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Abstract. Let A and R be two artin algebras such that R is a split extension of A
by a nilpotent ideal. We prove that if R is quasi-tilted, or tame and tilted, then so is A.
Moreover, generalizations of these properties, such as laura and shod, are also inherited.
We also study the relationship between the tilting R-modules and the tilting A-modules.

Introduction. It is frequent in the representation theory of artin alge-
bras to consider problems of the following type: Let A and R be artin alge-
bras over a commutative artin ring k, and assume that the category modA
of finitely generated right A-modules is embedded in the category modR
of finitely generated right R-modules; then which properties of modR are
inherited by modA? In this paper, we study this problem in the following
context: we let R and A be such that there exists a split surjective morphism
R → A whose kernel Q is a nilpotent ideal of R. We say then that R is a
split-by-nilpotent extension of A by Q; see [5, 6, 11, 15, 16]. We start by
considering some of the classes of algebras that have been extensively stud-
ied in recent years in the representation theory of artin algebras, namely the
quasi-tilted algebras [14], the shod algebras [9, 18], the weakly shod alge-
bras [10], the left and right glued algebras [1], and finally, the laura algebras
[3, 19, 22]. Our first main theorem says that, if R belongs to one of these
classes, then so does A.

Theorem A. Let R be a split-by-nilpotent extension of A by Q. Then:

(a) If R is laura, then so is A.
(b) If R is left (or right) glued , then so is A.
(c) If R is weakly shod , then so is A.
(d) If R is shod , then so is A.
(e) If R is quasi-tilted , then so is A.
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We conjecture that, if R is a tilted algebra, then so is A. We prove
here that this conjecture is true in the case when R is a tame algebra (see
2.6 below). In order to investigate the general case, we start with a given
tilting R-module U , and we study under which conditions U ⊗R A is a
tilting A-module. Such a tilting R-module is called restrictable. We show
that this is indeed the case whenever TorR1 (U,A) = 0 (see 3.2 below). This
sufficient condition was obtained independently by Fuller [12] and Miyashita
[17]. We recall that a tilting A-module T is extendable if T ⊗AR is a tilting
R-module, and an R-module is induced if it is of the form M ⊗AR for some
A-module M . The extendable tilting A-modules have been characterized
in [5]. This leads us to our second main result.

Theorem B. The functors −⊗RA and −⊗AR induce mutually inverse
bijections between the class of the induced tilting R-modules U such that
TorR1 (U,A) = 0 and the class of extendable tilting A-modules.

We conclude the paper by giving conditions which are equivalent to the
condition TorR1 (U,A) = 0, and with some remarks and examples.

This paper consists of three sections. Section 1 is devoted to some basic
facts about split-by-nilpotent extensions, Section 2 to our Theorem A, and
Section 3 to our Theorem B.

1. Basic facts on split-by-nilpotent extensions. Throughout this
paper, all algebras are artin algebras over a commutative artinian ring k.
Unless otherwise specified, the modules are finitely generated right mod-
ules. We use freely, and without further reference, properties of the module
categories and the almost split sequences as can be found, for instance, in
[7, 20]. Let A and R be two artin algebras.

Definition 1.1. We say that R is a split extension of A by the two-sided
nilpotent ideal Q, or briefly a split-by-nilpotent extension, if there exists a
surjective algebra morphism π : R→ A whose kernel Q is a nilpotent ideal.
This means that there exists a short exact sequence of A-A-bimodules

0 // Q
ι // R

π //
A

σ
oo // 0

where ι denotes the inclusion and σ is an algebra map such that πσ = 1A.
In particular, A is a k-subalgebra of R. Note that since Q is nilpotent, Q is
contained in radR so that radA = (radR)/Q.

Let R and A be as above. We have the usual change of rings functors
− ⊗A R : modA → modR, − ⊗R A : modR → modA, HomA(RA,−) :
modA → modR, and HomR(AR,−) : modR → modA. The image of
the functor − ⊗A R in modR (or of the functor HomA(RA,−) in modR)
is called the subcategory of induced (or coinduced, respectively) modules.
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We have the obvious natural isomorphisms − ⊗A RR ⊗R AA ∼= 1modA

and HomR(AR,HomA(RA,−)) ∼= 1modA. Moreover, an indecomposable R-
module X is projective (or injective) if and only if there exists an indecom-
posable projectiveA-module P such thatX ∼= P⊗AR (or an indecomposable
injective A-module I such that X ∼= HomA(R, I), respectively).

Lemma 1.2. If A is a connected algebra, then so is R.

Proof. Since, for any two indecomposable projective A-modules P and
P ′, the fact that HomA(P,P ′) 6= 0 implies that HomR(P⊗AR,P ′⊗AR) 6= 0,
the statement follows from the connectedness of A and from the fact that
every indecomposable projective R-module is induced from an indecompos-
able projective A-module.

The converse is not true as we shall see in the Example after 1.3.
We now explain how to construct examples of split extensions of algebras

given by quivers and relations. We first give a necessary condition: let R
and A be as above, and assume that R is given by a quiver with relations.
We prove that A is obtained from R by factoring an ideal Q generated by
arrows in the quiver of R. Conversely, starting from any given set of arrows
in the quiver of R, and factoring out the ideal Q they generate, it is easy
to check whether the induced surjection R → R/Q is a retraction or not.
This technique, which we illustrate in an example below and later after our
main theorem (A) in 2.5, has been used essentially in the proofs of the main
results of [4] and [8].

Assume that R = kΓ/I is a presentation of R as a quiver with relations.
We say that a set S of generators of Q is minimal if, for each %+ I in S, we
have:

(a) If % is a path in Γ , then for each proper subpath %′ of %, %′+I does
not belong to Q.

(b) If % =
∑

1≤i≤m λiwi with m ≥ 2, the λi nonzero scalars and the
wi paths in Γ of positive length, all having the same source and the same
target, then for each nonempty proper subset J ⊂ {1, . . . ,m}, we have that∑

j∈J λjwj + I is not in Q.

Proposition 1.3. Let R = kΓ/I be a split extension of A by Q. Then
Q is generated by classes of arrows of Γ .

Proof. We will construct a minimal set of generators of Q of the desired
type. Let {%1, . . . , %s} be the preimages modulo I of any finite set of genera-
tors of Q. Notice that the set {ea%ieb : a, b ∈ Γ0, 1 ≤ i ≤ s} is a set of linear
combinations of paths having the same source and the same target in Γ .
Further, since Q ⊆ radR, all the paths involved in these linear combina-
tions have length at least 1. Let σ =

∑
1≤j≤m λjwj belong to this set, with

m ≥ 2, and assume that σ does not satisfy condition (b) in the definition
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of minimality. Then there exists a nonempty proper subset J ⊂ {1, . . . ,m}
such that, if σ′ =

∑
j∈J λjwj , then σ′ + I ∈ Q. Since σ = σ′ + (σ − σ′), we

may replace σ by σ′ in the above set of generators. Since the sum defining
σ is finite, applying this procedure finitely many times yields another finite
set {σ1, . . . , σn} where all linear combinations of at least two paths satisfy
condition (b). Furthermore, the set {σ1 + I, . . . , σn + I} generates Q.

Assume that σi is a path and that it does not satisfy condition (a). Then
there exist paths w1, w2 and σ′i such that σ′i + I is in Q, and σi = w1σ

′
iw2.

This procedure yields after at most finitely many steps the required minimal
set of generators for Q. Let thus {%1, . . . , %t} be the preimages modulo I of
such a minimal set. We now show that each % = %i is an arrow. Assume first
that % =

∑
1≤j≤m λjwj with m ≥ 2. By minimality, wj /∈ Q for each j, thus

λjwj + I is identified with a nonzero element of A = R/Q. So
∑
λjwj + I

belongs to A and it is nonzero in A since it is nonzero in R. On the other
hand, %+Q =

∑
1≤j≤m λjwj+Q is zero in A = R/Q since %+I ∈ Q. This is a

contradiction if m ≥ 2, so we have established that each % is a path. Assume
now that % is of length l ≥ 2, thus % = α1 . . . αl, where the αj are arrows.
By minimality, αj /∈ Q for each j. Hence, for each j, αj + I can be identified
with a nonzero element of A. So (α1 + I) . . . (αl + I) = α1 . . . αl + I ∈ A and
is nonzero in A since it is nonzero in R. On the other hand, %+Q is zero in
A so % must be an arrow.

Example. The converse of 1.2 is usually false; almost any algebra over
an algebraically closed field is a counterexample. For instance, if we let
R = kΓ/I, and Q be the ideal generated by an arbitrary set of arrows in
Γ , then R need not be a split extension of R/Q by Q. More specifically, let
R = kΓ/I, where Γ is the quiver

• β

&&NNNNNN

•
α 88pppppp

γ &&NNNNNN •
• δ

88pppppp

and I is the ideal generated by αβ − γδ. Let Q1 = 〈α + I, δ + I〉 and
A1 = R/Q1. Then it is easily seen that R is a split-by-nilpotent extension
of A1 by Q1. However, if we let Q2 = 〈α + I〉 and A2 = R/Q2, then R is
not a split-by-nilpotent extension of A2 by an ideal, because A2 is not a
subalgebra of R. Indeed, in this case, (γ + I)(δ + I) is zero in A2 but not
in R.

Lemma 1.4. Let R be a split extension of A by Q and let e be an idem-
potent of A. Then eRe is a split extension of eAe by eQe.

Proof. Clearly, eQe is an ideal of eRe and it is nilpotent since eQe ⊆ Q.
The map π′ : eRe→ eAe defined by π′(e(a, q)e) = eae is a surjective algebra
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map having the map eae 7→ e(a, 0)e as a section. Moreover, Kerπ′ contains
eQe. Since eRe = eAe ⊕ eQe as k-modules, counting lengths yields the
result.

2. Inherited properties in split-by-nilpotent extensions. In this
section, R denotes a split extension of A by the nilpotent ideal Q. It follows
from [5, 2.2] that if R is hereditary, then so is A. This section is devoted to
proving analogous results for other classes of algebras. Before proving our
first results of this section, we recall that, by [5, 1.1], for any R-module X,
the canonical epimorphism of R-modules pX : X → X/XQ ∼= X ⊗R A is
minimal.

Lemma 2.1. If f : PA → MA is a projective cover in modA, then the
composition pM⊗R(f ⊗R) : P ⊗A R→M is a projective cover in modR.

Proof. Indeed, it is shown in [5, 1.3] that the induced homomorphism
f⊗R : P⊗AR→M⊗AR is a projective cover in modR. On the other hand,
the above observation applied to X = M ⊗A R yields that the morphism
pM⊗R : M ⊗A R→M ∼= M ⊗A R ⊗R A is a minimal morphism, and, since
the composition of two minimal epimorphisms is a minimal epimorphism,
our result follows directly from [7, I.4.1].

Lemma 2.2. Let M be an A-module. If pdMR ≤ 1, then pd(M ⊗A R)R
≤ 1.

Proof. (Compare [6, 1.1].) Let P1
f1−→ P0

f0−→ M −→ 0 be a minimal
projective presentation ofM as an A-module. By [5, 1.3], we have an induced
minimal projective presentation of M ⊗A R over R:

P1 ⊗A R
f1⊗R−−→ P0 ⊗A R

f0⊗R−−→M ⊗A R −→ 0.

Let now 0 −→ P̃1
f̃1−→ P̃0

f̃0−→ M −→ 0 denote a minimal projective res-

olution of M over R. By 2.1, P̃0
∼= P0 ⊗A R and we have a commutative

diagram with exact rows

P1 ⊗A R

��

f1⊗R // P0 ⊗A R
f0⊗R // M ⊗A R

pM

��

// 0

0 // P̃1
// P0 ⊗A R

pM (f0⊗R) // M // 0

where pM : x⊗(a, q) 7→ xa (for x ∈M , a ∈ A, q ∈ Q). In order to determine

P̃1, we consider the bottom exact sequence as a sequence of A-modules. As
A-modules, we have P0⊗AR ∼= P0⊕(P0⊗AQ) and M⊗AR ∼= M⊕(M⊗AQ).
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As A-linear maps, pM = [1 0] and

f0 ⊗R =

[
f0 0

0 f0 ⊗Q

]
,

so that pM (f0 ⊗ R) = [f0 0]. We deduce an isomorphism of A-modules

P̃1
∼= Ker[f0 0] ∼= Ω1

AM ⊕ (P0 ⊗A Q). Let P be the projective cover of
P0⊗AQ in modA. We have a projective cover morphism in modR, denoted
by p : P ⊗AR→ P0⊗AQ. Since P0 is projective and AQR is a subbimodule
of ARR, it follows that P0 ⊗A Q is an R-submodule of P0 ⊗A R. Letting

f̃ denote the composition of the inclusion with p, we get a commutative
diagram with exact rows in modR:

P1 ⊗A R
[ 1
0 ]

��

f1⊗R // P0 ⊗A R
f0⊗R // M ⊗A R

pM

��

// 0

(P1 ⊕ P )⊗A R
[ f1⊗R f̃ ]

// P0 ⊗A R
pM (f0⊗R) // M // 0

where the bottom row is a (usually not minimal) projective presentation of
MR. We claim that there exists a summand P ′ of P such that we have a
commutative diagram with exact rows where the bottom row is a minimal
projective presentation of MR:

P1 ⊗A R
[ 1
0 ]

��

f1⊗R // P0 ⊗A R
f0⊗R // M ⊗A R

pM

��

// 0

0 // (P1 ⊕ P ′)⊗A R
[ f1⊗R f̃ ′ ] // P0 ⊗A R

pM (f0⊗R) // M // 0

where f̃ ′ denotes the restriction of f̃ to P ′⊗AR. In order to prove the claim,
let P ′′ be a summand of P1 ⊕ P such that

0 // P ′′ ⊗A R // P0 ⊗A R
pM (f0⊗R)// M // 0

is a minimal projective resolution of M over R. Tensoring this resolution
with RA, and using the fact that MA

∼= M ⊗R A (because M is annihilated
by Q), we obtain a commutative diagram with exact rows in modA:

0 // TorR1 (M,A) // P ′′
f ′′ // P0

f0 // M // 0

P1
f1 // P0

f0 // M // 0

Since P1 is a projective cover of Ω1
AM , there exists an epimorphism P ′′ → P1

induced from f ′′. Hence there is a decomposition P ′′ ∼= P1⊕P ′ and the claim
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follows. Therefore,

f1 ⊗R = [f1 ⊗R f̃ ′]

[
1

0

]

is the composition of two monomorphisms, so it is also a monomorphism
and we have pdM ⊗A R ≤ 1.

Corollary 2.3. Let M be an A-module.

(a) If pdMR ≤ 1, then pdMA ≤ 1.
(b) If idMR ≤ 1, then idMA ≤ 1.

Proof. (a) The previous lemma implies that pd(M ⊗A R)R ≤ 1, and by
[5, 2.2], we get pdMA ≤ 1.

(b) Assume that idMR ≤ 1. Then pdR(DM) ≤ 1. Observe that, as
R-modules, R(DM) and A(DM) are isomorphic because M is annihilated
by Q, hence the projective dimension in modRop of A(DM) is at most one.
By the first part of the corollary, pdA(DM) ≤ 1 as an A-module, hence
idMA ≤ 1.

Let C be an algebra and let indC denote a full subcategory of modC
consisting of a complete set of representatives of the isomorphism classes of
indecomposable C-modules. Following [14], we let LC denote the full subcat-
egory of indC consisting of those indecomposable C-modules U such that,
if there exists an indecomposable C-module V and a sequence of nonzero
C-morphisms

V = V0 −→ V1 −→ . . . −→ Vn = U

with all the Vi indecomposable, then pdVC ≤ 1. The subcategory RC is
defined dually.

Lemma 2.4. Let M be an indecomposable A-module.

(a) If M ⊗A R belongs to LR, then M belongs to LA.
(b) If M ⊗A R belongs to RR, then M belongs to RA.
(c) If HomA(R,M) belongs to RR, then M belongs to RA.
(d) If HomA(R,M) belongs to LR, then M belongs to LA.

Proof. (a) Assume that we have a sequence of nonzero morphisms be-
tween indecomposable A-modules:

L = L0 −→ L1 −→ . . . −→ Ln = M.

For each i, the R-module Li ⊗A R is indecomposable and the induced R-
homomorphism fi⊗R : Li−1⊗AR→ Li⊗AR is nonzero. Thus we have an in-
duced sequence of nonzero morphisms between indecomposable R-modules:

L⊗A R = L0 ⊗A R −→ L1 ⊗A R −→ . . . −→ Ln ⊗A R = M ⊗A R
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and, since M ⊗A R ∈ LR, we have pd(L ⊗A R)R ≤ 1. By [5, 2.2], we infer
that pdLA ≤ 1.

(c) The proof is similar to that of (a).
(b) We have the following sequence of isomorphisms of k-modules:

HomR(M ⊗A R,HomA(RRA,M)) ∼= HomA(M ⊗A R⊗R R,M)
∼= HomA(M ⊗A RA,M)
∼= HomA(M ⊗A (A⊕Q),M)
∼= HomA(M,M)⊕HomA(M ⊗A Q,M).

Since HomA(M,M) 6= 0, there exists a nonzero homomorphism of R-mo-
dules from M ⊗A R to HomA(R,M). Since M ⊗A R is in RR, we see that
HomA(R,M) ∈ RR. By (c), M ∈ RA.

(d) The proof is similar to that of (b).

We recall the following definitions. An artin algebra C is called a laura
algebra if LC ∪ RC is cofinite in indC (see [2, 22]). An artin algebra C is
called left or right glued if the class of all U in indC such that idU ≤ 1 (or
pdU ≤ 1, respectively) is cofinite in indC (see [1]). It is called weakly shod
if the length of any path of nonzero morphisms between indecomposable
modules from an injective module to a projective module is bounded (see
[10]). It is shod if for each indecomposable C-module U , we have pdU ≤ 1
or idU ≤ 1 (see [9]). Finally, C is quasi-tilted if it is shod and gldimC ≤ 2
(see [14]). We are now able to prove the main result of this section.

Theorem 2.5. (a) If R is laura, then so is A.
(b) If R is left or right glued, then so is A.
(c) If R is weakly shod, then so is A.
(d) If R is shod, then so is A.
(e) If R is quasi-tilted, then so is A.

Proof. (a) We first observe that if M is an indecomposable A-module
and M /∈ LA ∪ RA then, by 2.4, the R-module M ⊗A R /∈ LR ∪ RR. Since
R is a laura algebra, LR ∪RR is cofinite in indR, hence LA ∪RA is cofinite
in indA.

(b) The proof is similar since an algebra C is left glued (or right glued)
if and only if RC (or LC , respectively) is cofinite in indC (see [2, 2.2]).

(c) It is proved in [3, 1.4] that an algebra C is weakly shod if and only
if the length of any path of nonzero morphisms between indecomposable
C-modules from a module U /∈ LC to a module V /∈ RC is bounded. Let

M0
f1−→ M1

f2−→ . . .
fn−→ Mn be such a path in indA with M0 /∈ LA and

Mn /∈ RA. Then

M0 ⊗A R
f1⊗R−−→M1 ⊗A R

f2⊗R−−→ . . .
fn⊗R−−→Mn ⊗A R



SPLIT-BY-NILPOTENT EXTENSIONS 267

is a path of nonzero morphisms in indR. Moreover, by 2.4, M0 ⊗A R /∈ LR
and Mn ⊗A R /∈ RR. Since R is weakly shod, n is bounded.

(d) Let M be an indecomposable A-module. Since R is shod, pdMR ≤ 1
or idMR ≤ 1. The result follows now from 2.3.

(e) By [14, II.1.14] it suffices to show that if P is any indecomposable
projective A-module, then P ∈ LA. Since P ⊗A R is an indecomposable
projective R-module and R is quasi-tilted, we have P ⊗A R ∈ LR. The
result follows now from 2.4.

Examples. Since, as observed in [6], one-point extensions are special
cases of split-by-nilpotent extensions, it follows from [3, 3.4] that, if A is a
tubular algebra, and R is a laura algebra, then R must be quasi-tilted. The
following examples show that any of the remaining cases may occur. Here,
in order to verify these examples, we apply systematically the technique
outlined in 1.3. Let R be given by the quiver

3γ1

yyrrrrrr

1 2

δ3

aa
δ2oo

δ1
}}

5β2

yyrrrrrr

β1
eeLLLLLL

6
α2

oo

α1oo

4

γ2
eeLLLLLL

where αiβj = 0, γiδj = 0 for all i, j, and β1γ1 = 0. Then R is a laura algebra
that is not weakly shod.

(1) Let Q1 be the ideal of R generated by δ3; then R is a split extension
of A1 = R/Q1 by Q1, and A1 is laura but not weakly shod.

(2) Let Q2 be the ideal of R generated by α1, α2; then R is a split
extension of A2 = R/Q2 by Q2, and A2 is right glued but not weakly shod.

(3) Let Q3 be the ideal of R generated by β2, γ2; then R is a split exten-
sion of A3 = R/Q3 by Q3, and A3 is weakly shod but not shod.

(4) Let Q4 be the ideal of R generated by β1, γ1; then R is a split exten-
sion of A4 = R/Q4 by Q4, and A4 is shod but not quasi-tilted.

(5) Let Q5 be the ideal of R generated by α1, α2, β1, β2; then R is a split
extension of A5 = R/Q5 by Q5, and A5 is quasi-tilted, and even tilted.

We conjecture that if R is a tilted algebra, then so is A. We have the
following lemma.

Lemma 2.6. Assume that A is connected. If R is a tilted algebra having
a projective (or injective) indecomposable module in a connecting component
of its Auslander–Reiten quiver, then A is tilted.

Proof. Since A is connected, so is R by 1.2. Moreover, by 2.5, A is quasi-
tilted. By [14, II 3.4], the hypothesis implies that up to duality there exists
an indecomposable projective A-module P such that P ⊗AR ∈ RR. By 2.4,
PA ∈ RA. Another application of [14, II.3.4]) establishes the statement.
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Theorem 2.7. Let R be a tame tilted algebra. Then so is A.

Proof. By [13, III.6.5], and by 1.2 and 1.4, we may assume that A and
R are both connected. Since R is tame, so is A. Therefore, there exists a
projective or an injective indecomposable module in a connected component
of the Auslander–Reiten quiver of R (see [21]). By 2.6, A is tilted.

3. Restrictable and extendable tilting modules. As in Section 2,
we assume that R is a split extension of A by the nilpotent ideal Q. Mo-
tivated by our conjecture just before 2.6, we now study the relationship
between the tilting A-modules and the tilting R-modules. We recall from [5]
that given an A-module T , the induced module T ⊗A R is a (partial) tilt-
ing R-module if and only if TA is a (partial) tilting A-module and that we
also have HomA(T ⊗A Q, τAT ) = 0 = HomA(D(AQ), τAT ). Such (partial)
tilting modules are then called extendable. We now consider the opposite
problem, namely: given a (partial) tilting R-module U , under which con-
ditions is U ⊗R A a (partial) tilting A-module? We first give a sufficient
condition. This condition has been obtained independently by Fuller [12]
and Miyashita [16] using different proofs.

Lemma 3.1. Let f : P̃ → X be a projective cover in modR. Then f⊗A :

P̃ ⊗R A→ X ⊗R A is a projective cover in modA.

Proof. Clearly, f ⊗ A is an epimorphism and P̃ ⊗R A is a projective
A-module. Moreover,

top(P̃ ⊗R A) ∼= top(P̃ /P̃Q) ∼= P̃ /P̃Q

(P̃ /P̃Q) · radA

∼= P̃ /P̃Q

(P̃ /P̃Q)(radR/Q)
∼= P̃ /P̃Q

(P̃ · radR)/P̃Q

∼= P̃ /P̃ · radR ∼= X/X · radR ∼= top(X ⊗R A).

This establishes the result.

Remark. If P̃1
f1−→ P̃0

f0−→ X −→ 0 is a minimal projective presentation
in modR, it does not follow that

P̃1 ⊗R A
f1⊗A−→ P̃0 ⊗R A

f0⊗A−→ X ⊗R A −→ 0

is a minimal projective presentation in modA. Let, for instance, R be given
by the quiver

1
α

((
2

β

hh
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and the relations αβα = 0 and βαβ = 0, and let A be the hereditary
subalgebra with quiver

1
α−→ 2.

Then the simple R-module S2 corresponding to the vertex 2 has a minimal

projective presentation e1R
f1−→ e2R

f0−→ S2 −→ 0, where the image of f1 is
the radical of e2R. Applying −⊗R A yields a projective presentation

e1A
f1⊗A−−→ e2A

f0⊗A−−→ S2 ⊗R A −→ 0.

However, HomA(e1A, e2A) = 0. Hence f1 ⊗A = 0 and f0 ⊗ A is an isomor-
phism S2 ⊗R A ∼= e2A. It is easy to show that e1A ∼= TorR1 (S2, A).

Lemma 3.2. Let U be an R-module such that pdUR ≤ 1 and TorR1 (U,A)
= 0. Then:

(a) pd(U ⊗R A)A ≤ 1.
(b) τA(U ⊗R A) ∼= HomA(A, τRU).

Proof. (a) Let 0 −→ P̃1
f1−→ P̃0

f0−→ U −→ 0 be a minimal projective
resolution of U over R. In view of 3.1, the vanishing of TorR1 (U,A) implies
that

(∗) 0 −→ P̃1 ⊗R A f1⊗A−−→ P̃0 ⊗R A f0⊗A−−→ U ⊗R A −→ 0

is a minimal projective resolution of U ⊗R A in modA.
(b) Applying HomA(−, A) to the sequence (∗) above, we obtain the fol-

lowing commutative diagram with exact rows:

HomA(P̃0 ⊗R A,A)

∼=
��

// HomA(P̃1 ⊗R A,A)

∼=
��

// Tr(U ⊗R A)A // 0

HomR(P̃0,HomA(RA,A))

∼=
��

// HomR(P̃1,HomA(RA,A))

∼=
��

HomR(P̃0, AR) // HomR(P̃1, AR) // Ext1
R(U,A) // 0

where the bottom row is obtained by applying HomR(−, A) to the given
minimal projective resolution of U . Hence we have an isomorphism of A-
modules

Tr(U ⊗R A)A ∼= Ext1
R(U,A)

and therefore we also get

τA(U ⊗R A) ∼= DExt1
R(U,A) ∼= HomR(AAR, τRU)

because pdUR ≤ 1 see [20].
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The following is a sufficient condition for obtaining (partial) tilting mod-
ules over A from (partial) tilting modules over R. It would be interesting
to know whether this condition is also necessary. Note that this result is
a special case of [17, Lemma 5.1 and Theorem 5.2]. We give however an
independent proof for the benefit of the reader, and also because we believe
that our approach is more suitable for the actual computation of examples.

Theorem 3.3. Let UR be a (partial) tilting module such that TorR1 (U,A)
= 0. Then U ⊗R A is a (partial) tilting A-module.

Proof. By 3.2, pdU⊗RA ≤ 1. We prove that Ext1
A(U⊗RA,U⊗RA) = 0.

We have the following sequence of isomorphisms of k-modules:

DExt1
A(U ⊗R A,U ⊗R A) ∼= HomA(U ⊗R A, τA(U ⊗R A))

∼= HomR(U,HomA(RA, τA(U ⊗R A)))
∼= HomR(U,HomA(RA,HomR(AAR, τRU)))
∼= HomR(U,HomR(RA⊗A AR, τRU))
∼= HomR(U,HomR(RAR, τRU)).

Applying the functor HomR(−, τRU) to the exact sequence of R-R-
bimodules

0 −→ Q −→ R −→ A −→ 0

yields a monomorphism of R-modules

0 −→ HomR(RAR, τRU) −→ HomR(R, τRU) ∼= τRU

and we obtain an injection

0 −→ HomR(U,HomR(RAR, τRU)) −→ HomR(U, τRU) ∼= DExt1
R(U,U).

Since Ext1
R(U,U) = 0, we get Ext1

A(U ⊗R A,U ⊗R A) = 0, and so U ⊗R A
is a partial tilting A-module. Finally, let 0→ R→ U ′ → U ′′ → 0 be a short
exact sequence in modR with U ′ and U ′′ in addU . Tensoring this sequence
with RA yields the exact sequence 0→ A→ U ′⊗RA→ U ′′⊗RA→ 0 since
TorR1 (U,A) = 0. Also, U ′ ⊗R A and U ′′ ⊗R A are both in add(U ⊗R A) and
this completes the proof of the theorem.

We call a (partial) tilting R-module U restrictable if U⊗AR is a (partial)
tilting A-module. We have just shown that if TorR1 (U,A) = 0, then U is
restrictable. We now prove the main result of this section.

Theorem 3.4. The functors −⊗RA and −⊗AR induce mutually inverse
bijections between the class of the induced tilting R-modules U such that
TorR1 (U,A) = 0 and the class of the extendable tilting A-modules.

Proof. Assume that T is an extendable tilting A-module. We show first
that TorR1 (T ⊗A R,A) = 0. Let 0 → P1 → P0 → T → 0 be a minimal



SPLIT-BY-NILPOTENT EXTENSIONS 271

projective resolution of T over A. Using [5, 1.3], we have a minimal projective
resolution of T ⊗A R in modR:

0 −→ P1 ⊗A R −→ P0 ⊗A R −→ T ⊗A R −→ 0.

Applying −⊗RA to this resolution yields a commutative diagram with exact
rows

0 // TorR1 (T ⊗A R,A) // P1 ⊗A R⊗R A
∼=

��

// P0 ⊗A R⊗R A
∼=

��
0 // P1

// P0

hence TorR1 (T ⊗A R,A) = 0. Suppose now that UR = T ⊗A R is an induced
tilting R-module such that TorR1 (U,A) = 0. By 3.3, U ⊗R A ∼= T is a tilting
A-module and it is clearly extendable.

We now discuss the torsion pair corresponding to a restrictable tilting
R-module U . We recall that if W is a tilting module over an algebra C,
then W determines a torsion pair (T (W ),F(W )), where T (W ) = {VC :
Ext1

C(W,V ) = 0} and F(W ) = {VC : HomC(W,V ) = 0}.
Proposition 3.5. Let U be a restrictable tilting R-module and let M be

an A-module. Then:

(a) MA ∈ F(U ⊗R A) if and only if MR ∈ F(U).
(b) MA ∈ T (U ⊗R A) if and only if MR ∈ T (U).

Moreover, if (T (U),F(U)) is a splitting torsion pair, then so is the torsion
pair (T (U ⊗R A),F(U ⊗R A)).

Proof. For (a) we have

HomA(U ⊗R A,M) ∼= HomR(U,HomA(AAR,M)) ∼= HomR(U,MR).

For (b) we have

Ext1
A(U ⊗R A,M)
∼= DHomA(M, τA(U ⊗R A)) ∼= DHomA(M,HomR(RA, τRU))

∼= DHomA(M ⊗A AR, τRU)) ∼= DHomR(M, τRU) ∼= Ext1
R(U,M).

The last statement follows immediately.

In what follows, we study the condition TorR1 (U,A) = 0. We start with
the following lemma.

Lemma 3.6. Let U be an R-module of projective dimension less than

or equal to one. Let 0 → P̃1 → P̃0 → U → 0 be a minimal projective

resolution of UR. Then P̃1Q = P̃0Q ∩ P̃1 if and only if the multiplication
map U ⊗R Q→ UQ is an isomorphism.



272 I. ASSEM AND D. ZACHARIA

Proof. Since pdUR ≤ 1, applying U ⊗R − to the sequence of R-R-
bimodules 0→ Q→ R→ A→ 0 yields the exact sequence 0→ TorR1 (U,Q)
→ TorR1 (U,R) hence we obtain TorR1 (U,Q) = 0. Applying − ⊗R Q to the
given projective resolution of U , we obtain a commutative diagram with
exact rows

0 // P̃1 ⊗R Q
∼=

��

// P̃0 ⊗R Q
∼=

��

// U ⊗R Q // 0

0 // P̃1Q
// P̃0Q

// U ⊗R Q // 0

We also have the following exact sequence of R-modules:

0 −→ P̃0Q ∩ P̃1 −→ P̃0Q −→ UQ −→ 0.

Thus we get the following commutative diagram with exact rows:

0 // P̃1Q

��

// P̃0Q
// U ⊗R Q

p

��

// 0

0 // P̃1 ∩ P̃1Q
// P̃0Q

// UQ // 0

where p(u⊗ q) = uq for u ∈ U and q ∈ Q. The lemma follows.

Lemma 3.7. Let U be an R-module. The multiplication map U ⊗R Q→
UQ is an isomorphism of R-modules if and only if TorR1 (U,A) = 0.

Proof. Applying the functor U ⊗R − to the exact sequence of R-R-
bimodules 0 → Q → R → A → 0 yields a commutative diagram with
exact rows in modR:

0 // TorR1 (U,A) // U ⊗R Q //

p

��

U ⊗R R //

∼=
��

U ⊗R A //

∼=
��

0

0 // UQ // U // U/UQ // 0

where p is the multiplication map. Since p is surjective, the result follows.

Combining the previous two lemmata we obtain the following corollary.

Corollary 3.8. Let U be an R-module such that its projective dimen-

sion is at most one, and let 0→ P̃1 → P̃0 → U → 0 be a minimal projective
resolution of UR. The following statements are equivalent :

(a) TorR1 (U,A) = 0.
(b) The multiplication map U ⊗R Q → UQ is an isomorphism of R-

modules.
(c) P̃1Q = P̃0Q ∩ P̃1.
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Remark. Assume that, in addition, U is a tilting R-module. Then the
conditions of the corollary are equivalent to the condition that D(RA) is gen-
erated by UR. This follows from the well-known isomorphismDExt1

R(U,DA)
∼= TorR1 (U,A).

The next result holds for instance when R is hereditary and also in the
case of one-point extensions.

Corollary 3.9. Assume that Q is projective as a left R-module. Then
every (partial) tilting R-module is restrictable.

Proof. This follows from condition (b) of 3.8.

Examples. (a) The following is an example of a restrictable tilting mod-
ule that is not induced. Let R be the hereditary algebra with quiver

1 2
β

oo
αoo

and A be the hereditary subalgebra given by the quiver

1 2.
αoo

The APR-tilting module UR = τ−1
R (e1R) ⊕ e2R is restrictable by 3.9. In

order to show that UR is not induced, it suffices to show that the indecom-
posable module τ−1

R (e1R) is not induced. Notice that the top of τ−1
R (e1R) is

isomorphic to a sum of two copies of S2, and its socle is isomorphic to a sum
of three copies of S1. Since there are only three isomorphism classes of in-
decomposable A-modules of which two are projective, it suffices to compute
S2 ⊗A R. The projective resolution

0 −→ e1A −→ e2A −→ S2 −→ 0

in modA lifts to a projective resolution over the algebra R:

0 −→ e1R −→ e2R −→ S2 ⊗A R −→ 0

Hence S2⊗AR is a two-dimensional uniserialR-module and is not isomorphic
to τ−1

R (e1R). Finally, we compute U ⊗R A. The projective resolution

0 −→ e1R −→ (e2R)2 −→ τ−1
R (e1R) −→ 0

yields a minimal projective resolution in modA:

0 −→ e1A −→ (e2A)2 −→ τ−1
R (e1R)⊗R A −→ 0.

Therefore τ−1
R (e1R)⊗R A ∼= S2 ⊕ e2A. Since e2R⊗R A ∼= e2A, we conclude

that U ⊗R A ∼= S2 ⊕ (e2A)2.
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(b) We now give an example of a restrictable induced tilting module over
R. Let R be given by the quiver

1

η

&&
3

β
oo

γ

��

4α
oo

2

subject to the relations ηαβηα = 0, αγ = 0, and let A be the subalgebra
given by the quiver

1 3
βoo

γ

��

4
αoo

2

with αγ = 0. It is easily verified that

UR = e2R⊕ e4R⊕
(

4

3

)
⊕
(

3

2

)

is a tilting R-module. Applying the functor −⊗RA to the minimal projective
resolutions

0 −→ e1R −→ e4R −→
(

4

3

)
−→ 0, 0 −→ e1R −→ e3R −→

(
3

2

)
−→ 0

we see at once that UR is restrictable. The same calculation shows that

U ⊗R A ∼= e2A⊕ e4A⊕
(

4

3

)
⊕
(

3

2

)
,

which is a tilting A-module. Since it is easily verified that U⊗RA⊗AR ∼= U ,
we infer that U is induced.
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