 2 = s(H)− n+ 1. Since %(H) ≤ s(H)− n+ 1, one
sees that S′ has a short zero-sum subsequence T with 2 ≤ |T | ≤ n. If we
let |T | = t, then we get a zero-sum sequence T ′ = Tgn−t of S of length n,
which contradicts the hypothesis.
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Proof of Corollary 1.1. (i) From (1), we know that s(Zd2) = 2d(2−1)+1.
Now, consider a sequence S in Zd2 of length 2d having no zero-sum subse-
quence of length 2. It is clear that if vg(S) 6= 0 then vg(S) = 1. That is, S
is of the required form showing that (2, d) has Property D. Therefore, by
Theorem 1, (2a, d) has Property D for any integer a ≥ 1.

(ii) We know that s(Z3
3) = 19 = 9(3 − 1) + 1. Therefore, from (2) and

(3), we have s(Z3
3a) = 9(3a − 1) + 1. If we prove that (3, 3) has Property D,

then so does (3a, 3) by Theorem 1. So consider a sequence S =
∏18
i=1 ai in Z3

3
of length 18 having no zero-sum subsequence of length 3. Then vg(S) ≤ 2.
Also, by Proposition 1.1, if vg(S) 6= 0, then vg(S) 6= 1. Thus, S =

∏9
i=1 a

2
i ,

which shows that (3, 3) has Property D.
(iii) Let S be a sequence in Zd3 of length s(Zd3) − 1. Suppose S does

not have a zero-sum subsequence of length 3. Then by Proposition 1.1,
S =

∏t
i=1 a

2
i (as above) and hence |S| = s(Zd3) − 1 = (3 − 1)t. Thus, (3, d)

has Property D.

Proof of Corollary 1.2. (i) Suppose (n, d) has Property D. It is easy to
prove that %(Zdn) ≤ s(Zdn)−n+1. So, to prove our first assertion, it is enough
to show that s(Zdn) ≤ %(Zdn) + n− 1.

Consider a sequence S in Zdn of length s(Zdn) − 1 such that S does not
have a zero-sum subsequence of length n. Since (n, d) has Property D, we see
that S =

∏c
i=1 a

n−1
i for some ai ∈ Zdn (for all i) and c = (s(Zdn)−1)/(n−1).

Let S′ =
∏c
i=1 b

n−1
i = 0n−1∏c

i=2 b
n−1
i , where bi = ai − a1 for every i.

Since S does not have a zero-sum subsequence of length n, it is clear that
T =

∏c
i=2 bi does not have a short zero-sum subsequence. Therefore,

%(Zdn)− 1 ≥ |T | − (n− 1) = s(Zdn)− 1− (n− 1).

That is, s(Zdn) ≤ %(Zdn) + n− 1 as desired.
(ii) Since (n, d) has Property D, by (i) we see that (n− 1) | (%(Zdn)− 1).

Thus to finish the proof of (ii), it is enough to show that any sequence S in
Zdn of length %(Zdn)− 1 having no short zero-sum subsequence is of the form∏c−1
i=1 a

n−1
i .

Consider S′ = ST, where T = 0n−1 and 0 is the zero element in Zdn.
Clearly, |S′| = s(Zdn) − 1 and S′ does not have a zero-sum subsequence of
length n. Since (n, d) has Property D, we have S ′ =

∏c
i=1 a

n−1
i . As T = 0n−1,

this implies the assertion.

Proof of Theorem 2. (i) We know that in general s(Zdn) ≥ %(Zdn) +n−1.
So, to prove (i) it is enough to show that s(Zdn) ≤ %(Zdn) + n− 1.

Let S be as in the hypothesis. If |S| ≥ %(Zdn) + n− 1, then by the result
of Gao (stated just after Conjecture 1.4 in the introduction), S has a zero-
sum subsequence of length n, which is impossible by hypothesis. Therefore,
|S| = s(Zdn)− 1 ≤ %(Zdn) + n− 2. That is, s(Zdn) ≤ %(Zdn) + n− 1.
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(ii) As (n, d) has Property C, we know that (n − 1) | (%(Zdn) − 1) and
hence by (i), we get (n− 1) | (s(Zdn) − 1). Hence c = (s(Zdn) − 1)/(n− 1) is
a positive integer.

Let S = as
∏c(n−1)−s
i=1 ai be the given sequence in Zdn with |S| = c(n− 1)

and s > [(n− 3)/2]. Translating the given cn − c elements by a, we get
S − a = 0s

∏cn−c−s
i=1 bi, where bi = ai − a 6= 0 in Zdn. Let S∗ =

∏cn−c−s
i=1 bi,

which is a subsequence of S − a.
In order to prove this part of the theorem, we shall show that when

s = n − 1, the sequence S − a is of the form 0n−1∏c−1
i=1 a

n−1
i in Zdn. When

s < n− 1, we will produce a zero-sum subsequence of S − a of length n, so
that this case cannot happen.

Case I: s = n − 1. Since S does not have a zero-sum subsequence of
length n, S∗ does not have a short zero-sum subsequence. Also, by (i), we
know that %(Zdn) = s(Zdn) − n + 1 = (c − 1)(n − 1) + 1. Since (n, d) has
Property C, we know that S∗ =

∏c−1
i=1 b

n−1
i and hence S is of the desired

form.

Case II: [(n− 3)/2] < s ≤ n − 2. In this case, |S∗| = cn − c − s ≥
(c− 1)(n− 1) + 1. Therefore, S∗ contains a short zero-sum subsequence T,
by the definition of %(Zdn). In fact, |T | < n− s. That is,

|T |+ s ≤ n− 1.(4)

Otherwise, T together with n− |T | zeros would produce a zero-sum subse-
quence of length n, contrary to assumption.

Since |S∗| ≥ (c− 1)(n− 1) + 1, we can fix T as above of maximal length.
Now, the deleted sequence S∗T−1 has length c(n−1)−(s+t) ≥ (c−1)(n−1).
Since there is no subsequence R of S∗T−1 of the form an−1 for any a ∈ Zdn,
and (n, d) has Property C, there exists a short zero-sum subsequence K of
S∗T−1 (in fact, if |S∗T−1| ≥ (c − 1)(n − 1) + 1, we can use the definition
of %). Because of maximality of |T |, we have

|K| ≤ |T |.(5)

Also, if |T |+ |K| ≤ n, then TK is a short zero-sum subsequence of S∗ with
|T | < |TK|, contradicting the choice of T. Thus

n+ 1 ≤ |T |+ |K|.(6)

Now, multiplying (4) by 2, we get 2s ≤ 2n−2−2|T |. If we add (5) and (6), we
obtain 2|T | ≥ n+ 1. Combining these two results gives 2s ≤ 2n− 2− 2|T | ≤
n− 3, which is a contradiction.

Remarks. It would be interesting to prove the following generalization
of Theorem 1. Suppose the pairs (n, r) and (m, r) have Property D and
s(Zrmn) ≡ 1 (modmn− 1). Then (nm, r) has Property D.
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