STABLE FAMILIES OF ANALYTIC SETS

BY

PANDELIS DODOS (Athens)

Abstract. We give a different proof of the well-known fact that any uncountable family of analytic subsets of a Polish space with the point-finite intersection property must contain a subfamily whose union is not analytic. Our approach is based on the Kunen–Martin theorem.

1. Introduction and notations. It is well known that any uncountable family of analytic subsets of a Polish space with the point-finite intersection property must contain a subfamily whose union is not analytic (see [1], [2], [3] and [5]). In [1], this (and in fact a much stronger) result is proved but the proof heavily depends on the Axiom of Choice. In [2], [3] and [5], the proofs are effective but the arguments are more complicated. In this note we give a short proof by using the Kunen–Martin theorem.

Notations. In what follows X and Y will be uncountable Polish spaces. By \mathcal{N} we denote the Baire space. If $A \subseteq X \times Y$ and $U \subseteq Y$ is an arbitrary open set, we put

$$A(U) = \text{proj}_X \{A \cap (X \times U)\}.$$

All the other notations we use are standard (for more information we refer to [4]).

2. Stable families of analytic sets. Departing from standard terminology, we make the following definition.

Definition 1. A family $\mathcal{F} = (A_i)_{i \in I}$ of analytic subsets of X will be called stable if for every $J \subseteq I$ the set $\bigcup_{i \in J} A_i$ is an analytic subset of X.

Clearly any subfamily of a stable family is stable. Furthermore any countable family of analytic sets is stable. There exist however uncountable stable families of analytic sets.

Example 1. Let $A \subseteq X$ be an analytic non-Borel set. By a classical result of Sierpinski (see [4, p. 201]), there exists a transfinite sequence $(B_\xi)_{\xi < \omega_1}$ of Borel sets such that $A = \bigcup_{\xi < \omega_1} B_\xi$. Clearly we may assume that

2000 Mathematics Subject Classification: Primary 03E15.
the sequence \((B_\xi)_{\xi \in \omega_1}\) is increasing. As \(A\) is not Borel, there exists \(\Lambda \subseteq \omega_1\) uncountable such that \(B_\xi \subseteq B_\zeta\) for every \(\xi, \zeta \in \Lambda\) with \(\xi < \zeta\). Then the family \(\mathcal{F} = (B_\xi)_{\xi \in \Lambda}\) is an uncountable stable family of mutually different analytic sets (note that the members of \(\mathcal{F}\) are actually Borel sets).

DEFINITION 2. A family \(\mathcal{F} = (A_i)_{i \in I}\) of subsets of \(X\) is said to have the point-finite intersection property (abbreviated as p.f.i.p.) if for every \(x \in X\), the set \(I_x = \{i \in I : x \in A_i\}\) is finite.

As before, any subfamily of a family with the point-finite intersection property has the point-finite intersection property. We will show that stable families of analytic sets with the p.f.i.p. are necessarily countable. First a couple of lemmas. The one that follows is elementary.

Lemma 3. Let \(X\) and \(Y\) be Polish spaces. If \(A \in \Pi_1^1(X)\) and \(U \subseteq Y\) is open, then \(A \times U \in \Pi_1^1(X \times Y)\).

Lemma 4. Let \(X\) and \(Y\) be Polish spaces. Assume that \(A \subseteq X \times Y\) has closed sections (i.e. for every \(x \in X\), the set \(A_x = \{y \in Y : (x, y) \in A\}\) is closed) and moreover for every \(U \subseteq Y\) open the set \(A(U)\) is analytic. Then \(A\) is also analytic.

Proof. Let \(B = (V_n)_n\) be a countable base for \(Y\). Observe that \((x, y) \notin A\) if and only if there exists a basic open subset \(V_n\) of \(Y\) such that \(x \notin A(V_n)\) and \(y \in V_n\). It follows that

\[
(X \times Y) \setminus A = \bigcup_n (X \setminus A(V_n)) \times V_n
\]

and so, by Lemma 3, \(A\) is analytic. \(\blacksquare\)

We have the following stability result.

Lemma 5. Let \(\mathcal{F} = (A_i)_{i \in I}\) be a stable family of analytic subsets of \(X\) with the point-finite intersection property. Then for every Polish space \(Y\) and every family \((B_i)_{i \in I}\) of analytic subsets of \(Y\), the set

\[
A = \bigcup_{i \in I} (A_i \times B_i)
\]

is an analytic subset of \(X \times Y\).

Proof. Let \(\mathcal{F} = (A_i)_{i \in I}\) and \((B_i)_{i \in I}\) as above. As every \(B_i\) is analytic, there exists \(C_i \subseteq Y \times \mathcal{N}\) closed such that \(B_i = \text{proj}_Y C_i\). Define \(\tilde{A} \subseteq X \times Y \times \mathcal{N}\) by

\[
\tilde{A} = \bigcup_{i \in I} (A_i \times C_i).
\]

Clearly \(A = \text{proj}_{X \times Y} \tilde{A}\). Note that for every \(x \in X\) the section

\[
\tilde{A}_x = \{(y, z) \in Y \times \mathcal{N} : (x, y, z) \in \tilde{A}\}
\]
is exactly the set $\bigcup_{i \in I_x} C_i$. As the family \mathcal{F} has the point-finite intersection property, for every $x \in X$ the section \tilde{A}_x of \tilde{A} is closed. Observe that for every $U \subseteq Y \times \mathcal{N}$ open, we have

$$
\tilde{A}(U) = \text{proj}_X \{\tilde{A} \cap (X \times U)\} = \{x \in X : \exists i \in I_x \text{ such that } C_i \cap U \neq \emptyset\} = \bigcup \{A_i : C_i \cap U \neq \emptyset\}.
$$

It follows directly from the stability of the family that $\tilde{A}(U)$ is analytic. By Lemma 4, \tilde{A} is an analytic subset of $X \times Y \times \mathcal{N}$. Hence so is A. □

Let \prec be a strict well-founded binary relation on X. By recursion, we define the rank function $\varrho_\prec : X \to \text{Ord}$ as follows. We set $\varrho_\prec(x) = 0$ if x is minimal, otherwise we set $\varrho_\prec(x) = \sup\{\varrho_\prec(y) + 1 : y \prec x\}$. Finally we define the rank of \prec to be $\varrho(\prec) = \sup\{\varrho_\prec(x) + 1 : x \in X\}$. We will need the following boundedness principle of analytic well-founded relations due to Kunen and Martin (see [4] or [6]).

Theorem 6. Let \prec be a strict well-founded relation and assume that \prec is analytic (as a subset of $X \times X$). Then $\varrho(\prec)$ is countable.

Lemma 7. Let $\mathcal{F} = (A_i)_{i \in I}$ be a stable family of mutually disjoint analytic subsets of X. Then \mathcal{F} is countable.

Proof. Assume that \mathcal{F} is not countable. Pick an uncountable subfamily \mathcal{F}' of \mathcal{F} with $|\mathcal{F}'| = \aleph_1$ and let $\mathcal{F}' = (A_\xi)_{\xi < \omega_1}$ be a well-ordering of \mathcal{F}'. Clearly \mathcal{F}' remains stable. As the sets A_ξ are pairwise disjoint let $\phi : \bigcup_{\xi < \omega_1} A_\xi \to \text{Ord}$, where $\phi(x)$ is the unique ξ such that $x \in A_\xi$. Define the binary relation \prec by

$$
x \prec y \iff \phi(x) < \phi(y).
$$

Clearly \prec is well-founded and strict. Moreover note that \prec, as a subset of $X \times X$, is the set

$$
\bigcup_{\xi < \omega_1} (A_\xi \times B_\xi),
$$

where $B_\xi = \bigcup_{\zeta > \xi} A_\zeta$. From the stability of \mathcal{F}', we see that the sets B_ξ are analytic subsets of X for every $\xi < \omega_1$. As \mathcal{F}' is stable and has the p.f.i.p., by Lemma 5 we deduce that \prec is a Σ_1^1 relation. By Theorem 6, $\varrho(\prec)$ must be countable and we derive a contradiction. □

Finally we have the following.

Theorem 8. Let \mathcal{F} be a stable family of analytic sets with the point-finite intersection property. Then \mathcal{F} is countable.
Proof. Assume not. Let \mathcal{F}' be as in Lemma 7. Let Y be an arbitrary uncountable Polish space and let $(y_\xi)_{\xi<\omega_1}$ be a transfinite sequence of distinct members of Y. For every $\xi < \omega_1$, set $L_\xi = A_\xi \times \{y_\xi\}$. Clearly every L_ξ is an analytic subset of $X \times Y$ and moreover $L_\xi \cap L_\zeta = \emptyset$ if $\xi \neq \zeta$. As the family (and every subfamily of) \mathcal{F}' is stable and has the p.f.i.p., by Lemma 5, for every $G \subseteq \omega_1$ the set
\[
\bigcup_{\xi \in G} (A_\xi \times \{y_\xi\}) = \bigcup_{\xi \in G} L_\xi
\]
is an analytic subset of $X \times Y$. It follows that the family $\mathcal{L} = (L_\xi)_{\xi<\omega_1}$ is a stable family of mutually disjoint analytic subsets of $X \times Y$. By Lemma 7, the family \mathcal{L} must be countable and again we derive a contradiction.

A corollary of Theorem 8 is the following (see [7]).

Corollary 9. Let X be a Polish space, Y a metrizable space and $A \in \Sigma_1^1(X)$. Let also $f : A \to Y$ be a Borel measurable function. Then $f(A)$ is separable.

Proof. Assume not. Let $C \subseteq f(A)$ be an uncountable closed discrete set with $|C| > \aleph_0$. For every $y \in C$, put $A_y = f^{-1}\{\{y\}\}$. Then $\mathcal{F} = (A_y)_{y \in C}$ is a stable family of mutually disjoint analytic subsets of X. By Theorem 8, \mathcal{F} must be countable and we derive a contradiction.

Remark 1. Say that a family $\mathcal{F} = (A_i)_{i \in I}$ has the point-countable intersection property if for every $x \in X$ the set $I_x = \{i \in I : x \in A_i\}$ is countable. One can easily see that Theorem 8 is not valid for stable families with the point-countable intersection property. For instance let $(A_\xi)_{\xi<\omega_1}$ be a strictly decreasing transfinite sequence of analytic sets with $\bigcap_{\xi<\omega_1} A_\xi = \emptyset$. As the sequence is decreasing, the family $\mathcal{F} = (A_\xi)_{\xi<\omega_1}$ is stable. Moreover note that for every $x \in X$ there exists $\xi < \omega_1$ such that $x \notin A_\xi$ for every $\zeta > \xi$ (for if not there would exist an $x \in X$ such that $x \in A_\xi$ for every $\xi < \omega_1$, that is, $x \in \bigcap_{\xi<\omega_1} A_\xi$). Hence the family \mathcal{F} is an uncountable stable family of analytic sets with the point-countable intersection property.

Acknowledgments. I would like to thank the anonymous referee for his comments which substantially improved the presentation of the paper.

REFERENCES

National Technical University of Athens
Department of Mathematics
Zografou Campus
157 80 Athens, Greece
E-mail: pdodos@math.ntua.gr

Received 14 February 2003;
revised 25 November 2003